Package ‘ebmstate’

December 20, 2021

Type Package
Title Empirical Bayes Multi-State Cox Model
Version 0.1.3
Description

Depends R (>= 3.6.0), survival (>= 2.44-1.1), mstate (>= 0.2.11)
Imports Rcpp, HDInterval, stats, utils, methods
License GPL (>= 3)
LinkingTo Rcpp
RoxygenNote 7.1.2
Encoding UTF-8
LazyData true
NeedsCompilation yes
Author Rui Costa [aut, cre],
 Moritz Gerstung [aut],
 Terry M Therneau [ctb] (author of 'survival', a package from which code parts were copied),
 Thomas Lumley [ctb] (contributor to 'survival', a package from which code parts were copied),
 Hein Putter [ctb] (co-author of 'mstate', a package from which code parts were copied),
 Liesbeth de Wreede [ctb] (co-author of 'mstate', a package from which code parts were copied),
 Marta Fiocco [ctb] (co-author of 'mstate', a package from which code parts were copied),
 Ronald Geskus [ctb] (contributor to 'mstate', a package from which code parts were copied)
Maintainer Rui Costa <rui.costa@ebi.ac.uk>
Repository CRAN
Date/Publication 2021-12-20 15:40:05 UTC
R topics documented:

- `ebmstate-package` ... 2
- `boot_coxrfx` .. 3
- `boot_ebmstate` ... 4
- `boot_probtrans` ... 6
- `CIs_for_target_state` .. 6
- `convolute_clockforward` .. 7
- `convolute_clockreset` ... 8
- `CoxRFX` .. 8
- `coxrfx_object_sample` ... 11
- `cumhazCI_s_for_target_transition` 12
- `cumhaz_splines` ... 12
- `extract_function` ... 13
- `joint_cum_hazard_function` ... 14
- `loo_ebmstate` .. 15
- `MakeInteger` ... 16
- `msfit_generic` .. 17
- `msfit_object_sample` ... 19
- `mstate_data_sample` .. 20
- `print.coxrfx` .. 20
- `print.msfit` .. 21
- `probtrans_by_convolution` .. 21
- `probtrans_by_convolution_clockforward` 22
- `probtrans_by_convolution_clockreset` 23
- `probtrans_ebmstate` .. 24
- `probtrans_fft` .. 25
- `probtrans_mstate` ... 26
- `successful_transitions` .. 28
- `summary.coxrfx` ... 29
- `unique_paths` .. 29

Index 31

Description

This package implements an empirical Bayes, multi-state Cox model. Different groups of regression coefficients can be defined, with coefficients of the same group sharing the same Gaussian prior. It takes as input a data set in 'long format' and generates estimates of relative hazards, cumulative hazard functions and transition probabilities. It relies on packages `survival` and `mstate` and incorporates some of their functions to reduce upstream dependency.
Description

This function computes 95% highest density bootstrap confidence intervals (non-parametric) for the regression coefficients estimated by CoxRFX.

Usage

```r
boot_coxrfx(
  mstate_data_expanded,
  which_group,
  min_nr_samples = 100,
  output = "CIs",
  ...
)
```

Arguments

- `mstate_data_expanded` Data in 'long format', possibly with 'expanded' covariates (as obtained by running mstate::expand.covs).
- `which_group` A character vector with the same meaning as the 'groups' argument of the function CoxRFX but named (with the covariate names).
- `min_nr_samples` The confidence interval of any coefficient is based on a number of bootstrap samples at least as high as this argument. See details.
- `output` Determines the sort of output. See value.
- `...` Further arguments to the CoxRFX function.
Details

In a given bootstrap sample there might not be enough information to generate estimates for all coefficients. If a covariate has little or no variation in a given bootstrap sample, no estimate of its coefficient will be computed. The present function will keep taking bootstrap samples until every coefficient has been estimated at least \texttt{min_nr_samples} times.

Value

For each regression coefficient, the confidence intervals and the number of bootstrap samples on which they are based, if the ’output’ argument is equal to ’CIs’; if ’output’ is equal to ’CIs_and_coxrfx_fits’, also the CoxRFX objects for each bootstrap sample.

