Package ‘evgam’

August 26, 2020

Type Package
Title Generalised Additive Extreme Value Models
Version 0.1.4
Date 2020-08-18
Author Ben Youngman
Maintainer Ben Youngman <b.youngman@exeter.ac.uk>
Description Methods for fitting various extreme value distributions with parameters of
generalised additive model (GAM) form are provided. For details of distributions
License GPL-3
Imports Rcpp (>= 1.0.4.6), mgcv
LinkingTo Rcpp, RcppArmadillo
Depends R (>= 3.5.0)
RoxygenNote 7.1.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-08-26 16:11:08 UTC

R topics documented:
colplot .. 2
COpredis ... 3
dfbind .. 4
evgam .. 5
extremal ... 8
FCTmax .. 9
fitted.evgam .. 10
fremantle .. 10
logLik.evgam .. 11
Description

Scatter plot, with variable-based point colours

Usage

colplot(
 x,
 y,
 z,
 n = 20,
 z.lim = NULL,
 breaks = NULL,
 palette = heat.colors,
 rev = TRUE,
 pch = 21,
 add = FALSE,
 ...
)

Arguments

x a vector of x coordinates
y a vector of y coordinates
z a variable for defining colours
\texttt{COprcp}

\begin{itemize}
\item \texttt{n} \hspace{1cm} an integer giving the number of colour levels, supplied to \texttt{pretty}
\item \texttt{z.lim} \hspace{1cm} xxx
\item \texttt{breaks} \hspace{1cm} a vector or breaks for defining color intervals; defaults to \texttt{NULL}, so \texttt{pretty} and \texttt{n} are used on \texttt{z}
\item \texttt{palette} \hspace{1cm} a function for the color palette, or colors between \texttt{breaks}; defaults to \texttt{heat.colors}
\item \texttt{rev} \hspace{1cm} logical: should the palette be reversed? Defaults to \texttt{TRUE}
\item \texttt{pch} \hspace{1cm} an integer giving the plotting character, supplied to \texttt{plot}
\item \texttt{add} \hspace{1cm} should this be added to an existing plot? Defaults to \texttt{FALSE}
\item \texttt{...} \hspace{1cm} other arguments passed to \texttt{plot}
\item \texttt{legend} \hspace{1cm} should a legend be added? Defaults to \texttt{code{FALSE}}
\item \texttt{n.legend} \hspace{1cm} an integer giving the approximate number of legend entries; defaults to 6
\item \texttt{legend.pretty} \hspace{1cm} logical: should the legend values produced by \texttt{\{base\}pretty}? Otherwise they are exact. Defaults to \texttt{TRUE}
\item \texttt{legend.plot} \hspace{1cm} passed to \texttt{legend's plot argument}
\item \texttt{legend.x} \hspace{1cm} passed to \texttt{legend's x argument}
\item \texttt{legend.y} \hspace{1cm} passed to \texttt{legend's y argument}
\item \texttt{legend.horiz} \hspace{1cm} passed to \texttt{legend's horiz argument}
\item \texttt{legend.bg} \hspace{1cm} passed to \texttt{legend's bg argument}
\end{itemize}

\section*{Value}
A plot

\section*{Examples}

\begin{verbatim}
x <- runif(50)
y <- runif(50)
colplot(x, y, x * y)
colplot(x, y, x * y, legend=TRUE, legend.x="bottomleft")
colplot(x, y, x * y, legend=TRUE, legend.pretty=FALSE, n.legend=10,
 legend.x="bottomleft", legend.horiz=TRUE)
\end{verbatim}

\section*{Description}
Three objects: 1) \texttt{COprcp}, a 404,326-row data frame with columns date, prcp and meta_row; 2) \texttt{COprcp_meta}, a 64-row data frame, with meta data for 64 stations. 3) \texttt{COelev}, a list of elevation for the domain at 0.02 x 0.02 degree resolution. Precipitation amounts are only given for April to October in the years 1990 - 2019. The domain has a longitude range of [-106, -104] and a latitude range [37, 41]. These choices reflect the analysis of Cooley et al. (2007).
Usage
data(COprcp) # loads all three objects

