Package ‘eggCounts’

February 17, 2022

Imports methods, utils, rstan (>= 2.18.1), rstantools (>= 2.1.1),
 boot, coda, numbers, lattice, rootSolve

Depends R (>= 3.4.0), Rcpp (>= 0.12.0)

Suggests eggCountsExtra, R.rsp, testthat

VignetteBuilder R.rsp

Title Hierarchical Modelling of Faecal Egg Counts

Version 2.3-2

Date 2022-02-13

Maintainer Craig Wang <craigwang247@gmail.com>

Description An implementation of Bayesian hierarchical models
 for faecal egg count data to assess anthelmintic
 efficacy. Bayesian inference is done via MCMC sampling using 'Stan'<https://mc-stan.org/>.

SystemRequirements GNU make

Additional_repositories https://craigwangstat.github.io/eggCountsExtra-package/

License GPL (>= 3)

LinkingTo rstan (>= 2.18.1), Rcpp (>= 0.12.0), BH (>= 1.66.0),
 StanHeaders (>= 2.18.0), RcppEigen (>= 0.3.3.3.0), RcppParallel
 (>= 5.0.1)

LazyLoad yes

LazyData true

ByteCompile true

Biarch true

NeedsCompilation yes

URL https://www.math.uzh.ch/pages/eggcount/

RcppModules stan_fit4paired_mod, stan_fit4unpaired_mod,
 stan_fit4zipaired_mod, stan_fit4ziunpaired_mod,
 stan_fit4nb_mod, stan_fit4zinb_mod, stan_fit4indefficacy_mod,
 stan_fit4simple_mod
Hierarchical modelling of faecal egg counts

Description

This package implements Bayesian hierarchical models for the analysis of faecal egg count data. Bayesian inference is done via efficient MCMC sampling using Stan. Additional (experimental) models are available externally for handling FECs with potential outliers or bi-modality. The models are in eggCountsExtra package hosted on Github.

Details

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>eggCounts</td>
</tr>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>2.3-2</td>
</tr>
<tr>
<td>Date</td>
<td>2022-02-13</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 3)</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>
About Stan

Stan is a probabilistic programming language for specifying Bayesian hierarchical models. It is computationally faster compared to conventional MCMC techniques. For the installation instruction and other information about Stan, please read here.

Author(s)

Craig Wang <craigwang247@gmail.com>
Michaela Paul

Examples

```r
## Not run:

## Citations
citation('eggCounts')

## History of changes
file.show(system.file("NEWS", package = "eggCounts"))

## Demonstration
demo("fecn_stan", package = "eggCounts")

## Install eggCountsExtra
devtools::install_github("CraigWangUZH/eggCountsExtra")

## End(Not run)
```

epgs

Faecal egg count samples (before and after treatment)

Description

This is an example dataset containing 14 eggs per gram (epg) values in sheep before and after anthelmintic treatment of benzimidazole. The correction factor of the diagnostic technique was 50.

Usage

data(epgs)

Format

A data.frame containing 14 observations.
References

fecrtCI
Compute standard FECRT according to WAAVP guidelines

Description
Computes the standard Faecal Egg Count Reduction Test together with approximate confidence interval according to the WAAVP guidelines (Coles et al., 1992, 2006). The function also returns bootstrap confidence intervals.

Usage
fecrtCI(epg1, epg2, paired = FALSE, alpha = 0.05, R = 1999)

Arguments
epg1 numeric vector. Faecal egg counts in untreated animals.
epg2 numeric vector. Faecal egg counts in treated animals.
paired logical. If TRUE, indicates samples are paired. Otherwise samples are unpaired.
alpha numeric. Confidence level of the interval.
R numeric. Number of bootstrap replicates.

Value
A list with
estimate estimated percentage reduction in mean epg
bootCI bootstrap confidence interval
approxCI approximate confidence interval

Author(s)
Michaela Paul

References
fecr_probs

Examples

```r
data(epgs)
fecrtCI(epgs$before, epgs$after, paired = TRUE)
```

fecr_probs

Compute probability of the reduction parameter relative to a given threshold

Description

Computes probability of the reduction parameter's marginal posterior density relative to a threshold.

