Package ‘easyalluvial’

January 13, 2021

Title Generate Alluvial Plots with a Single Line of Code

Version 0.3.0

URL https://github.com/erblast/easyalluvial/

Description Alluvial plots are similar to sankey diagrams and visualise categorical data over multiple dimensions as flows. (Rosvall M, Bergstrom CT (2010) Mapping Change in Large Networks. PLoS ONE 5(1): e8694. <doi:10.1371/journal.pone.0008694>

Their graphical grammar however is a bit more complex than that of a regular x/y plots. The 'ggalluvial' package made a great job of translating that grammar into 'ggplot2' syntax and gives you many options to tweak the appearance of an alluvial plot, however there still remains a multi-layered complexity that makes it difficult to use 'ggalluvial' for explorative data analysis. 'easyalluvial' provides a simple interface to this package that allows you to produce a decent alluvial plot from any dataframe in either long or wide format from a single line of code while also handling continuous data. It is meant to allow a quick visualisation of entire dataframes with a focus on different colouring options that can make alluvial plots a great tool for data exploration.

License CC0

Encoding UTF-8

LazyData true

Depends R(>= 3.5)

Suggests testthat, covr, ISLR, nycflights13, vdiffr (>= 0.3.1), parcats, pkgdown, mlbench, earth, workflows, future, furrr, e1071, caret, parsnip, vip, rpart, glmnet, xgboost

RoxygenNote 7.1.1

Imports purrr, tidyr (>= 1.0.0), dplyr, forcats, ggalluvial (>= 0.9.1), ggplot2 (>= 3.2.0), ggridges, RColorBrewer, recipes (>= 0.1.5), rlang, stringr, magrittr, tibble, gridExtra, randomForest, progressr, progress

Language en-US

NeedsCompilation no

Author Bjoern Koneswarakantha [aut, cre]
(https://orcid.org/0000-0003-4585-7799)
Maintainer Bjoern Koneswarakantha <datistics@gmail.com>
Repository CRAN
Date/Publication 2021-01-13 10:40:09 UTC

R topics documented:

add_imp_plot . 2
add_marginal_histograms . 3
alluvial_long . 5
alluvial_model_response . 7
alluvial_model_response_caret . 10
alluvial_model_response_parsnip . 12
alluvial_wide . 14
check_pkg_installed . 16
get_data_space . 17
get_pdp_predictions . 18
get_pdp_predictions_seq . 20
manip_bin_numerics . 21
manip_factor_2_numeric . 22
mtcars2 . 23
palette_filter . 24
palette_increase_length . 25
palette_plot_intensity . 26
palette_plot_rgp . 27
palette_qualitative . 27
pdp_predictions . 28
plot_all_hists . 29
plot_condensation . 30
plot_hist . 31
plot_imp . 31
quarterly_flights . 32
quarterly_sunspots . 33
tidy_imp . 33
titanic . 34

Index

add_imp_plot

Description
adds bar plot of important features to model response alluvial plot

Usage
add_imp_plot(grid, p = NULL, data_input, plot = T, ...)

add_bar_plot of important features to model response alluvial plot
add_marginal_histograms

Arguments

grid gtable or ggplot
p alluvial plot, optional if alluvial plot has already been passed as grid. Default: NULL
data_input dataframe used to generate alluvial plot
plot logical if plot should be drawn or not
... additional parameters passed to plot_imp

Value
gtable

See Also

arrangeGrob plot_imp

Examples

```r
## Not run:
df = mtcars2[, ! names(mtcars2) %in% 'ids' ]

train = caret::train( disp ~ .,
  df
  , method = 'rf'
  , trControl = caret::trainControl( method = 'none' )
  , importance = TRUE )

pred_train = caret::predict.train(train, df)

p = alluvial_model_response_caret(train, degree = 4, pred_train = pred_train)

p_grid = add_marginal_histograms(p, data_input = df)

p_grid = add_imp_plot(p_grid, p, data_input = df)

## End(Not run)
```

add_marginal_histograms

add marginal histograms to alluvial plot

Description

will add density histograms and frequency plots of original data to alluvial plot
add_marginal_histograms

Usage

add_marginal_histograms(
 p,
 data_input,
 top = TRUE,
 keep_labels = FALSE,
 plot = TRUE,
 ...
)

Arguments

 p alluvial plot
 data_input dataframe, input data that was used to create dataframe
 top logical, position of histograms, if FALSE adds them at the bottom, Default: TRUE
 keep_labels logical, keep title and caption, Default: FALSE
 plot logical if plot should be drawn or not
 ... additional arguments for model response alluvial plot concerning the response variable

 pred_train display training prediction, not necessary if pred_train has already been passed to alluvial_model_response()
 scale int, y-axis distance between the ridge plots, Default: 400
 resp_var character vector, specify response variable in data_input, if not set response variable will try to be inferred, Default: NULL

Value

gtable

See Also

arrangeGrob

Examples

p = alluvial_wide(mtcars2, max_variables = 4)
p_grid = add_marginal_histograms(p, mtcars2)
Description

Plots two variables of a dataframe on an alluvial plot. A third variable can be added either to the left or the right of the alluvial plot to provide coloring of the flows. All numerical variables are scaled, centered and YeoJohnson transformed before binning.