Author(s)

Rui Costa
which_group A character vector with the same meaning as the ‘groups’ argument of the function CoxRFX but named (with the covariate names).

min_nr_samples The confidence interval of any coefficient is based on a number of bootstrap samples at least as high as this argument. See details.

patient_data The covariate data for which the estimates of cumulative hazards and transition probabilities are computed. Must contain: one row of data for each transition, all the covariate columns in the fitted model, and also the ‘strata’ column.

initial_state The initial state for which transition probability estimates should be computed

tmat Transition matrix for the multi-state model, as obtained by running mstate::transMat

time_model The model of time-dependency: either 'clockforward' or 'clockreset'.

backup_file Path to file. Objects generated while the present function is running are stored in this file. This avoids losing all estimates if and when the algorithm breaks down. See argument input_file.

input_file Path to backup_file (see argument backup_file). If this argument is given, all other arguments should be NULL.

coxrfx_args Named list with arguments to the CoxRFX function other than Z,surv and groups.

msfit_args Named list with arguments to the msfit_generic.coxrfx function other than object,newdata and trans.

probtrans_args Named list with arguments to the probtrans_ebmstate function other than initia_state,cumhaz and model.

Details

In a given bootstrap sample there might not be enough information to generate estimates for all coefficients. If a covariate has little or no variation in a given bootstrap sample, no estimate of its coefficient will be computed. The present function will keep taking bootstrap samples until every coefficient has been estimated at least min_nr_samples times. After expansion, the original covariates should be excluded from mstate_data_expanded.

Value

A list with: 95% bootstrap intervals for each regression coefficient and for transition probabilities; bootstrap samples of regression coefficients, cumulative hazards and transition probabilities.

Author(s)

Rui Costa
boot_probtrans

Bootstrap confidence intervals for transition probabilities

Description

Generates 95% highest density bootstrap interval estimates for transition probabilities computed using `probtrans_ebmstate` (clock-reset version).

Usage

```r
boot_probtrans(coxrfx_fits_boot, patient_data, tmat, initial_state, max_time)
```

Arguments

- `coxrfx_fits_boot`: The list of CoxRFX objects obtained by running `boot_coxrfx`.
- `patient_data`: (Single) patient data in 'long format', possibly with 'expanded' covariates (as obtained by running `mstate::expand.covs`).
- `tmat`: Transition matrix for the multi-state model, as obtained by running `mstate::transMat`.
- `initial_state`: The initial state for which transition probability estimates should be computed.
- `max_time`: The maximum time for which estimates should be computed.

Value

Interval estimates for transition probabilities.

Author(s)

Rui Costa

See Also

`probtrans_ebmstate`; `boot_coxrfx`; `transMat`; `expand.covs`

CIs_for_target_state

Ancillary function of boot_ebmstate.

Description

Computes 95% highest density bootstrap confidence intervals for the transition probabilities into `target_state`, given a list object with bootstrap estimates of transition probabilities into multiple states. This function is not meant to be called by the user.
convolute_clockforward

Usage

CIs_for_target_state(target_state, probtrans_objects_boot)

Arguments

target_state The target state for whose transition probabilities the confidence intervals are computed.
probtrans_objects_boot A list containing bootstrap estimates of transition probabilities.

Details

Uses function extract_function.

Value

95% highest density bootstrap confidence intervals for the transition probabilities into target_state.

Author(s)

Rui Costa

See Also

boot_ebmstate; extract_function.

convolute_clockforward

Convolution function for clock-forward models

Description

Internal function of probtrans_by_convolution_clockforward. It is written in C++ and is not meant to be called directly by the user.

Usage

convolute_clockforward(
 time_vector,
 diff_vector,
 probtrans_vector_1,
 probtrans_vector_2
)

Arguments

time_vector, diff_vector, probtrans_vector_1, probtrans_vector_2 Numeric vectors.
Author(s)

Moritz Gerstung & Rui Costa

See Also

probtrans_by_convolution_clockforward.

convolute_clockreset Convolution function for clock-reset models

Description

Internal function of probtrans_by_convolution_clockreset. It is written in C++ and is not meant to be called directly by the user.

Usage

convolute_clockreset(time_vector, integrand_1, integrand_2)

Arguments

time_vector, integrand_1, integrand_2

Numeric vectors.

Author(s)

Moritz Gerstung & Rui Costa

See Also

probtrans_by_convolution_clockreset.