Usage

```r
fecr_probs(stanFit, threshold = 0.95, lessthan = TRUE,
plot = TRUE, xlab, ylab, main, verbose = TRUE, ...)
```

Arguments

- `stanFit`: a stanfit object from the output of `fecr_stan()`.
- `threshold`: numeric. The default threshold is 0.95 (95%).
- `lessthan`: logical. If TRUE, the probability less than the threshold is computed. Otherwise greater or equal to the threshold is computed. Default is TRUE.
- `plot`: logical. If TRUE, the posterior density of the reduction is plotted with region less than the threshold shaded.
- `xlab`, `ylab`, `main`: strings. Arguments for plotting. Only used if `plot = TRUE`.
- `verbose`: logical. If TRUE, a statement with computed probability is printed.
- `...`: additional plotting arguments

Value

Returns a numeric value indicating the probability in percentage.

Author(s)

Craig Wang

Examples

```r
## load sample data
data(epgs)

## apply individual efficacy model to the data vectors
model <- fecr_stan(epgs$before, epgs$after, rawCounts = FALSE, preCF = 10,
                   paired = TRUE, indEfficacy = TRUE)
fecr_probs(model$stan.samples)
```
fecr Stan

Model the reduction of faecal egg count

Description

Models the reduction in faecal egg counts with Bayesian hierarchical models. See Details for a list of model choices.

Usage

fecr_stan(preFEC, postFEC, rawCounts = FALSE, preCF = 50, postCF = preCF,
paired = TRUE, indEfficacy = TRUE, zeroInflation = FALSE,
muPrior, kappaPrior, deltaPrior, phiPrior, deltakappaPrior,
nsamples = 2000, nburnin = 1000, thinning = 1, nchain = 2,
ncore = 1, adaptDelta = 0.95, saveAll = FALSE, verbose = FALSE)

Arguments

preFEC numeric vector. Pre-treatment faecal egg counts.
postFEC numeric vector. Post-treatment faecal egg counts.
rawCounts logical. If TRUE, preFEC and postFEC correspond to raw counts (as counted on equipment). Otherwise they correspond to calculated epgs (raw counts times correction factor). Defaults to FALSE.
preCF a positive integer or a vector of positive integers. Pre-treatment correction factor(s).
postCF a positive integer or a vector of positive integers. Post-treatment correction factor(s).
paired logical. If TRUE, uses the model for the paired design. Otherwise uses the model for the unpaired design
indEfficacy logical. If TRUE, uses the paired model allowing for individual efficacy. Only use in combination with paired = TRUE and zeroInflation = FALSE.
zeroInflation logical. If TRUE, uses the model with zero-inflation. Otherwise uses the model without zero-inflation.
muPrior a named list. Prior for the group mean epg parameter μ. The default prior is list(priorDist = "gamma", hyperpars = c(1, 0.001)), i.e. a gamma distribution with shape 1 and rate 0.001, its 90% probability mass lies between 51 and 2996.
kappaPrior a named list. Prior for the group dispersion parameter κ. The default prior is list(priorDist = "gamma", hyperpars = c(1, 0.7)), i.e. a gamma distribution with shape 1 and rate 0.7, its 90% probability mass lies between 0.1 and 4.3 with a median of 1.
deltaPrior a named list. Prior for the reduction parameter δ. The default prior is list(priorDist = "beta", hyperpars = c(1, 1)), i.e. a uniform prior between 0 and 1.
phiPrior: a named list. Prior for the zero-inflation parameter ϕ. The default prior is `list(priorDist = "beta", hyperpars = c(1, 1))`, i.e. a uniform prior between 0 and 1.

deltakappaPrior: a named list. Prior information for the shape parameter of reduction $\delta \kappa$. The default prior is `list(priorDist = "normal", hyperpars = c(2, 1))`. Only used if `indEfficacy = TRUE`.

nsamples: a positive integer. Number of samples for each chain (including burn-in samples).
nburnin: a positive integer. Number of burn-in samples.

thinning: a positive integer. Thinning parameter, i.e. the period for saving samples.

nchain: a positive integer. Number of chains.

ncore: a positive integer. Number of cores to use when executing the chains in parallel.

adaptDelta: numeric. The target acceptance rate, a numeric value between 0 and 1.

saveAll: logical. If TRUE, posterior samples for all parameters are saved in the `stanfit` object. If FALSE, only samples for δ, μ, κ and ϕ are saved. Default to FALSE.

verbose: logical. If TRUE, prints progress and debugging information.