Format
A data frame with 2383452 rows and 8 variables
The variables are as follows:
date date of observation
prcp daily rainfall accumulation in mm
meta_row an identifier for the row in COprcp_meta; see ‘Examples’
lon longitude of station
lat latitude of station
elev elevation of station in metres
id GHCDN identifier

References

Examples
library(evgam)
data(COprcp)
brks <- pretty(COelev$z, 50)
image(COelev, breaks=brks, col=rev(heat.colors(length(brks[-1]))))
colplot(COprcp_meta$lon, COprcp_meta$lat, COprcp_meta$elev, breaks=brks, add=TRUE)

dfbind Bind a list a data frames

Description
Bind a list a data frames

Usage
dfbind(x)

Arguments
x a list of data frames
evgam

Value

A data frame

See Also

rbind

Examples

z <- list(data.frame(x=1, y=1), data.frame(x=2, y=2))
dfbind(z)

Description

Function evgam fits generalised additive extreme-value models. It allows the fitting of various extreme-value models, including the generalised extreme value and Pareto distributions. It can also perform quantile regression via the asymmetric Laplace distribution.

Usage

evgam(
 formula,
 data,
 family = "gev",
 correctV = TRUE,
 rho0 = 0,
 inits = NULL,
 outer = "bfgs",
 control = NULL,
 removeData = FALSE,
 trace = 0,
 knots = NULL,
 maxdata = 1e+20,
 maxspline = 1e+20,
 compact = FALSE,
 ald.args = list(),
 exi.args = list(),
 pp.args = list(),
 sandwich.args = list()
)
Arguments

- **formula**: a list of formulae for location, scale and shape parameters, as in `gam`
- **data**: a data frame
- **family**: a character string giving the type of family to be fitted; defaults to "gev"
- **correctV**: logical: should the variance-covariance matrix include smoothing parameter uncertainty? Defaults to TRUE
- **rho0**: a scalar or vector of initial log smoothing parameter values; a scalar will be repeated if there are multiple smoothing terms
- **inits**: a vector or list giving initial values for constant basis coefficients; if a list, a grid is formed using `expand.grid`, and the ‘best’ used; defaults to NULL, so initial values are automatically found
- **outer**: a character string specifying the outer optimiser is full "Newton", "BFGS" or uses finite differences, "FD"; defaults to "BFGS"
- **control**: a list of lists of control parameters to pass to inner and outer optimisers; defaults to `evgam.control()`
- **removeData**: logical: should data be removed from evgam object? Defaults to FALSE
- **trace**: an integer specifying the amount of information supplied about fitting, with -1 suppressing all output; defaults to 0
- **knots**: passed to `s`; defaults to NULL
- **maxdata**: an integer specifying the maximum number of data rows. data is sampled if its number of rows exceeds maxdata; defaults to 1e20
- **maxspline**: an integer specifying the maximum number of data rows used for spline construction; defaults to 1e20
- **compact**: logical: should duplicated data rows be compacted? Defaults to FALSE
- **ald.args**: a list of arguments for family="ald"; see Details
- **exi.args**: a list of arguments for family="exi"; see Details
- **pp.args**: a list of arguments for family="pp"; see Details
- **sandwich.args**: a list of arguments for sandwich adjustment; see Details

Details

The following families are currently available: "ald", the asymmetric Laplace distribution, primarily intended for quantile regression, as in Yu & Moyeed (2001); "gev" (default), the generalised extreme valued distribution; "exp", the exponential distribution; "gpd", the generalised Pareto distribution; "gauss", the Gaussian distribution; "pp", the point process model for extremes, implemented through r-largest order statistics; "weibull", the Weibull distribution; "exi", estimation if the extremal index, as in Schlather & Tawn (2003).

Arguments for the asymmetric Laplace distribution are given by `ald.args`. A scalar tau defines the quantile sought, which has no default. The scalar C specifies the curvature parameter value of Oh et al. (2011).

