Package ‘einet’

April 23, 2020

Type Package
Title Effective Information and Causal Emergence
Version 0.1.0
Description Methods and utilities for causal emergence.
Used to explore and compute various information theory metrics for networks, such as effective
information, effectiveness and causal emergence.
License MIT + file LICENSE
URL https://github.com/travisbyrum/einet
BugReports https://github.com/travisbyrum/einet/issues
Depends R (>= 3.2.0)
Encoding UTF-8
LazyData true
Imports assertthat, igraph, magrittr, shiny, entropy
Suggests testthat, RColorBrewer, knitr, rmarkdown, bench
VignetteBuilder knitr
RoxygenNote 7.0.2
NeedsCompilation no
Author Travis Byrum [aut, cre],
Anshuman Swain [aut],
Brennan Klein [aut],
William Fagan [aut]
Maintainer Travis Byrum <tbyrum@terpmail.umd.edu>
Repository CRAN
Date/Publication 2020-04-23 17:20:03 UTC

R topics documented:
causal_emergence .. 2
check_network .. 3
causal_emergence

Given a microscale network, G, this function iteratively checks different coarse-grainings to see if it finds one with higher effective information.

Usage

```r
causal_emergence(x, ...)
```

Arguments

- `x` igraph or matrix object.
- `...` Span, and threshold parameters

Value

A list with letters and numbers.

- `g_micro` - Graph of original micro-scale network.
- `g_macro` - Graph of macro-scale network.
- `mapping` - list mapping from micro to macro scales giving the largest increase in effective information.
- `ei_macro` - Effective information of macro scale network.
- `ei_micro` - Effective information of micro scale network.
- `ce` - Numerical value for causal emergence.
Examples

```r
graph <- matrix(
  cbind(
    c(0.0, 1.0, 0.0, 0.0),
    c(0.0, 0.0, 1.0, 0.0),
    c(0.0, 0.0, 0.0, 1.0),
    c(0.0, 0.0, 0.0, 0.0)
  ),
  nrow = 4
)
%>%
  igraph::graph.adjacency(mode = "directed")

causal_emergence(graph)
```

check_network

Check Graph Network

Description

check_network returns processed graph.

Usage

```r
check_network(graph)
```

Arguments

- `graph`
 igraph

Details

This is a pre-processing function that turns raw input into directed networks with edge weights.

create_macro

create_macro

Description

Coarse-grains a network according to the specified macro_mapping and the types of macros that each macro is associated with.

Usage

```r
create_macro(graph, mapping, macro_types, ...)
```
Arguments

- **graph**: igraph
- **mapping**: List mapping from micro to macro nodes.
- **macro_types**: List of node distribution types.
- **...**: Passed arguments.

Value

Directed igraph graph object corresponding to a coarse-grained network according to the mapping of micro nodes onto macro nodes, given by mapping.

effective_information
Effective Information

Description

Calculates the effective information (EI) of a network, G, according to the definition provided in Klein & Hoel, 2019. Here, we subtract the average entropies of the out-weights of nodes in a network, W_{OUT}, from the entropy of the average out-weights in the network, W_{IN}.

Usage

```r
effective_information(graph, effectiveness = FALSE)
```

Arguments

- **graph**: igraph or matrix object.
- **effectiveness**: Logical indicating whether or not to return network effectiveness.

Value

Numeric value indicating the effective information of the network.

Examples

```r
graph <- matrix(
  cbind(
    c(0, 1, 0, 0, 0),
    c(0, 0, 1, 0, 0),
    c(0, 0, 0, 0, 1),
    c(0, 0, 0, 0, 0)
  ),
  nrow = 4
)
> graph
```

`igraph::graph.adjacency(mode = "directed")`

```r
effective_information(graph)
```

Description

for calculating effective information in networks. This can then be used to search for macroscale representations of a network such that the coarse grained representation has more effective information than the microscale, a phenomenon known as causal emergence.

Author(s)

Maintainer: Travis Byrum <tbyrum@terpmail.umd.edu>

Authors:

• Anshuman Swain <answain@terpmail.umd.edu>
• Brennan Klein <klein.br@northeastern.edu>
• William Fagan <bfagan@umd.edu>

See Also

Useful links:

• https://github.com/travisbyrum/einet
• Report bugs at https://github.com/travisbyrum/einet/issues

karate

Zachary’s karate club

Description

Social network data of university karate club. Used for causal emergence benchmarking and testing.

Usage

karate

Format

Igraph object with 78 edges.

Source

http://www-personal.umich.edu/~mejn/netdata/
Create Markov Blanket

Description

Given a graph and a specified vector of internal node(s), returns the parents, the children, and the parents of the children of the internal node(s).

Usage

```r
mb(graph, nodes = igraph::V(graph))
```

Arguments

- `graph`: igraph or matrix object.
- `nodes`: Numeric vector of vertices.

Value

A list of node descendants, parents, and neighbors.

Start shiny app

Description

This starts an example shiny app that allows for user inputted graph objects.

Usage

```r
run_example()
```
stationary (Stationary Distribution)

Description
Gives a stationary probability vector of a given network.

Usage
stationary(graph, zero_cutoff = 1e-10)

Arguments
- graph: igraph or matrix object.
- zero_cutoff: Numeric threshold for zero value.

Value
A numeric vector corresponding to stationary distribution.

update_blanket (Update Markov Blanket)

Description
Update Markov Blanket

Usage
update_blanket(blanket, removal = NULL)

Arguments
- blanket: List of previous markov blanket.
- removal: Numeric vector for node removal.
Index

*Topic datasets
 karate, 5

causal_emergence, 2
check_network, 3
create_macro, 3
effective_information, 4
einet, 5
einet-package (einet), 5
karate, 5
mb, 6
run_example, 6
stationary, 7
update_blanket, 7