Details

List of built-in models:

- unpaired without zero-inflation: set `paired = FALSE`, `indEfficacy = FALSE`, `zeroInflation = FALSE`
- unpaired with zero-inflation: set `paired = FALSE`, `indEfficacy = FALSE`, `zeroInflation = TRUE`
- paired without zero-inflation: set `paired = TRUE`, `indEfficacy = FALSE`, `zeroInflation = FALSE`
- paired with zero-inflation: set `paired = TRUE`, `indEfficacy = FALSE`, `zeroInflation = TRUE`
- paired with individual efficacy: set `paired = TRUE`, `indEfficacy = TRUE`, `zeroInflation = FALSE`

Prior choice:
Consider using non-default prior for δ when,

- there is an average increase in egg counts after treatment
- there are divergent-sample warnings
- there are non-convergence warnings

Two examples of useful non-default priors include:

1. `list(priorDist = "normal", hyperpars = c(1, 5))` for stabilizing the reduction parameter without being informative.
2. `list(priorDist = "beta", hyperpars = c(0, 5))` for allowing up to 4-fold increase of egg count after treatment.
Other information: The first time each model with non-default priors is applied, it can take up to 20 seconds to compile the model. Currently the function only support prior distributions with two parameters. For a complete list of supported priors and their parameterization, please consult the list of distributions in Stan User Guide.

The default number of samples per chain is 2000, with 1000 burn-in samples. Normally this is sufficient in Stan. If the chains do not converge, one should tune the MCMC parameters until convergence is reached to ensure reliable results.

Value

Prints out the posterior summary of FECR as the reduction, meanEPG.untreated as the mean pre-treatment epg, and meanEPG.treated as the mean after-treatment epg. The posterior summary contains the mean, standard deviation (sd), 2.5%, 50% and 97.5% percentiles, the 95% highest posterior density interval (HPDLow95 and HPDHigh95) and the posterior mode.

NOTE: Based on our simulation studies, we recommend to use (2.5%, 97.5%) as the 95% credible interval and the median as summary statistics of reduction for the individual efficacy model. For all other models, we recommend to use the 95% HPD interval and the mode.

The returned value is a list that consists of:

- stan.samples: an object of S4 class stanfit representing the fitted results
- posterior.summary: a data.frame that is the same as the printed posterior summary

Author(s)

Craig Wang

References

See Also

simData2s for simulating faecal egg counts data with two samples
load sample data
data(epgs)

apply individual efficacy model to the data vectors
model <- fecr_stan(epgs$before, epgs$after, rawCounts = FALSE, preCF = 50,
 paired = TRUE, indEfficacy = TRUE)

convert to MCMC object and inspect the summary
samples <- stan2mcmc(model$stan.samples)
sample(summary(samples)

fecr_stanExtra

Model the reduction of faecal egg count using custom models

Description

Models the reduction in faecal egg counts with custom model formulation using Stan modelling language (for advanced users).

Usage

```r
fecr_stanExtra(preFEC, postFEC, rawCounts = FALSE, preCF = 50, postCF = preCF,
                modelName = NULL, modelCode = NULL, modelFile = NULL, modelData = NULL,
                nsamples = 2000, nburnin = 1000, thinning = 1, nchain = 2,
                ncore = 1, adaptDelta = 0.95, verbose = FALSE)
```