Usage

```r
alluvial_long(
  data,
  key,
  value,
  id,
  fill = NULL,
  fill_right = T,
  bins = 5,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
  NA_label = "NA",
  order_levels_value = NULL,
  order_levels_key = NULL,
  order_levels_fill = NULL,
  complete = TRUE,
  fill_by = "first_variable",
  col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
  col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(3, 6, 4, 7, 5)],
  verbose = F,
  stratum_labels = T,
  stratum_label_size = 4.5,
  stratum_width = 1/4,
  auto_rotate_xlabs = T,
  ...
)
```

Arguments

data a dataframe
key unquoted column name or string of x axis variable
value unquoted column name or string of y axis variable
id unquoted column name or string of id column
fill unquoted column name or string of fill variable which will be used to color flows, Default: NULL
fill_right logical, TRUE fill variable is added to the right FALSE to the left, Default: T
alluvial_long

bins number of bins for automatic binning of numerical variables, Default: 5
bin_labels labels for bins, Default: c("LL", "ML", "M", "MH", "HH")
NA_label character vector define label for missing data
order_levels_value character vector denoting order of y levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL
order_levels_key character vector denoting order of x levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL
order_levels_fill character vector denoting order of color fill variable levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL
complete logical, insert implicitly missing observations, Default: TRUE
fill_by one_of(c('first_variable', 'last_variable', 'all_flows', 'values')), Default: 'first_variable'
col_vector_flow HEX color values for flows, Default: palette_filter(greys = F)
col_vector_value HEX color values for y levels/values, Default: RColorBrewer::brewer.pal(9, 'Greys')[c(3,6,4,7,5)]
verbose logical, print plot summary, Default: F
stratum_labels logical, Default: TRUE
stratum_label_size numeric, Default: 4.5
stratum_width double, Default: 1/4
auto_rotate_xlabs logical, Default: TRUE
...
... additional parameter passed to manip_bin_numerics

Value

ggplot2 object

See Also

alluvial_wide.geom_flow, geom_stratum, manip_bin_numerics

Examples

data = quarterly_flights

alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'last_variable')

Not run:
more flow coloring variants -------------------------------
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'first_variable')
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'all_flows')
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'value')

color by additional variable carrier ---------------------------
alluvial_long(data, key = qu, value = mean_arr_delay, fill = carrier, id = tailnum)

use same color coding for flows and y levels -------------------
palette = c('green3', 'tomato')
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'value'
 , col_vector_flow = palette
 , col_vector_value = palette)

reorder levels --
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
 , order_levels_value = c('on_time', 'late'))
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
 , order_levels_key = c('Q4', 'Q3', 'Q2', 'Q1'))

require(dplyr)
require(magrittr)

order_by_carrier_size = data %>%
group_by(carrier) %>%
count() %>%
arrange(desc(n)) %>%
.[['carrier']]%>%
alluvial_long(data, qu, mean_arr_delay, tailnum, carrier
 , order_levels_fill = order_by_carrier_size)

End(Not run)

desc

alluvial_model_response

create model response plot

Description

alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves to plot the response of a statistical model to changes in the input data across multiple dimensions. The practical limit here is 4 dimensions. We need the data space (a sensible range of data calculated
based on the importance of the explanatory variables of the model as created by \texttt{get_data_space} and the predictions returned by the model in response to the data space.

\textbf{Usage}

\begin{verbatim}
alluvial_model_response(
 pred,
 dspace,
 imp,
 degree = 4,
 bin_labels = c("LL", "ML", "M", "MH", "HH"),
 method = "median",
 force = FALSE,
 params_bin_numeric_pred = list(bins = 5),
 pred_train = NULL,
 stratum_label_size = 3.5,
 ...)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{pred} vector, predictions, if method = 'pdp' use \texttt{get_pdp_predictions} to calculate predictions
 \item \texttt{dspace} data frame, returned by \texttt{get_data_space}
 \item \texttt{imp} dataframe, with not more than two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
 \item \texttt{degree} integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4
 \item \texttt{bin_labels} labels for prediction bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
 \item \texttt{col_vector_flow}, character vector, defines flow colours, Default: c("#FF0065", ",009850", ",A56F2B", ",005EAA", ",710500")
 \item \texttt{method}, character vector, one of c('median', 'pdp')
 \begin{itemize}
 \item \texttt{median} sets variables that are not displayed to median mode, use with regular predictions
 \item \texttt{pdp} partial dependency plot method, for each observation in the training data the displayed variable as are set to the indicated values. The predict function is called for each modified observation and the result is averaged, calculate predictions using \texttt{get_pdp_predictions}
 \end{itemize}
 \item \texttt{force} logical, force plotting of over 1500 flows, Default: FALSE
\end{itemize}
alluvial_model_response

