Package ‘eddington’

March 24, 2020

Title Compute a Cyclist's Eddington Number

Version 2.1.1

Description Compute a cyclist's Eddington number, including efficiently computing cumulative E over a vector. A cyclist's Eddington number <https://en.wikipedia.org/wiki/Arthur_Eddington#Eddington_number_for_cycling> is the maximum number satisfying the condition such that a cyclist has ridden E miles or greater in E days. The algorithm in this package is an improvement over the conventional approach because both summary statistics and cumulative statistics can be computed in linear time, since it does not require initial sorting of the data. These functions may also be used for computing h-indices for authors, a metric described by Hirsch (2005) <doi:10.1073/pnas.0507655102>. Both are specific applications of computing the side length of a Durfee square <https://en.wikipedia.org/wiki/Durfee_square>.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Depends R (>= 3.4.0)

LinkingTo Rcpp

Imports Rcpp

Suggests testthat, knitr, rmarkdown, dplyr

VignetteBuilder knitr

RoxygenNote 7.1.0

URL https://github.com/pegeler/eddington2

BugReports https://github.com/pegeler/eddington2/issues

NeedsCompilation yes

Author Paul Egeler [aut, cre], Tashi Reigle [ctb]

Maintainer Paul Egeler <paulegeler@gmail.com>

Repository CRAN

Date/Publication 2020-03-24 16:30:05 UTC
E_topics documented:

E_cum 2
E_next 2
E_num 3
E_req 4
E_sat 4
rides 5

Description
This function is much like E_num except it provides a cumulative Eddington number over the vector
rather than a single summary number.

Usage
E_cum(rides)

Arguments
rides A vector of mileage, where each element represents a single day.

Value
An integer vector the same length as rides.

See Also
E_next, E_num, E_req, E_sat

E_next
Get the number of rides required to increment to the next Eddington number.

Description
Get the number of rides required to increment to the next Eddington number.

Usage
E_next(rides)
E_num

Arguments

rides A vector of mileage, where each element represents a single day.

Value

A named list with the current Eddington number (E) and the number of rides required to increment by one (req).

See Also

E_cum, E_num, E_req, E_sat

E_num
Get the Eddington number for cycling

Description

Gets the Eddington number for cycling. The Eddington Number for cycling, E, is the maximum number where a cyclist has ridden E miles in E days.

Usage

E_num(rides)

Arguments

rides A vector of mileage, where each element represents a single day.

Details

The Eddington Number for cycling is related to computing the rank of an integer partition, which is the same as computing the side length of its Durfee square. Another relevant application of this metric is computing the Hirsch index for publications.

This is not to be confused with the Eddington Number in astrophysics, N_{Edd}, which represents the number of protons in the observable universe.

Value

An integer which is the Eddington cycling number for the data provided.

See Also

E_cum, E_next, E_req, E_sat
Examples

```r
# Randomly generate a set of 15 rides
rides <- rgamma(15, shape = 2, scale = 10)

# View the rides sorted in decreasing order
setNames(sort(rides, decreasing = TRUE), seq_along(rides))

# Get the Eddington number
E_num(rides)
```

E_req

Determine the number of additional rides required to achieve a specified Eddington number

Description

Determine the number of additional rides required to achieve a specified Eddington number.

Usage

```r
E_req(rides, candidate)
```

Arguments

- `rides`: A vector of mileage, where each element represents a single day.
- `candidate`: The Eddington number to test for.

Value

An integer vector of length 1. Returns 0L if E is already achieved.

See Also

`E_cum`, `E_next`, `E_num`, `E_sat`

E_sat

Determine if a dataset satisfies a specified Eddington number

Description

Indicates whether a certain Eddington number is satisfied, given the data.

Usage

```r
E_sat(rides, candidate)
```
rides

Arguments

rides
A vector of mileage, where each element represents a single day.

candidate
The Eddington number to test for.

Value

A logical vector of length 1.

See Also

E_cum, E_next, E_num, E_req

rides
A year of simulated bicycle ride mileages

Description

Simulated dates and distances of rides occurring in 2009.

Usage

rides

Format

A data frame with 250 rows and 2 variables:

ride_date date the ride occurred

ride_length the length in miles

Details

The dataset contains a total of 3,419 miles spread across 178 unique days. The Eddington number for the year was 29.
Index

*Topic datasets
 rides, 5
E_cum, 2, 3–5
E_next, 2, 2, 3–5
E_num, 2, 3, 3, 4, 5
E_req, 2, 3, 4, 5
E_sat, 2–4, 4

rides, 5