Arguments

- **preFEC**: numeric vector. Pre-treatment faecal egg counts. Not required if modelData is supplied.
- **postFEC**: numeric vector. Post-treatment faecal egg counts. Not required if modelData is supplied.
- **rawCounts**: logical. If TRUE, preFEC and postFEC correspond to raw counts (as counted on equipment). Otherwise they correspond to calculated epgs (raw counts times correction factor). Defaults to FALSE. Not required if modelCode or modelFile is supplied.
- **preCF**: a positive integer or a vector of positive integers. Pre-treatment correction factor(s). Not required if modelCode or modelFile is supplied.
- **postCF**: a positive integer or a vector of positive integers. Post-treatment correction factor(s). Not required if modelCode or modelFile is supplied.
- **modelName**: string. One of four available models ("Po", "UPo", "ZIPo", "ZIUPo") from eggCountsExtra package, which corresponds to outlier-adjusted version of paired, unpaired, paired with zero inflation and unpaired with zero inflation models. Not required if modelCode or modelFile is supplied.
- **modelCode**: stan model code. Not required when modelName or modelFile is supplied.
modelFile: stan model file with file extension '*.stan'. Not required when modelName or modelCode is supplied.

modelData: stan data list. A named list or environment providing the data for the model, or a character vector for all the names of objects in the current enviroment used as data. Not required when modelName is supplied.

nsamples: a positive integer. Number of samples for each chain (including burn-in samples).

nburnin: a positive integer. Number of burn-in samples.

thinning: a positive integer. Thinning parameter, i.e. the period for saving samples.

nchain: a positive integer. Number of chains.

ncore: a positive integer. Number of cores to use when executing the chains in parallel.

adaptDelta: numeric. The target acceptance rate, a numeric value between 0 and 1.

verbose: logical. If TRUE, prints progress and debugging information.

Details

If modelName is one of c("Po", "UPo", "ZIPo", "ZIUPo"), then outlier-adjusted models are used.

- In paired models, outliers are those counts with postFEC > preFEC. Outlier weights are assigned as the inverse of postFEC/preFEC.
- In unpaired models, outliers are those counts with postFEC greater than the 95th percentile of a Poisson distribution, where the Poisson mean is computed based on the mean of postFEC excluding postFEC > Q3 + 1.5*IQR. Q3 is the 75th percentile and IQR is the interquartile range. The lowest outlier weight is assigned as 0.01, and other outliers assigned proportionally.
- In both cases, non-outliers are assigned with outlier weight = 1.

The first time each model is applied, it can take up to 20 seconds for Stan to compile the model. The default number of samples per chain is 2000, with 1000 burn-in samples. Normally this is sufficient in Stan. If the chains do not converge, one should tune the MCMC parameters until convergence is reached to ensure reliable results.

Value

Prints out the posterior summary of FECR as the reduction, meanEPG.untreated as the mean pre-treatment epg, and meanEPG.treated as the mean after-treatment epg. The posterior summary contains the mean, standard deviation (sd), 2.5%, 50% and 97.5% percentiles, the 95% highest posterior density interval (HPDLow95 and HPDHigh95) and the posterior mode.

The returned value is a list that consists of:

- stan.model: an object of class stanmodel-class that was used
- stan.samples: an object of S4 class stanfit representing the fitted results
- posterior.summary: a data.frame that is the same as the printed posterior summary. Not available for custom models.
fecr_stanSimple

Author(s)

Craig Wang

Examples

```r
## Not run:
library(eggCountsExtra)
data(epgs) ## load sample data

## apply paired model with outliers
model1 <- fecr_stanExtra(epgs$before, epgs$after, rawCounts=FALSE,
                          preCF=10, modelName = "Po")
samples <- stan2mcmc(model1$stan.samples)
fecr_probs(model1$stan.samples, threshold = 0.99)

## apply a simple custom model
code <- "data{
  int J; // number of animals
  int y_before[J]; // after treatment McMaster count
  int y_after[J]; // before treatment McMaster count
}
parameters{
  real<lower=0> mu;
  real<lower=0,upper=1> delta;
}
model{
  mu ~ gamma(1,0.001);
  delta ~ beta(1,1);
  y_before ~ poisson(mu);
  y_after ~ poisson(mu*delta);
}"

dat <- list(J = nrow(epgs), y_before = epgs$before,
            y_after = epgs$after)
model2 <- fecr_stanExtra(modelCode = code, modelData = dat)

## End(Not run)
```

fecr_stanSimple

Model the reduction of faecal egg count using a simple Bayesian model

Description

Models the reduction in faecal egg counts with a simple Bayesian model formulation. The model is for paired design only, and it assumes Poisson distribution for the observed egg counts.
Usage

fecr_stanSimple(preFEC, postFEC, rawCounts = FALSE, preCF = 50, postCF = preCF, muPrior, deltaPrior, nsamples = 2000, nburnin = 1000, thinning = 1, nchain = 2, ncore = 1, adaptDelta = 0.95, saveAll = FALSE, verbose = FALSE)