params_bin_numeric_pred
- list, additional parameters passed to `manip_bin_numerics` which is applied to the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)

pred_train
- numeric vector, base the automated binning of the pred vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = NULL

stratum_label_size
- numeric, Default: 3.5

... additional parameters passed to `alluvial_wide`

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

See Also

`alluvial_wide`, `get_data_space`, `alluvial_model_response_caret`

Examples

```r
df = mtcars2[, !names(mtcars2) %in% 'ids']
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp, degree = 3)
pred = predict(m, newdata = dspace)
alluvial_model_response(pred, dspace, imp, degree = 3)
```

partial dependency plotting method
Not run:
```r
pred = get_pdp_predictions(df, imp,
, .f_predict = randomForest::predict.randomForest
, m
, degree = 3
, bins = 5)
```

alluvial_model_response(pred, dspace, imp, degree = 3, method = 'pdp')

End(Not run)
alluvial_model_response_caret

create model response plot for caret models

Description

Wraps alluvial_model_response and get_data_space into one call for caret models.

Usage

alluvial_model_response_caret(
 train,
 data_input,
 degree = 4,
 bins = 5,
 bin_labels = c("LL", "ML", "M", "MH", "HH"),
 col_vector_flow = c("FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380", "#9DD1D1"),
 method = "median",
 parallel = FALSE,
 params_bin_numeric_pred = list(bins = 5),
 pred_train = NULL,
 stratum_label_size = 3.5,
 force = F,
 resp_var = NULL,
 ...
)

Arguments

 train caret train object
 data_input dataframe, input data
 degree integer, number of top important variables to select. For plotting more than 4
 will result in two many flows and the alluvial plot will not be very readable,
 Default: 4
 bins integer, number of bins for numeric variables, increasing this number might
 result in too many flows, Default: 5
 bin_labels labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
 col_vector_flow character vector, defines flow colours, Default: c("FF0065", "#009850", "#A56F2B", "#005EAA", "#710500")
 method character vector, one of c(\texttt{\textquote{median}}, \texttt{\textquote{pdp}})
 \texttt{\textquote{median}} sets variables that are not displayed to median mode, use with regular
 predictions
pdp partial dependency plot method, for each observation in the training data the displayed variables are set to the indicated values. The predict function is called for each modified observation and the result is averaged. Default: ‘median’

parallel logical, turn on parallel processing for pdp method. Default: FALSE

params_bin_numeric_pred list, additional parameters passed to *manip_bin_numerics* which is applied to the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)

pred_train numeric vector, base the automated binning of the pred vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = NULL

stratum_label_size numeric, Default: 3.5

force logical, force plotting of over 1500 flows, Default: FALSE

resp_var character, sometimes target variable cannot be inferred and needs to be passed. Default NULL

... additional parameters passed to *alluvial_wide*

Details

This model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

Parallel Processing

We are using ‘furrr’ and the ‘future’ package to parallelize some of the computational steps for calculating the predictions. It is up to the user to register a compatible backend (see *plan*).

See Also

alluvial_wide, get_data_space, varImp, extractPrediction, get_data_space, get_pdp_predictions

Examples

```r
if(check_pkg_installed("caret")) {
  df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
  train = caret::train( disp ~ .,
                        df,
                        method = 'rf',
                        trControl = caret::trainControl( method = 'none' ),
                        importance = TRUE )
```
alluvial_model_response_caret(train, df, degree = 3)
}
partial dependency plotting method
Not run:
future::plan("multisession")
alluvial_model_response_caret(train, df, degree = 3, method = 'pdp', parallel = TRUE)
End(Not run)

alluvial_model_response_parsnip

create model response plot for parsnip models

Description

Wraps \texttt{alluvial_model_response} and \texttt{get_data_space} into one call for parsnip models.