CoxRFX Empirical Bayes, multi-state Cox model

Description

This function estimates a multi-state Cox model with one or more Gaussian priors imposed on the regression coefficients (see Therneau et al., 2003). Multiple groups of coefficients can be defined: coefficients within a group share the same (possibly unknown) mean and variance. The parameters and hyperparameters are efficiently estimated by an EM-type algorithm built around the function survival::coxph.
Usage

CoxRFX(
 Z,
 surv,
 groups = rep(1, ncol(Z)),
 tmat = NULL,
 which.mu = unique(groups),
 tol = 0.001,
 max.iter = 50,
 sigma0 = 0.1,
 sigma.hat = c("df", "MLE", "REML", "BLUP"),
 verbose = FALSE,
 ...
)

Arguments

Z A data frame consisting of the covariate columns of a data set in 'long format', and two extra columns: one named 'trans', with the transition that each row refers to, and another named 'strata', with the stratum of each transition (transitions belonging to the same stratum are assumed to have the same baseline hazard function).

surv A ‘survival’ object created with `survival::Surv`.

groups A character or numeric vector whose \(i \)th element gives the group of the regression coefficient associated with the \(i \)th covariate column of \(Z \) (coefficients belonging to the same group share the same Gaussian prior).

tmat Transition matrix describing the states and transitions in the multi-state model. See `trans` in `mstate::msprep` for more detailed information.

which.mu A vector with names or numbers of coefficient groups (see argument `groups`). If the name or number of a group of coefficients is given in this argument, CoxRFX will estimate the mean of its Gaussian distribution; otherwise the mean will be fixed at zero.

tol Convergence criterium of the EM algorithm. The algorithm stops unless there is at least one parameter (or hyperparameter) for which it holds that the current estimate differs in absolute terms by more than `tol` from the previous estimate.

max.iter The maximum number of iterations in the EM algorithm.

sigma0 A vector with the initial value of the variance hyperparameter for each group of coefficients. Or a single value, in case the initial value of the variance hyperparameter is meant to be the same for all groups.

sigma.hat Which estimator to use for the variance hyperparameters (see details).

verbose Gives more output.

```r
...
```

Further arguments passed to the function `survival::coxph`.
Details

Different estimators exist for the variance hyperparameters: the default is "df", as used by Perperoglou (2014) and introduced by Schall (1991). Alternatives are MLE, REML, and BLUP, as defined by Therneau et al. (2003). Simulations suggest that the 'df' method is the most accurate.

The model can also be fitted using package coxme; the coxme routine numerically optimises the integrated partial likelihood, which may be more accurate, but is computationally expensive.

Value

An object of class c(coxrfx, coxph.penal, coxph), which is essentially a coxph object with a few extra fields [the inputs $groups, $Z, $surv, and $tmat, and the hyperparameters $sigma2 (variances) and $mu (means)]. See survival::coxph.object.

Author(s)

Moritz Gerstung & Rui Costa, extending the work of Terry Therneau et al. in the package survival.

References

See Also

Package survival survival::coxph.object; survival::Surv; package coxme.

Examples

Fit an empirical Bayes Cox model using
simulated, illness-death data from 250
patients ('mstate_data_sample').

#load simulated data
data("mstate_data_sample")

Set class of 'mstate_data_sample'
class(mstate_data_sample)<-c("data.frame","msdata")

add transition matrix as attribute
tmat<-'mstate::transMat(x=list(c(2,3),c(4),c(),c()),
 names=c("health","illness","death",
 "death_after_illness"))
attr(mstate_data_sample,"trans")<-tmat

expand covariates by transition:
covariates.expanded<-'mstate::expand.covs(
coxrfx_object_sample

Example of an empirical Bayes model fit

Description
An RData object containing the model fit obtained by running CoxRFX on the data set mstate_data_sample (included in the present package).

Usage
coxrfx_object_sample

Format
An object of class c(coxrfx, coxph.penal, coxph), which is essentially a coxph object with a few extra fields [the inputs $groups, $Z, and $surv, and the hyperparameters $sigma2 (variances) and $mu (means)].

See Also
mstate_data_sample; CoxRFX.
cumhazCIs_for_target_transition

(Ancillary function of boot_ebmstate.)

Description

Computes 95% highest density, non-parametric bootstrap confidence intervals for the cumulative hazard rate functions, given a list of *msfit* objects with bootstrap estimates of cumulative hazard rate functions for multiple transitions. This function is not meant to be called by the user.

Usage

```r
cumhazCIs_for_target_transition(transition, msfit_objects_boot)
```

Arguments

- **transition**: The transition for which transition confidence intervals are computed.
- **msfit_objects_boot**: List of *msfit* objects with bootstrap estimates of cumulative hazard rate functions for multiple transitions.

Value

95% highest density, non-parametric bootstrap confidence intervals for the cumulative hazard rate functions.

Author(s)

Rui Costa

See Also

boot_ebmstate.

cumhaz_splines

Spline approximations of the cumulative hazard functions

Description

Creates a spline approximation for the vector of cumulative hazards of each transition.