Arguments

preFEC numeric vector. Pre-treatment faecal egg counts.
postFEC numeric vector. Post-treatment faecal egg counts.
rawCounts logical. If TRUE, preFEC and postFEC correspond to raw counts (as counted on equipment). Otherwise they correspond to calculated epgs (raw counts times correction factor). Defaults to FALSE.
preCF positive integer or vector of positive integers. Pre-treatment correction factor(s).
postCF positive integer or vector of positive integers. Post-treatment correction factor(s).
muPrior named list. Prior for the group mean epg parameter μ. The default prior is list(priorDist = "gamma", hyperpars = c(1, 0.001)), i.e. a gamma distribution with shape 1 and rate 0.001, its 90% probability mass lies between 51 and 2996.
deltaPrior named list. Prior for the reduction parameter δ. The default prior is list(priorDist = "beta", hyperpars = c(1, 1)), i.e. a uniform prior between 0 and 1.
nsamples a positive integer. Number of samples for each chain (including burn-in samples).
nburnin a positive integer. Number of burn-in samples.
thinning a positive integer. Thinning parameter, i.e. the period for saving samples.
nchain a positive integer. Number of chains.
ncore a positive integer. Number of cores to use when executing the chains in parallel.
adaptDelta numeric. The target acceptance rate, a numeric value between 0 and 1.
saveAll logical. If TRUE, posterior samples for all parameters are saved in the stanfit object. Otherwise only samples for δ and μ are saved. Default to FALSE.
verbose logical. If TRUE, prints progress and debugging information.

Details

The first time each model with non-default priors is applied, it can take up to 20 seconds to compile the model. Currently the function only support prior distributions with two parameters. For a complete list of supported priors and their parameterization, please consult the list of distributions in Stan User Guide.

The default number of samples per chain is 2000, with 1000 burn-in samples. Normally this is sufficient in Stan. If the chains do not converge, one should tune the MCMC parameters until convergence is reached to ensure reliable results.
`fec_stan` Modelling of faecal egg count data (one-sample case)

Value

Prints out the posterior summary of FECR as the reduction, meanEPG.untreated as the mean pre-treatment epg, and meanEPG.treated as the mean after-treatment epg. The posterior summary contains the mean, standard deviation (sd), 2.5%, 50% and 97.5% percentiles, the 95% highest posterior density interval (HPDLow95 and HPDHigh95) and the posterior mode.

NOTE: we recommend to use the 95% HPD interval and the mode for further statistical analysis.

The returned value is a list that consists of:

- `stan.samples` an object of S4 class `stanfit` representing the fitted results
- `posterior.summary` A data.frame that is the same as the printed posterior summary

Author(s)

Tea Isler
Craig Wang

See Also

`simData2s` for simulating faecal egg counts data with two samples

Examples

```r
## load sample data
data(epgs)

## apply paired model with individual efficacy
model <- fecr_stanSimple(epgs$before, epgs$after, rawCounts = FALSE, preCF = 10)
samples <- stan2mcmc(model$stan.samples)
```

`fec_stan` models the mean of faecal egg counts with Bayesian hierarchical models. See Details for a list of model choices.

Usage

```r
descr <- fec_stan(fec, rawCounts = FALSE, CF = 50, zeroInflation = TRUE, muPrior, kappaPrior, phiPrior, nsamples = 2000, nburnin = 1000, thinning = 1, nchain = 2, ncore = 1, adaptDelta = 0.95, saveAll = FALSE, verbose = FALSE)
```
Arguments

fec
numeric vector. Faecal egg counts.

rawCounts
logical. If TRUE, `preFEC` and `postFEC` correspond to raw counts (as counted on equipment). Otherwise they correspond to calculated epgs (raw counts times correction factor). Defaults to FALSE.