Usage

\begin{verbatim}
alluvial_model_response_parsnip(
m,
data_input,
degree = 4,
bins = 5,
bin_labels = c("LL", "ML", "M", "MH", "HH"),
col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380", "#9DD1D1"),
method = "median",
parallel = FALSE,
params_bin_numeric_pred = list(bins = 5),
pred_train = NULL,
stratum_label_size = 3.5,
force = F,
resp_var = NULL,
.f_imp = vip::vi_model,
...
)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{m} \hspace{1cm} parsnip model or trained workflow
 \item \texttt{data_input} \hspace{1cm} dataframe, input data
 \item \texttt{degree} \hspace{1cm} integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable. Default: 4
\end{itemize}
alluvial_model_response_parsnip

- **bins**: integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5
- **bin_labels**: labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
- **col_vector_flow**: character vector, defines flow colours, Default: c('#FF0065', '#009850', '#A56F2B', '#005EAA', '#710500')
- **method**: character vector, one of c('median', 'pdp')
 - **median**: sets variables that are not displayed to median mode, use with regular predictions
 - **pdp**: partial dependency plot method, for each observation in the training data the displayed variables are set to the indicated values. The predict function is called for each modified observation and the result is averaged.

 Default: 'median'
- **parallel**: logical, turn on parallel processing for pdp method. Default: FALSE
- **params_bin_numeric_pred**: list, additional parameters passed to `manip_bin_numerics` which is applied to the `pred` parameter. Default: list(bins = 5, center = T, transform = T, scale = T)
- **pred_train**: numeric vector, base the automated binning of the `pred` vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = NULL
- **stratum_label_size**: numeric, Default: 3.5
- **force**: logical, force plotting of over 1500 flows, Default: FALSE
- **resp_var**: character, sometimes target variable cannot be inferred and needs to be passed. Default NULL
- **.f_imp**: vip function that calculates feature importance, Default: vip::vi_model
- **...**: additional parameters passed to `alluvial_wide`

Details

This model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

- ggplot2 object

Parallel Processing

We are using ‘furrr’ and the ‘future’ package to paralelize some of the computational steps for calculating the predictions. It is up to the user to register a compatible backend (see `plan`).

See Also

- `alluvial_wide`, `get_data_space`, `varImp`, `extractPrediction`, `get_data_space`, `get_pdp_predictions`
alluvial_wide alluvial plot of data in wide format

Description
plots a dataframe as an alluvial plot. All numerical variables are scaled, centered and YeoJohnson transformed before binning. Plots all variables in the sequence as they appear in the dataframe until maximum number of values is reached.

Usage
alluvial_wide(
 data,
 id = NULL,
 max_variables = 20,
 bins = 5,
 bin_labels = c("LL", "ML", "M", "MH", "HH"),
)
alluvial_wide

NA_label = "NA",
order_levels = NULL,
fill_by = "first_variable",
col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(4, 7, 5, 8, 6)],
colorful_fill_variable_stratum = T,
verbose = F,
stratum_labels = T,
stratum_label_size = 4.5,
stratum_width = 1/4,
auto_rotate_xlabs = T,
...
)

Arguments

data a dataframe
id unquoted column name of id column or character vector with id column name
max_variables maximum number of variables, Default: 20
bins number of bins for numerical variables, Default: 5
bin_labels labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")
NA_label character vector, define label for missing data, Default: 'NA'
order_levels character vector denoting levels to be reordered from low to high
fill_by one_of(c('first_variable', 'last_variable', 'all_flows', 'values')), Default: 'first_variable'
col_vector_flow HEX colors for flows, Default: palette_filter(greys = F)
col_vector_value Hex colors for y levels/values, Default: RColorBrewer::brewer.pal(9, "Greys")[c(3, 6, 4, 7, 5)]
colorful_fill_variable_stratum logical, use flow colors to colorize fill variable stratum, Default: TRUE
verbose logical, print plot summary, Default: F
stratum_labels logical, Default: TRUE
stratum_label_size numeric, Default: 4.5
stratum_width double, Default: 1/4
auto_rotate_xlabs logical, Default: TRUE
... additional arguments passed to manip_bin_numerics

Details

Under the hood this function converts the wide format into long format. ggalluvial also offers a way to make alluvial plots directly from wide format tables but it does not allow individual colouring of the stratum segments. The tradeoff is that we can only order levels as a whole and not individually by variable. Thus if some variables have levels with the same name the order will be the same. If we want to change level order independently we have to assign unique level names first.
check_pkg_installed

check if package is installed

Description

check if package is installed

Usage

check_pkg_installed(pkg)

Arguments

pkg character, package name

Value

ggplot2 object

See Also

alluvial_wide, geom_flow, geom_stratum, manip_bin_numerics

Examples

alluvial_wide(data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'first_variable')

Not run:

more coloring variants----------------------
alluvial_wide(data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'last_variable')

alluvial_wide(data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'all_flows')

alluvial_wide(data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'first_variable')

manually order variable values and colour by stratum value

alluvial_wide(data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'values'
, order_levels = c('4', '8', '6'))

End(Not run)
get_data_space

Value

logical

Examples

```r
check_pkg_installed("easyalluvial")
```

get_data_space
calculate data space

Description

calculates a dataspace based on the modeling dataframe and the importance of the explanatory variables. It only considers the most important variables as defined by the degree parameter. It selects a number (defined by bins) of sensible single values spread over the range of the numeric variables and creates all possible value combinations among the most important variables. The values of the remaining variables are set to mode(factors) or median(numerics).