Usage

```r
cumhaz_splines(cumhaz)
```
extract_function

Arguments

cumhaz An object of class msfit, created by msfit_generic or msfit.

Details

This function is used by the function probtrans_by_convolution. It is not meant to be called by the user.

Value

A list of estimated cumulative hazard functions (one for each transition).

Author(s)

Rui Costa

See Also

msfit_generic; msfit; probtrans_by_convolution.

extract_function Ancillary function to boot_ebmstate.

Description

Extracts the bootstrap estimates of transition probabilities for target state ‘tstate’ from a list with bootstrap estimates of transition probabilities into multiple states. This function is not meant to be called by the user.

Usage

extract_function(list_object, tstate)

Arguments

list_object A list in which each individual element is a single bootstrap estimate of the probability of transition into different states.
tstate The state whose bootstrap estimates of transition probabilities we wish to extract from list_object.

Details

This function is an ancillary function of CIs_for_target_state, which in turn is an ancillary function of boot_ebmstate.

Value

Bootstrap estimates of transition probabilities into target state ‘tstate’.
joint_cum_hazard_function

Compute the cumulative hazard of leaving a given state

Description

This function is not meant to be called by the user. It is an internal function of probtrans_by_convolution_clockforward and probtrans_by_convolution_clockreset.

joint_cum_hazard_function returns the cumulative hazard of leaving state \(i \) to any state that can be reached directly from \(i \), at each of the time points in \(t \). There is no explicit argument \(i \): this state is entirely defined by the transitions that can occur when the patient is in it (and these transitions are given in the argument competing_transitions).

Usage

joint_cum_hazard_function(t, competing_transitions, spline_list)

Arguments

- \(t \) A vector of time points.
- competing_transitions The transitions that can occur when the process is in state \(i \).
- spline_list A list whose elements are spline functions approximating the cumulative hazard of making each possible transition in the process. This is normally a list object created by running cumhaz_splines.

Value

A vector with the cumulative hazard of leaving a given state evaluated at given time points.

Author(s)

Rui Costa

See Also

CIs_for_target_state; boot_ebmstate; probtrans_by_convolution_clockforward; probtrans_by_convolution_clockreset; cumhaz_splines.
Description

This function computes leave-one-out estimation of regression coefficients, cumulative hazard functions, and transition probability functions.

Usage

```
loo_ebmstate(
mstate_data, 
mstate_data_expanded, 
which_group, 
patient_IDs, 
initial_state, 
tmat, 
time_model, 
backup_file = NULL, 
input_file = NULL, 
coxrfx_args = list(), 
msfit_args = NULL, 
probtrans_args = NULL
)
```

Arguments

- `mstate_data`: Data in ‘long format’.
- `mstate_data_expanded`: Data in ‘long format’, possibly with ‘expanded’ covariates (as obtained by running `mstate::expand.covs`).
- `which_group`: A character vector with the same meaning as the ‘groups’ argument of the function `CoxRFX` but named (with the covariate names).
- `patient_IDs`: The IDs of the patients whose cumulative hazards and transition probabilities one wishes to estimate.
- `initial_state`: The initial state for which transition probability estimates should be computed.
- `tmat`: Transition matrix for the multi-state model, as obtained by running `mstate::transMat`
- `time_model`: The model of time-dependency: either ‘clockforward’ or ‘clockreset’.
- `backup_file`: Path to file. Objects generated while the present function is running are stored in this file. This avoids losing all estimates if and when the algorithm breaks down. See argument `input_file`.
- `input_file`: Path to `backup_file` (see argument `backup_file`). If this argument is given, all other arguments should be `NULL`.
- `coxrfx_args`: Named list with arguments to the `CoxRFX` function other than `Z,surv` and `groups`.
msfit_args Named list with arguments to the `msfit_generic.coxrfx` function other than `object,newdata` and `trans`.

probtrans_args Named list with arguments to the `probtrans_ebmstate` function other than `initia_state,cumhaz` and `model`.

Details
In a given bootstrap sample there might not be enough information to generate estimates for all coefficients. If a covariate has little or no variation in a given bootstrap sample, no estimate of its coefficient will be computed. The present function will keep taking bootstrap samples until every coefficient has been estimated at least `min_nr_samples` times.

Value
A list with: 95% bootstrap intervals for each regression coefficient and for transition probabilities; bootstrap samples of regression coefficients, cumulative hazards and transition probabilities.

Author(s)
Rui Costa

MakeInteger

Convert factor to integer.

Description
Convert factor to integer.