CF
a positive integer or a vector of positive integers. Correction factor(s).

zeroInflation
logical. If true, uses the model with zero-inflation. Otherwise uses the model without zero-inflation

muPrior
named list. Prior for the group mean epg parameter μ. The default prior is `list(priorDist = "gamma", hyperpars=c(1,0.001))`, i.e. a gamma distribution with shape 1 and rate 0.001, its 90% probability mass lies between 51 and 2996.

kappaPrior
named list. Prior for the group dispersion parameter κ. The default prior is `list(priorDist = "gamma", hyperpars=c(1,0.7))`, i.e. a gamma distribution with shape 1 and rate 0.7, its 90% probability mass lies between 0.1 and 4.3 with a median of 1.

phiPrior
named list. Prior for the zero-inflation parameter ϕ. The default prior is `list(priorDist = "beta", hyperpars=c(1,1))`, i.e. a uniform prior between 0 and 1.

nsamples
a positive integer. Number of samples for each chain (including burn-in samples).

nburnin
a positive integer. Number of burn-in samples.

thinning
a positive integer. Thinning parameter, i.e. the period for saving samples.

nchain
a positive integer. Number of chains.

ncore
a positive integer. Number of cores to use when executing the chains in parallel.

adaptDelta
numeric. The target acceptance rate, a numeric value between 0 and 1.

saveAll
logical. If TRUE, posterior samples for all parameters are saved in the `stanfit` object. If FALSE, only samples for μ, κ and ϕ are saved. Default to FALSE.

verbose
logical. If true, prints progress and debugging information.

Details

List of built-in models:
- without zero-inflation: set `zeroInflation = FALSE`
- with zero-inflation: set `zeroInflation = TRUE`

Note that this function only models the mean of egg counts, see `fecr_stan()` for modelling the reduction.

Other information: The first time each model with non-default priors is applied, it can take up to 20 seconds to compile the model. Currently the function only support prior distributions with two parameters. For a complete list of supported priors and their parameterization, please consult the list of distributions in Stan User Guide.

The default number of samples per chain is 2000, with 1000 burn-in samples. Normally this is sufficient in Stan. If the chains do not converge, one should tune the MCMC parameters until convergence is reached to ensure reliable results.
getPrior_delta

Value

Prints out summary of meanEpg as the posterior mean epg. The posterior summary contains the mean, standard deviation (sd), 2.5%, 50% and 97.5% percentiles, the 95% highest posterior density interval (HPDLow95 and HPDHigh95) and the posterior mode. NOTE: we recommend to use the 95% HPD interval and the mode for further statistical analysis.

The returned value is a list that consists of:

- `stan.samples`: an object of S4 class `stanfit` representing the fitted results
- `posterior.summary`: a data.frame that is the same as the printed posterior summary

Author(s)

Craig Wang

See Also

- `simData1s` for simulating faecal egg count data with one sample

Examples

```r
## load the sample data
data(epgs)

## apply zero-inflation model
model <- fec_stan(epgs$before, rawCounts = FALSE, CF = 50)
```

getPrior_delta

Get prior parameters from Beta distribution

Description

Compute the shape parameters from a Beta distribution for δ based on some prior belief.

Usage

```r
getPrior_delta(lower, upper, p = 0.7, mode, conc, plot = TRUE)
```

Arguments

- `lower, upper, p`: numeric. Prior belief about the reduction. There is p probability that the reduction is between `lower` and `upper`. Not used if `mode` and `conc` are supplied.
- `mode, conc`: numeric. Prior belief about the reduction. The mode and concentration parameters of a beta distribution. Higher concentration indicates smaller variance. Not used if `lower` and `upper` thresholds are supplied.
- `plot`: logical. If `TRUE`, the prior distribution is plotted after parameters are found.
Details

The `multiroot` function from `rootSolve` package is used to compute the parameters.

Value

Returns Beta prior parameters for δ and the printed argument to use in a `fecr_stan()` or a `fec_stan()` function call.