Usage

```r
get_data_space(df, imp, degree = 4, bins = 5, max_levels = 10)
```

Arguments

- **df**
 dataframe, training data
- **imp**
 dataframe, with not more than two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
- **degree**
 integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
- **bins**
 integer, number of bins for numeric variables, and maximum number of levels for factor variables, increasing this number might result in too many flows, Default: 5
- **max_levels**
 integer, maximum number of levels per factor variable, Default: 10

Details

It selects the top most important variables based on the degree parameter and bins the numeric variables using `manip_bin_numerics`, while leaving categoric variables unchanged. The number of bins for each numeric variable is set to bins -2. Next the median is picked for each of the bins and the min and the max value is added for each numeric variable. So that we get median(bin) X bins -2, max, min for each numeric variable. Then all possible combinations between those values and the categoric factor levels are created. The total number of all possible combinations defines
the range of the data space. The values of the remaining variables are set to mode(factors) or median(numerics).

this model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value
data frame

See Also

 alluvial_wide, manip_bin_numerics

Examples

df = mtcars2[, ! names(mtcars2) %in% ' ids ']
m = randomForest::randomForest(disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp)

get_pdp_predictions get predictions compatible with the partial dependence plotting method

Description

Alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves to plot the response of a statistical model to changes in the input data across multiple dimensions. The practical limit here is 4 dimensions while conventional partial dependence plots are limited to 2 dimensions.

Briefly the 4 variables with the highest feature importance for a given model are selected and 5 values spread over the variable range are selected for each. Then a grid of all possible combinations is created. All none-plotted variables are set to the values found in the first row of the training data set. Using this artificial data space model predictions are being generated. This process is then repeated for each row in the training data set and the overall model response is averaged in the end. Each of the possible combinations is plotted as a flow which is coloured by the bin corresponding to the average model response generated by that particular combination.

Usage

get_pdp_predictions(
 df,
 imp,
 m,
 degree = 4,
 bins = 5,
get_pdp_predictions

.f_predict = predict,
parallel = FALSE
)

Arguments

df dataframe, training data

imp dataframe, with not more then two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.

m model object

degree integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4

bins integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5

.f_predict corresponding model predict() function. Needs to accept ‘m’ as the first parameter and use the ‘newdata’ parameter. Supply a wrapper for predict functions with x-y syntax. For parallel processing the predict method of object classes will not always get imported correctly to the worker environment. We can pass the correct predict method via this parameter for example randomForest:::predict.randomForest. Note that a lot of modeling packages do not export the predict method explicitly and it can only be found using :::.

parallel logical, turn on parallel processing. Default: FALSE

Details

For more on partial dependency plots see [https://christophm.github.io/interpretable-ml-book/pdp.html].

Value

vector, predictions

Parallel Processing

We are using ‘furrr’ and the ‘future’ package to parallelize some of the computational steps for calculating the predictions. It is up to the user to register a compatible backend (see plan).

Examples

df = mtcars2[, !names(mtcars2) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)
imp = m$importance

pred = get_pdp_predictions(df, imp
, m
, degree = 3
, bins = 5)
get_pdp_predictions_seq

get predictions compatible with the partial dependence plotting method, sequential variant that only works for numeric predictions.

Description

has been replaced by pdp_predictions which can be paralelized and also handles factor predictions.
It is still used to test results.

Usage

get_pdp_predictions_seq(df, imp, m, degree = 4, bins = 5, .f_predict = predict)

Arguments

df dataframe, training data
imp dataframe, with not more than two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
m model object
degree integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4
bins integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5
.f_predict corresponding model predict() function. Needs to accept ‘m’ as the first parameter and use the ‘newdata’ parameter. Supply a wrapper for predict functions with x-y syntax. For parallel processing the predict method of object classes will not always get imported correctly to the worker environment. We
can pass the correct predict method via this parameter for example randomForest:::predict.randomForest. Note that a lot of modeling packages do not export the predict method explicitly and it can only be found using :::.