Usage

```r
MakeInteger(v)
```

Arguments

`v` A factor vector.

Details
An internal function of `CoxRFX`, not meant to called directly by the user.

Value
A `data.frame` with columns corresponding to levels in the factor.

Author(s)
Moritz Gerstung
msfit_generic

Compute subject-specific transition hazards.

Description

This function computes subject-specific or overall cumulative transition hazards for each of the possible transitions in the multi-state model. This help page is an adaptation of the `mstate::msfit` help page.

Usage

```r
msfit_generic(object, ...)  

## Default S3 method:  
msfit_generic(  
  object,  
  newdata,  
  variance = TRUE,  
  vartype = c("aalen", "greenwood"),  
  trans,  
  ...  
)

## S3 method for class 'coxrfx'  
msfit_generic(object, newdata, trans, ...)
```

Arguments

- `object` An object describing the fit of a multi-state Cox model.
- `...` Further arguments
- `newdata` A data frame in 'long format'. See details.
- `variance` A logical value indicating whether the (co-)variances of the subject-specific transition hazards should be computed.
- `vartype` A character string specifying the type of variances to be computed (so only needed if variance=TRUE).
- `trans` Transition matrix describing the states and transitions in the multi-state model. See `trans` in `mstate::msprep` for more detailed information.

See Also

- `CoxRFX`
Details

The purpose of `msfit_generic` is to be able to use `mstate::msfit` on model fit objects of class `coxrfx` (i.e. objects generated by `CoxRFX`). This can now be done with `msfit_generic.coxrfx`, which introduces minor modifications to `mstate::msfit`. In particular, it precludes `msfit` from computing the (co-)variances of transition hazard estimators, as this computation relies on asymptotic results for the fixed effects Cox model (see de Wreede et al, 2010, section 2.3.2). The method `msfit_generic.default` corresponds to the original `mstate::msfit` function. The data frame given as `newdata` input needs to have one row for each transition in the multi-state model, and one column for each covariate. An additional column `strata` (numeric) is needed to describe for each transition to which stratum it belongs. The name has to be `strata`, even if in the original `coxph` call another variable was used. See `msfit` for more details.

Value

An 'msfit' object. See `mstate::msfit` for details. If the S3 method `msfit_generic.coxrfx` is called, the returned object will be of class `c(msfit,coxrfx)`; otherwise, it will be of class `msfit`.

Author(s)

Rui Costa, adapting the work of L. de Wreede, M. Fiocco and H. Putter in the `mstate` package.

References

See Also

`mstate::msfit; mstate::msprep; mstate::plot.msfit`.

Examples

Compute cumulative hazard rates
under a (pre-estimated) empirical Bayes Cox
model.

#load simulated data (illness-death model,
#500 patients) and estimated empirical
Bayes Cox model
data("mstate_data_sample")
data("coxrfx_object_sample")

Make objects 'surv' and 'Z'
with the data used in the estimation

#outcome data
surv<-coxrfx_object_sample$surv

#covariate data
Z<-coxrfx_object_sample$Z

Build a data frame 'patient_data'
with the covariate values for which
cumulative hazards are to be computed
(patient 1 covariate values in this case).
'patient_data' must have one row for each
transition in the model
and the same columns as 'Z'. The assignment
of transitions to strata (made in the 'strata'
column) must follow the original model in
'coxrfx_object_sample'.

patient_data<-mstate_data_sample[mstate_data_sample$id==1, ,drop=FALSE][rep(1,3),]
patient_data$strata<-patient_data$trans<-1:3
patient_data<-mstate::expand.covs(patient_data,
 covs=names(patient_data)[!names(patient_data)%in%
 c("id","from","to","trans","Tstart","Tstop","time",
 "to","trans","Tstart","Tstop","time","status",
 "strata")],append=TRUE)

compute cumulative hazards
msfit_object<-msfit_generic(coxrfx_object_sample,
 patient_data,
 coxrfx_object_sample$tmat)

show estimates
print(msfit_object)

msfit_object_sample

Estimated cumulative hazard rates under an empirical Bayes Cox model (example)

Description

An RData object containing estimated cumulative hazards, obtained by running `msfit_generic` on the object `coxrfx_object_sample` (also included in the present package).

Usage

`msfit_object_sample`

Format

An object of class `c(msfit,coxrfx)`. See `msfit_generic` and `mstate::msfit` for details.

See Also

`coxrfx_object_sample`.
mstate_data_sample A simulated event-history data set

Description

A data set generated by simulation from an illness-death Cox model. This is an object of double class 'data.frame' and 'msdata', whose 'trans' attribute is a transition matrix (attr(mstate_data_sample,"trans")).