Arguments for extremal index estimation are given by `exi.args`. A character string id specifies the variable in data over which an nexi (default 2) running max. has been taken. The link is specified as a character string, which is one of "logistic", "probit", "cloglog"; defaults to "logistic".
Arguments for the point process model are given by `pp.args`. An integer \(r \) specifies the number of order statistics from which the model will be estimated. If \(r = -1 \), all data will be used. The character string `id` specifies the variable in `data` over which the point process isn’t integrated; e.g. if a map of parameter estimates related to extremes over time is sought, integration isn’t over locations. The scalar `nper` number of data per period of interest; scalar or integer vector `ny` specifies the number of periods; if `length(ny) > 1` then `names(ny)` must be supplied and must match to every unique `id`. logical `correctny` specifies whether `ny` is corrected to adjust proportionally for data missingness.

Arguments for the sandwich adjustment are given by `sandwich.args`. A character string `id` can be supplied to the list, which identifies the name of the variable in `data` such that independence will be assumed between its values. The method for the adjustment is supplied as "magnitude" (default) or "curvature"; see Chandler & Bate (2007) for their definitions.

Value

An object of class `evgam`

References

See Also

`predict.evgam`

Examples

data(fremantle)
`fmla_gev` <- list(SeaLevel ~ s(Year, k=5, bs="cr"), ~ 1, ~ 1)
`m_gev` <- evgam(fmla_gev, fremantle, family = "gev")

data(COprcp)

fit generalised Pareto distribution to excesses on 20mm
`COprcp` <- cbind(COprcp, COprcp_meta[COprcp$meta_row,])
threshold <- 20
extremal

Estimate extremal index using 'intervals' method

Description

Estimate extremal index using 'intervals' method

Usage

extremal(x, y = NULL)

Arguments

x a logical vector or list of logical vectors

y an integer vector the same length as x; see Details
Details

Intervals estimator of extremal index based on Ferro and Segers (2003)’s moment-based estimator. If \(x \) is supplied and \(y \) is not, \(x \) is assumed to identify consecutive threshold exceedances. If \(x \) is supplied as a list, each list element is assumed to comprise identifiers of consecutive exceedances. If \(y \) is supplied, \(x \) must be a logical vector, and \(y \) gives positions of \(x \) in its original with-missing-values vector: so \(y \) identifies consecutive \(x \).

Value

A scalar estimate of the extremal index

References

Examples

```r
n <- 1e2
x <- runif(n)
extremal(x > .9)

y <- sort(sample(n, n - 5))
x2 <- x[y]
extremal(x2 > .9, y)
```

FCtmax

Fort Collins, Colorado, US daily max. temperatures

Description

Daily maximum temperatures at Fort Collins, Colorado, US from 1st January 1970 to 31st December 2019

Usage

data(FCtmax)

Format

A data frame with 18156 rows and 2 variables

The variables are as follows:

- **date**: date of observation
- **tmax**: daily maximum temperature in degrees Celcius
Examples

```r
library(evgam)
data(FCtmax)
```

fitted.evgam

Extract Model Fitted Values

Description

Extract Model Fitted Values

Usage

```r
## S3 method for class 'evgam'
fitted(object, ...)
```

Arguments

- `object`: a fitted `evgam` object
- `...`: not used

Value

Fitted values extracted from the object `object`.

Examples

```r
data(fremantle)
fmla_gev <- list(SeaLevel ~ s(Year, k=5, bs="cr"), ~ 1, ~ 1)
m_gev <- evgam(fmla_gev, fremantle, family = "gev")
fitted(m_gev)
```

fremantle

Annual Maximum Sea Levels at Fremantle, Western Australia

Description

The 'fremantle' data frame has 86 rows and 3 columns. The second column gives 86 annual maximum sea levels recorded at Fremantle, Western Australia, within the period 1897 to 1989. The first column gives the corresponding years. The third column gives annual mean values of the Southern Oscillation Index (SOI), which is a proxy for meteorological volatility.
Usage

data(fremantle)

Format

A data frame with 86 rows and 3 variables
The variables are as follows:

Year a numeric vector of years
SeaLevel a numeric vector of annual sea level maxima
SOI A numeric vector of annual mean values of the Southern Oscillation Index

Source

Eric Gilleland’s ismev R package.

Examples

library(evgam)
data(fremantle)

logLik.evgam Log-likelihood, AIC and BIC from a fitted evgam object

Description

Log-likelihood, AIC and BIC from a fitted evgam object

Usage

S3 method for class 'evgam'
logLik(object, ...)