See Also

get_pdp_predictions

manip_bin_numerics
bin numerical columns

Description

centers, scales and Yeo Johnson transforms numeric variables in a dataframe before binning into n bins of equal range. Outliers based on boxplot stats are capped (set to min or max of boxplot stats).

Usage

```r
manip_bin_numerics(
  x,
  bins = 5,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
  center = T,
  scale = T,
  transform = T,
  round_numeric = T,
  digits = 2,
  NA_label = "NA"
)
```

Arguments

- `x`
 dataframe with numeric variables, or numeric vector
- `bins`
 number of bins for numerical variables, passed to cut as breaks parameter, Default: 5
- `bin_labels`
 labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH"). Can also be one of c('mean', 'median', 'min_max', 'cuts'), the corresponding summary function will supply the labels.
- `center`
 logical, Default: T
- `scale`
 logical, Default: T
- `transform`
 logical, apply Yeo Johnson Transformation, Default: T
- `round_numeric`
 logical, rounds numeric results if bin_labels is supplied with a supported summary function name.
- `digits`
 integer, number of digits to round to
- `NA_label`
 character vector, define label for missing data, Default: 'NA'
Value
dataframe

Examples

```r
summary( mtcars2 )
summary( manip_bin_numerics(mtcars2) )
summary( manip_bin_numerics(mtcars2, bin_labels = 'mean'))
summary( manip_bin_numerics(mtcars2, bin_labels = 'cuts'
    , scale = FALSE, center = FALSE, transform = FALSE))
```

manip_factor_2_numeric

converts factor to numeric preserving numeric levels and order in character levels.

Description

before converting we check whether the levels contain a number, if they do the number will be preserved.

Usage

```r
manip_factor_2_numeric(vec)
```

Arguments

vec vector

Value

vector

See Also

`str_detect`

Examples

```r
fac_num = factor( c(1,3,8) )
fac_chr = factor( c(\text{'foo'},\text{'bar'}) )
fac_chr_ordered = factor( c(\text{'a'},\text{'b'},\text{'c'}), ordered = TRUE )
manip_factor_2_numeric( fac_num )
manip_factor_2_numeric( fac_chr )
manip_factor_2_numeric( fac_chr_ordered )
# does not work for decimal numbers
manip_factor_2_numeric(factor(c("A12", "B55", "10e4")))
manip_factor_2_numeric(factor(c("1.56", "4.56", "8.4")))
```
Description

mtcars dataset with cyl, vs, am, gear, carb as factor variables and car model names as id

Usage

```r
mtcars2
```

Format

A data frame with 32 rows and 12 variables

- **mpg** Miles/(US) gallon
- **cyl** Number of cylinders
- **disp** Displacement (cu.in.)
- **hp** Gross horsepower
- **drat** Rear axle ratio
- **wt** Weight (1000 lbs)
- **qsec** 1/4 mile time
- **vs** Engine
- **am** Transmission
- **gear** Number of forward gears
- **carb** Number of carburetors
- **ids** car model name

Source

datasets
palette_filter

color filters for any vector of hex color values

Description

filters are based on rgb values

Usage

```r
palette_filter(
  palette = palette_qualitative(),
  similar = F,
  greys = T,
  reds = T,
  greens = T,
  blues = T,
  dark = T,
  medium = T,
  bright = T,
  thresh_similar = 25
)
```

Arguments

- `palette`: any vector with hex color values, Default: `palette_qualitative()
- `similar`, logical, allow similar colours, similar colours are detected using a threshold (thresh_similar), two colours are similar when each value for RGB is within threshold range of the corresponding RGB value of the second colour, Default: `F`
- `greys`, logical, allow grey colours, blue == green == blue , Default: `T`
- `reds`, logical, allow red colours, blue < 50 & green < 50 & red > 200 , Default: `T`
- `greens`, logical, allow green colours, green > red & green > blue, Default: `T`
- `blues`, logical, allow blue colours, blue > green & green > red, Default: `T`
- `dark`, logical, allow colours of dark intensity, sum(red, green, blue) < 420 , Default: `T`
- `medium`, logical, allow colours of medium intensity, between(sum(red, green, blue), 420, 600) , Default: `T`
- `bright`, logical, allow colours of bright intensity, sum(red, green, blue) > 600, Default: `T`
- `thresh_similar`, int, threshold for defining similar colours, see similar, Default: 25

Value

vector with hex colors
Examples

```r
require(magrittr)

palette_qualitative() %>%
palette_filter(thresh_similar = 0) %>%
palette_plot_intensity()

## Not run:
# more examples---------------------------

palette_qualitative() %>%
palette_filter(thresh_similar = 25) %>%
palette_plot_intensity()

palette_qualitative() %>%
palette_filter(thresh_similar = 0, blues = FALSE) %>%
palette_plot_intensity()

## End(Not run)
```