Usage

mstate_data_sample

Format

A data frame with 649 rows and 18 variables (250 patients):

- **id** patient identification number
- **from** state in which the patient is
- **to** state to which the patient is at risk of going to
- **trans** transition ID number
- **Tstart** when the risk of the transition started
- **Tstop** the time at which the risk of the transition ended or the last follow-up time (whichever happened first)
- **time** Tstop-Tstart
- **status** did the transition occur at Tstop?
- **Cov1,Cov2,Cov3,Cov4,Cov5,Cov6,Cov7,Cov8,Cov9,Cov10** covariates

print.coxrfx Print method for CoxRFX objects

Description

This function implicitly calls summary.coxrfx().

Usage

```
## S3 method for class 'coxrfx'
print(x, ...)
```

Arguments

- **x** A coxrfx object
- **...** further arguments passed to or from other methods.
print.msfit

Author(s)
Moritz Gerstung & Rui Costa

print.msfit Print method for msfit objects generated by msfit_generic

Description
This method is a simple call to print.default. Its main purpose is to override print.coxrfx when printing an object of double class msfit and coxrfx.

Usage
S3 method for class 'msfit'
print(x, ...)

Arguments
x An object of class msfit or double class msfit and coxrfx.
... Further arguments passed to or from other methods.

Author(s)
Rui Costa

probtrans_by_convolution Compute all transition probabilities from a given state using convolution

Description
probtrans_by_convolution is an internal function of probtrans_ebmstate and is not meant to be called directly by the user. It is itself a wrapper for the functions probtrans_by_convolution_clockforward and probtrans_by_convolution_clockreset, which are the workhorses of the convolution algorithm.

Usage
probtrans_by_convolution(tmat, cumhaz, from_state, model, max_time, nr_steps)
probtrans_by_convolution_clockforward

Arguments

- **tmat**: A transition matrix extracted from the `cumhaz` argument to `probtrans_ebmstate`.
- **cumhaz**: `msfit` object (argument passed on from `probtrans_ebmstate`).
- **from_state**: Initial state (argument passed on from `probtrans_ebmstate`).
- **model**: 'clockforward' or 'clockreset' (argument passed on from `probtrans_ebmstate`).
- **max_time**: The maximum time for which transition probabilities are estimated.
- **nr_steps**: The number of steps in the convolution algorithm (larger increases precision but makes it slower)

Details

For more information on the arguments of this function see `probtrans_ebmstate`.

Author(s)

Rui Costa & Moritz Gerstung

See Also

- `probtrans_ebmstate`
- `probtrans_by_convolution_clockforward`
- `probtrans_by_convolution_clockreset`

probtrans_by_convolution_clockforward

Compute transition probabilities under a clock-forward model using a convolution algorithm.

Description

Compute transition probabilities for a given starting state and target state under a clock-forward model, using a convolution algorithm.

`probtrans_by_convolution_clockforward` is an internal function of `probtrans_by_convolution` and is not meant to be called directly by the user.

Usage

```r
probtrans_by_convolution_clockforward(
  tmat,
  cumhaz,
  from_state,
  to_state,
  spline_list,
  unique_paths_object,
  time
)
```
Arguments

- **tmat**: Transition matrix.
- **cumhaz**: mfsfit object.
- **from_state**: Initial state.
- **to_state**: Target state.
- **spline_list**: A list whose elements are spline functions approximating the cumulative hazard of making each possible transition in the process. This is normally a list object created by running `cumhaz_splines`.
- **unique_paths_object**: An object created by running `unique_paths`.
- **time**: A vector of ordered time points.

Author(s)

Rui Costa & Moritz Gerstung

See Also

- `probtrans_ebmstate`
- `probtrans_by_convolution_clockreset`
- `probtrans_by_convolution`
- `unique_paths`
- `cumhaz_splines`

`probtrans_by_convolution_clockreset`

Compute transition probabilities under a clock-reset model using a convolution algorithm.

Description

Compute transition probabilities for a given starting state and target state under a clock-reset model with a single time scale (sojourn time), using a convolution algorithm.

`probtrans_by_convolution_clockreset` is an internal function of `probtrans_by_convolution` and is not meant to be called directly by the user.