Author(s)

Tea Isler
Craig Wang

Examples

there is 80% probability that the reduction is between 60% and 90%
getPrior_delta(lower = 0.6, upper = 0.9, p = 0.8)

getPrior_mu

Get prior parameters from Gamma distribution

Description

Compute the shape and rate parameters from a Gamma distribution for μ based on some prior belief about its cumulative distribution function.

Usage

getPrior_mu(x, px, y, py, s1 = 1, s2 = 0.001, plot = TRUE)

Arguments

- `x`, `px`, `y`, `py` numeric. Threshold of some prior belief about true epg. There is `px` probability that the true epg is below `x`, and there is `py` probability that the true epg is below `y`.
- `s1`, `s2` numeric. Starting values.
- `plot` logical. If TRUE, the prior distribution is plotted after parameters are found.

Details

`multiroot` function from `rootSolve` package is used to compute the parameters.

Value

Returns Gamma prior parameters for μ and the printed argument to use in a `fecr_stan()` or a `fec_stan()` function call.
Author(s)

Tea Isler
Craig Wang

Examples

there is 30% probability that the mean epg is less than 200
and 80% probability that the mean epg is less than 500
getPrior_mu(x = 200, px = 0.3, y = 500, py = 0.8)

plotCounts

Plot faecal egg count data

Description

Plot egg count data to reflect changes between before and after treatment.

Usage

plotCounts(data, paired = TRUE, points = TRUE,
points.method = "jitter", xlabel = "",
ylabel = "Faecal egg counts [epg]", ...)

Arguments

data a data.frame with two columns, the first column is before treatment counts, the
second column is after treatment counts.

paired logical. If TRUE, uses the plot for the paired design. Otherwise uses the plot for the
unpaired design.

points logical. If TRUE, add individual points for unpaired plot. Not used if paired = TRUE.

points.method string. It is used to separate coincident points if points = TRUE. One of “jitter”, “stack” or “overplot”.

xlabel string. Label of x-axis.

ylabel String. Label of y-axis.

... Additional arguments for function xyplot if paired is TRUE, for function boxplot otherwise.

Details

For paired data, a xyplot is used. For unpaired data, a grouped boxplot is used.

Value

A plot is drawn.
Author(s)

Craig Wang

Examples

```r
data(epgs)
plotCounts(epgs[,c("before","after")], paired = TRUE)
```

simData1s
Simulate faecal egg count data (1-sample situation)

Description

Simulates (zero-inflated) egg count data

Usage

```r
simData1s(n = 10, mean = 500, kappa = 0.5, phi = 1,
          f = 50, rounding = TRUE, seed = NULL)
```

Arguments

- `n`: positive integer. Sample size.
- `mean`: numeric. True number of eggs per gram (epg).
- `kappa`: numeric. Overdispersion parameter, \(\kappa \rightarrow \infty \) corresponds to Poisson distribution.
- `phi`: numeric. Prevalence, i.e. proportion of infected animals, between 0 and 1.
- `f`: positive integer. Correction factor of the egg counting technique, either an integer or a vector of integers with length `n`.
- `rounding`: logical. If TRUE, the Poisson mean for the raw counts is rounded. The rounding applies since the mean epg is frequently reported as an integer value. For more information, see Details.
- `seed`: integer. Random seed.

Details

In the simulation of raw (master) counts, it follows a Poisson distribution with some mean. The mean is frequently rounded down if it has a very low value and `rounding = TRUE`, hence there expects to be a bias overall when \(\mu < 150 \). Set `rounding = FALSE` for not to have any bias in the simulated counts.