`palette_increase_length`

increases length of palette by repeating colours

Description

works for any vector

Usage

```r
palette_increase_length(palette = palette_qualitative(), n = 100)
```

Arguments

- `palette` any vector, Default: `palette_qualitative()`
- `n`, int, length, Default: 100

Value

vector with increased length

Examples

```r
require(magrittr)

length(palette_qualitative())
```
palette_plot_intensity

plot colour intensity of palette

Description

sum of red green and blue values

Usage

palette_plot_intensity(palette)

Arguments

palette any vector containing color hex values

Value

ggplot2 plot

See Also

palette_plot_rgp

Examples

Not run:
if(interactive()){
 palette_qualitative() %>%
 palette_increase_length(100) %>%
 length()
}

End(Not run)
palette_plot_rgp

plot rgb values of palette

Description

grouped bar chart

Usage

```r
palette_plot_rgp(palette)
```

Arguments

- `palette`: any vector containing color hex values

Value

ggplot2 plot

See Also

`palette_plot_intensity`

Examples

```r
## Not run:
if(interactive()){
  palette_qualitative() %>%
  palette_filter( thresh = 50) %>%
  palette_plot_rgp()
}
## End(Not run)
```

palette_qualitative

compose palette from qualitative RColorBrewer palettes

Description

uses `c('#FF0065', '#009850', '#A56F2B', '#005EAA', '#710500', '#7B5380', '#9DD1D1')` and then adds all unique values found in all qualitative RColorBrewer palettes

Usage

```r
palette_qualitative()
```
Value

vector with hex values

See Also

RCOLORBREWERS

Examples

palette_qualitative()

pdp_predictions

get predictions compatible with the partial dependence plotting method, parallel variant is called by get_pdp_predictions()

get predictions compatible with the partial dependence plotting method, parallel variant is called by get_pdp_predictions()

Usage

pdp_predictions(
 df,
 imp,
 m,
 degree = 4,
 bins = 5,
 .f_predict = predict,
 parallel = FALSE
)

Arguments

df dataframe, training data
imp dataframe, with not more then two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.
m model object
degree integer, number of top important variables to select. For plotting more than 4 will result in too many flows and the alluvial plot will not be very readable, Default: 4
bins integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5
plot_all_hists

.corresponding model predict() function. Needs to accept 'm' as the first parameter and use the 'newdata' parameter. Supply a wrapper for predict functions with x-y syntax. For parallel processing the predict method of object classes will not always get imported correctly to the worker environment. We can pass the correct predict method via this parameter for example randomForest:::predict.randomForest. Note that a lot of modeling packages do not export the predict method explicitly and it can only be found using :::.

parallel logical, Default: TRUE

See Also

get_pdp_predictions

plot_all_hists

plot marginal histograms of alluvial plot

Description

will create gtable with density histograms and frequency plots of all variables of a given alluvial plot.

Usage

plot_all_hists(p, data_input, top = TRUE, keep_labels = FALSE, ...)

Arguments

p alluvial plot
data_input dataframe, input data that was used to create dataframe
top logical, position of histograms, if FALSE adds them at the bottom, Default: TRUE
keep_labels logical, keep title and caption, Default: FALSE
...

additional arguments for specific alluvial plot types: pred_train can be used to pass training predictions for model response alluvials

Value
gtable

See Also

arrangeGrob
add_marginal_histograms

Examples

p = alluvial_wide(mtcars2, max_variables = 4)
plot_all_hists(p, mtcars2)
plot_condensation

Description

plotting the condensation potential is meant as a decision aid for which variables to include in an alluvial plot. All variables are transformed to categoric variables and then two variables are selected by which the dataframe will be grouped and summarized by. The pair that results in the greatest condensation of the original dataframe is selected. Then the next variable which offers the greatest condensation potential is chosen until all variables have been added. The condensation in percent is then plotted for each step along with the number of groups (flows) in the dataframe. By experience it is not advisable to have more than 1500 flows because then the alluvial plot will take a long time to render. If there is a particular variable of interest in the dataframe this variable can be chosen as a starting variable.