Usage

```r
cbprobtrans_by_convolution_clockreset(
  tmat,
  cumhaz,
  from_state,
  to_state,
  spline_list,
  unique_paths_object,
  time
)
```
probtrans_ebmstate

Arguments

- **tmat**: Transition matrix.
- **cumhaz**: `msfit` object.
- **from_state**: Initial state.
- **to_state**: Target state.
- **spline_list**: A list whose elements are spline functions approximating the cumulative hazard of making each possible transition in the process. This is normally a list object created by running `cumhaz_splines`.
- **unique_paths_object**: An object created by running `unique_paths`.
- **time**: A vector of ordered time points.

Author(s)

Rui Costa & Moritz Gerstung

See Also

- `probtrans_ebmstate`
- `probtrans_by_convolution_clockforward`
- `probtrans_by_convolution`
- `unique_paths`
- `cumhaz_splines`

probtrans_ebmstate: Compute subject-specific transition probabilities using convolution.

Description

Compute subject-specific transition probabilities using convolution.

Usage

```r
probtrans_ebmstate(
  initial_state,  
cumhaz,  
model,  
max_time = NULL,  
nr_steps = 10000
)
```

Arguments

- **initial_state**: The present function estimates transition probabilities from the state given in this argument.
- **cumhaz**: An `msfit` object created by running `mstate` or `mstate_generic`.
- **model**: Either `"clockforward"` or `"clockreset"`. See details.
- **max_time**: The maximum time for which transition probabilities are estimated.
- **nr_steps**: The number of steps in the convolution algorithm (larger increases precision but makes it slower)
The clock-forward model is a model in which the transition hazard rates depend only on time since the initiating event. The clock-reset model has a single time scale: the sojourn time in the current state.

The algorithm behind `probtrans_ebmstate` is based on the convolution of density and survival functions and is suitable for processes with a tree-like transition structure only.

An object of class 'probtrans'. See the 'value' section in the help page of `mstate::probtrans`.

Rui Costa & Moritz Gerstung

Compute transition probabilities from an object with (pre-estimated) cumulative hazard rates.

```r
#load object with estimated cumulative hazard rates
data("msfit_object_sample")
#compute transition probabilities
probtrans_object<-probtrans_ebmstate("health", msfit_object_sample,"Markov")
```

Description

Compute subject-specific transition probabilities using a convolution algorithm based on the Fast Fourier transform.

Usage

`probtrans_fft(initial_state, cumhaz, time)`
probtrans_mstate

Arguments

 initial_state The present function estimates state occupation probabilities from the state given in this argument.
 cumhaz An msfit object created by running mstate or mstate_generic.
 time A vector of positive and increasing time points starting from and including zero.

Details

 The time argument is crucial for precision. The density of time points and the upper time limit should be increased until the estimated curves become stable. A useful rule of thumb is to set the upper time limit to a time point in which the probability of each transient state is zero and the probability of each absorbing state is constant.

 The algorithm behind probtrans_ebmstate is based on the convolution of density and survival functions and is suitable for processes with a tree-like transition structure only.

Value

 An object of class 'probtrans'. See the 'value' section in the help page of mstate::probtrans.

Author(s)

 Rui Costa

See Also

 probtrans;

Description

 This function is a wrapper for mstate::probtrans. Its purpose is to preclude the computation of (co-)variances of the transition probability estimator when the fitted Cox model is empirical Bayes. This help page is an adaptation of the mstate::probtrans help page.

Usage

 probtrans_mstate(object, ...)

Default S3 method:
probtrans_mstate(
 object,
 predt,
 direction = c("forward", "fixedhorizon"),
 method = c("aalen", "greenwood"),
)
probtrans_mstate

 variance = TRUE,
 covariance = FALSE,
 ...
)

S3 method for class 'coxrfx'
probtrans_mstate(object, predt, direction = c("forward", "fixedhorizon"), ...)

Arguments

object An msfit object containing estimated cumulative hazards for each of the transitions in the multi-state model and, if standard errors are requested, (co)variances of these cumulative hazards for each pair of transitions.
... other arguments.
predt A positive number indicating the prediction time. This is either the time at which the prediction is made (if direction= "forward") or the time for which the prediction is to be made (if direction="fixedhorizon").
direction One of "forward" (default) or "fixedhorizon", indicating whether prediction is forward or for a fixed horizon.
method A character string specifying the type of variances to be computed (so only needed if either variance or covariance is TRUE). Possible values are "aalen" or "greenwood".
variance Logical value indicating whether standard errors are to be calculated (default is TRUE).
covariance Logical value indicating whether covariances of transition probabilities for different states are to be calculated (default is FALSE).