Value

A data.frame with three columns, namely the observed epg (obs), actual number of eggs counted (master) and true epg in the sample (true).
Simulate faecal egg count data (2-sample situation)

Description
Generates two samples of (zero-inflated) egg count data

Usage
simData2s(n = 10, preMean = 500, delta = 0.1, kappa = 0.5, deltaShape = NULL, phiPre = 1, phiPost = phiPre, f = 50, paired = TRUE, rounding = TRUE, seed = NULL)

Arguments
- **n**: positive integer. Sample size.
- **preMean**: numeric. True pre-treatment epg.
- **delta**: numeric. Proportion of epg left after treatment, between 0 and 1. 1 - \(\delta \) is reduction in mean after treatment, \(\delta = 0.1 \) indicates a 90% reduction.
- **kappa**: numeric. Overdispersion parameter, \(\kappa \to \infty \) corresponds to Poisson distribution.
- **deltaShape**: numeric. Shape parameter for the distribution of reductions. If NULL, the same reduction is applied to the latent true epg of each animal.
- **phiPre**: numeric. Pre-treatment prevalence (i.e. proportion of infected animals), between 0 and 1.
- **phiPost**: numeric. Post-treatment prevalence, between 0 and 1.
- **f**: integer or vector of integers. Correction factor of the egg counting technique
- **paired**: logical. If TRUE, paired samples are simulated. Otherwise unpaired samples are simulated.
- **rounding**: logical. If TRUE, the Poisson mean for the raw counts is rounded. The rounding applies since the mean epg is frequently reported as an integer value. For more information, see Details.
- **seed**: an integer that will be used in a call to set.seed before simulation. If NULL, a random seed is allocated.
Details

In the simulation of raw (master) counts, it follows a Poisson distribution with some mean. The mean is frequently rounded down if it has a very low value and rounding = TRUE, there expects to be some bias in the mean reduction when $\mu < 150$ and $\delta < 0.1$. Set rounding = FALSE for not to have any bias.

Value

A data.frame with six columns, namely the observed epg (obs), actual number of eggs counted (master) and true epg in the sample (true) for both pre- and post- treatment.

Author(s)

Craig Wang
Michaela Paul

See Also

fecr_stan for analyzing faecal egg count data with two samples

Examples

```r
fec <- simData2s(n = 10, preMean = 500, delta = 0.1, kappa = 0.5)
## show the bias when the true reduction should be 95%
fec <- simData2s(n = 1e5, preMean = 150, delta = 0.05, kappa = 0.5, seed = 1)
1 - mean(fec$masterPost)/mean(fec$masterPre)
## without bias
fec <- simData2s(n = 1e5, preMean = 150, delta = 0.05, kappa = 0.5, seed = 1, rounding = FALSE)
1 - mean(fec$masterPost)/mean(fec$masterPre)
```

stan2mcmc

Convert a Stanfit object to a MCMC object

Description

Converts a stanfit object into a mcmc object for easier analysis.

Usage

`stan2mcmc(stanFit)`

Arguments

stanFit a stanfit object from the output of either fecr_stan() or fec_stan()
Details

The output can be analyzed as a mcmc object with the functions from the coda package. NOTE: The resulting MCMC object does not contain warm-up samples and is already thinned.

Value

A MCMC object with a list of relevant parameters.

Author(s)

Craig Wang

Examples

data(epgs)

apply zero-inflation model for the paired design
model <- fecr_stan(epgs$before, epgs$after, rawCounts = FALSE,
 indEfficacy = FALSE, preCF = 10,
 paired = TRUE, zeroInflation = TRUE)
samples <- stan2mcmc(model$stan.samples)
summary(samples)
plot(samples)
Index

* datagen
 simData1s, 18
 simData2s, 19

* datasets
 epgs, 3

* hplot
 plotCounts, 17

* manip
 stan2mcmc, 20

* models
 fec_stan, 13
 fecr_stan, 6
 fecr_stanExtra, 9
 fecr_stanSimple, 11

* nonparametric
 fecrtCI, 4

* package
 eggCounts-package, 2

 boxplot, 17
 eggCounts-package, 2
 epgs, 3

 fec_stan, 13, 16, 19
 fecr_probs, 5
 fecr_stan, 5, 6, 14, 16, 20
 fecr_stanExtra, 9
 fecr_stanSimple, 11
 fecrtCI, 4

 getPrior_delta, 15
 getPrior_mu, 16

 multiroot, 16

 plotCounts, 17

 simData1s, 15, 18
 simData2s, 8, 13, 19
 stan2mcmc, 20

stanfit, 5, 8, 10, 13, 15, 20

xyplot, 17