Usage

plot_condensation(df, first = NULL)

Arguments

df dataframe
first unquoted expression or string denoting the first variable to be picked for condensation, Default: NULL

Value

ggplot2 plot

See Also

quosure reexports RColorBrewer

Examples

plot_condensation(mtcars2)

plot_condensation(mtcars2, first = 'disp')
plot_hist
plot histogram of alluvial plot variable

Description
helper function used by add_marginal_histograms

Usage

```r
plot_hist(var, p, data_input, ...)
```

Arguments
- `var` character vector, variable name
- `p` alluvial plot
- `data_input` dataframe used to create alluvial plot
- `...` additional arguments for specific alluvial plot types: pred_train can be used to pass training predictions for model response alluvials

Value
- ggplot object

plot_imp
plot feature importance

Description
plot important features of model response alluvial as bars

Usage

```r
plot_imp(p, data_input, truncate_at = 50, color = "darkgrey")
```

Arguments
- `p` alluvial plot
- `data_input` dataframe used to generate alluvial plot
- `truncate_at` integer, limit number of features to that value, Default: 50
- `color` character vector, Default: 'darkgrey'

Value
- ggplot object
Examples

```r
## Not run:
df = mtcars2[, ! names(mtcars2) %in% 'Ids' ]

train = caret::train( disp ~ .
  , df
  , method = 'rf'
  , trControl = caret::trainControl( method = 'none' )
  , importance = TRUE )

pred_train = caret::predict.train(train, df)

p = alluvial_model_response_caret(train, degree = 3, pred_train = pred_train)

plot_imp(p, mtcars2)

## End(Not run)
```

`quarterly_flights`
`Quarterly mean arrival delay times for a set of 402 flights`

Description

Created from nycflights13::flights

Usage

`quarterly_flights`

Format

A data frame with 1608 rows and 6 variables

- `tailnum` a unique identifier created from tailnum, origin, destination and carrier
- `carrier` carrier code
- `origin` origin code
- `dest` destination code
- `qu` quarter
- `mean_arr_delay` average delay on arrival as either on_time or late

Source

nycflights13::flights
quarterly_sunspots

Quarterly mean relative sunspots number from 1749-1983

Description
Quarterly mean relative sunspots number from 1749-1983

Usage
quarterly_sunspots

Format
A data frame with 940 rows and 4 variables

year
qu quarter
spots total number of sunspots
mean_spots_per_year

Source

 tidy_imp

Description
returns dataframe with exactly two columns, vars and imp and aggregates dummy encoded variables. Helper function called by all functions that take an imp parameter. Can be called manually if formula for aggregating dummy encoded variables must be modified.

Usage
 tidy_imp(imp, df, .f = max, resp_var = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>imp</td>
<td>dataframe or matrix with feature importance information</td>
</tr>
<tr>
<td>df</td>
<td>dataframe, modeling training data</td>
</tr>
<tr>
<td>.f</td>
<td>window function, Default: max</td>
</tr>
<tr>
<td>resp_var</td>
<td>character, prediction variable, can usually be inferred from imp and df. It does not work for all models and needs to be specified in those cases.</td>
</tr>
</tbody>
</table>
Value

dataframe

vars character column with feature names

imp numerical column, importance values

Examples

randomforest
df = mtcars2[, ! names(mtcars2) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)
imp = m$importance
tidy_imp(imp, df)

titanic

titanic data set’

Description

titanic data set’

Usage

titanic

Format

A data frame with 891 rows and 10 variables

Survived Survived
Pclass Pclass
Sex Sex
Age Age
SibSp SibSp
Parch Parch
Fare Fare
Cabin Cabin
Embarked Embarked
title title

Source

datasets
Index

* datasets
 - mtcars2, 23
 - quarterly_flights, 32
 - quarterly_sunspots, 33
 - titanic, 34

 add_imp_plot, 2
 add_marginal_histograms, 3, 29
 alluvial_long, 5
 alluvial_model_response, 7, 10, 12
 alluvial_model_response_caret, 9, 10
 alluvial_model_response_parsnip, 12
 alluvial_wide, 6, 9, 11, 13, 14, 16, 18
 arrangeGrob, 3, 4, 29

 check_pkg_installed, 16

 extractPrediction, 11, 13

 geom_flow, 6, 16
 geom_stratum, 6, 16
 get_data_space, 8–13, 17
 get_pdp_predictions, 8, 11, 13, 18, 21, 29
 get_pdp_predictions_seq, 20

 manip_bin_numerics, 6, 9, 11, 13, 15–18, 21
 manip_factor_2_numeric, 22
 mtcars2, 23

 palette_filter, 24
 palette_increase_length, 25
 palette_plot_intensity, 26, 27
 palette_plot_rgp, 26, 27
 palette_qualitative, 27
 pdp_predictions, 28
 plan, 11, 13, 19
 plot_all_hists, 29
 plot_condensation, 30
 plot_hist, 31
 plot_imp, 3, 31

 quarterly_flights, 32
 quarterly_sunspots, 33
 quosure, 30

 RColorBrewer, 28, 30
 reexports, 30

 str_detect, 22

 tidy_imp, 33
 titanic, 34

 varImp, 11, 13