Details

probtrans_mstate computes estimates of transition probabilities for an object generated by msfit_generic. It calls the method probtrans_mstate.coxrfx, if the msfit object was generated by msfit_generic.coxrfx, or the method probtrans_mstate.default otherwise. Both methods are identical to the function mstate: :probtrans. The only reserve is that probtrans_mstate.coxrfx does not allow the computation of the (co)variances of the transition probability estimator. In fact, this computation relies on asymptotic results for the fixed effects Cox model (see de Wreede et al, 2010, section 2.3.2), and msfit_generic.coxrfx produces estimates of cumulative hazards under a random effects/empirical Bayes Cox model.

probtrans_mstate should only be used for Markov models, as it relies on product limit calculations.

Value

An object of class probtrans. See the ‘value’ section in the the help page of probtrans for details.

Author(s)

Rui Costa, adapting the work of L. de Wreede, M. Fiocco and H. Putter in the mstate package.
References

See Also

mstate::probtrans; mstate::msfit; msfit_generic.

successful_transitions

Find the unique possible path until an absorbing state

Description

From a unique_paths object that shows all possible paths until absorption from an initial state, successful_transitions picks the path that finishes in to_state, if there is one. The initial state is the one defined in the argument from_state to the function unique_paths. The process must have a tree-like structure.

Usage

successful_transitions(unique_paths_object, to_state, tmat)

Arguments

unique_paths_object
An object created by running unique_paths.
to_state
An absorbing state.
tmat
Transition matrix.

Details

This function is used by probtrans_by_convolution_clockforward and probtrans_by_convolution_clockreset. It is not meant to be called by the user.

Value

A vector with the unique sequence of states between two states.

Author(s)

Rui Costa

See Also

unique_paths; probtrans_by_convolution_clockforward; probtrans_by_convolution_clockreset.
summary.coxrfx

A summary method for CoxRFX models

Description

This function prints the point estimates of parameters and hyperparameters contained in a coxrfx object.

Usage

S3 method for class 'coxrfx'
summary(object, ...)

Arguments

object A coxrfx object (obtained by running the function CoxRFX).
...
Further arguments passed to or from other methods.

Author(s)

Rui Costa

unique_paths

Find all possible paths until absorption from a given starting state

Description

unique_paths finds all possible sequences of states until absorption when the process has a tree-like structure.

Usage

unique_paths(from_state, tmat)

Arguments

from_state Initial state.
tmat A transition matrix describing the states and transitions in the multi-state model, as can be obtained by running transMat. See argument trans in msprep (mstate package) for more detailed information.

Details

This function is used by the function probtrans_by_convolution. It is not meant to be called by the user.
Value

A matrix where each column is a sequence of states taken by the process until absorption. There are as many columns as the number of possible paths until absorption.

Author(s)

Rui Costa

See Also

probtrans_by_convolution; transMat.
Index

datasets
- coxrfx_object_sample, 11
- msfit_object_sample, 19
- mstate_data_sample, 20

package
- ebmstate-package, 2

- boot_coxrfx, 3, 6
- boot_ebmstate, 4, 7, 12, 14
- boot_protrans, 6

- CIs_for_target_state, 6, 14
- convolute_clockforward, 7
- convolute_clockreset, 8
- CoxRFX, 8, 11, 17, 18
- coxrfx_object_sample, 11, 19
- cumhaz_splines, 12, 14, 23, 24
- cumhazCIs_for_target_transition, 12

- ebmstate-package, 2
- extract.covs, 6
- extract_function, 7, 13

- joint_cum_hazard_function, 14

- loo_ebmstate, 15

- MakeInteger, 16
- msfit, 13, 18
- msfit_generic, 13, 17, 19, 28
- msfit_object_sample, 19
- mstate, 2, 18, 27
- mstate::msfit, 18, 19, 28
- mstate::msprep, 9, 17, 18
- mstate::plot_msfit, 18
- mstate::probtrans, 28
- mstate_data_sample, 11, 20

- print.coxrfx, 20
- print.mstate, 21

- probtrans, 25–27
- probtrans_by_convolution, 13, 21, 23, 24, 29, 30
- probtrans_by_convolution_clockforward, 8, 14, 22, 24, 28
- probtrans_by_convolution_clockreset, 8, 14, 22, 23, 28
- probtrans_ebmstate, 6, 22–24, 24
- probtrans_fft, 25
- probtrans_mstate, 26

- survival::coxph.object, 10
- survival::Surv, 10

- successful_transitions, 28

- transMat, 6, 29, 30

- unique_paths, 23, 24, 28, 29

- unique_paths