Arguments

object a fitted evgam object
... not used

Value

A scalar
Examples

```r
data(fremantle)
fmla_gev <- list(SeaLevel ~ s(Year, k=5, bs="cr"), ~ 1, ~ 1)
m_gev <- evgam(fmla_gev, fremantle, family = "gev")
logLik(m_gev)
AIC(m_gev)
BIC(m_gev)
```

pinv

Moore-Penrose pseudo-inverse of a matrix

Description

Moore-Penrose pseudo-inverse of a matrix

Usage

```r
pinv(x, tol = -1)
ginv.evgam(x, tol = sqrt(.Machine$double.eps))
```

Arguments

- `x` a matrix
- `tol` a scalar

Details

This function is merely a wrapper for Armadillo’s `pinv` function with its default settings, which, in particular uses the divide-and-conquer method. If `tol` isn’t provided Armadillo’s default for `pinv` is used. `ginv.evgam` mimics `ginv` using Armadillo’s `pinv`.

Value

A matrix

References

http://arma.sourceforge.net/docs.html#pinv

See Also

`ginv`
plot.evgam

Plot a fitted evgam object

Description

Plot a fitted evgam object

Usage

S3 method for class 'evgam'
plot(x, onepage = TRUE, which = NULL, main, ask = !onepage, ...)

Arguments

- `x`: a fitted evgam object
- `onepage`: logical: should all plots be on one page, or on separate pages? Defaults to TRUE
- `which`: a vector of integers identifying which smooths to plot. The default NULL plots all smooths
- `main`: a character string or vector of plot titles for each plot. If not supplied default titles are used
- `ask`: logical: ask to show next plots if too many figures for current device?
- `...`: extra arguments to pass to plot.gam

Value

Plots representing all one- or two-dimensional smooths

Examples

data(fremantle)
fmla_gev <- list(SeaLevel ~ s(Year, k=5, bs="cr"), ~ 1, ~ 1)
m_gev <- evgam(fmla_gev, fremantle, family = "gev")
plot(m_gev)
Description

Predictions from a fitted evgam object

Usage

```r
## S3 method for class 'evgam'
predict(
  object, 
  newdata, 
  type = "link", 
  prob = NULL, 
  se.fit = FALSE, 
  marginal = TRUE, 
  exi = FALSE, 
  trace = 0, 
  ...
)
```

Arguments

- `object`: a fitted evgam object
- `newdata`: a data frame
- `type`: a character string giving the type of prediction sought; see Details. Defaults to "link"
- `prob`: a scalar or vector of probabilities for quantiles to be estimated if type == "quantile"; defaults to 0.5
- `se.fit`: a logical: should estimated standard errors be returned? Defaults to FALSE
- `marginal`: a logical: should uncertainty estimates integrate out smoothing parameter uncertainty? Defaults to TRUE
- `exi`: a logical: if a dependent GEV is fitted should the independent parameters be returned? Defaults to FALSE
- `trace`: an integer where higher values give more output. -1 suppresses everything. Defaults to 0
- `...`: unused

Details

There are five options for type: 1) "link" distribution parameters transformed to their model fitting scale; 2) "response" as 1), but on their original scale; 3) "lpmatrix" a list of design matrices; 4) "quantile" estimates of distribution quantile(s); and 5) "qqplot" a quantile-quantile plot.
Value
A data frame or list of predictions, or a plot if type == "qqplot"

Examples

data(fremantle)
fmla_gev <- list(SeaLevel ~ s(Year, k=5, bs="cr"), ~ 1, ~ 1)
m_gev <- evgam(fmla_gev, fremantle, family = "gev")
prediction of link GEV parameter for fremantle data
predict(m_gev)
predictions for Year 1989
y1989 <- data.frame(Year = 1989)
link GEV parameter predictions
predict(m_gev, y1989)
GEV parameter predictions
predict(m_gev, y1989, type= "response")
10-year return level predictions
predict(m_gev, y1989, type= "quantile", prob = .9)
10- and 100-year return level predictions
predict(m_gev, y1989, type= "quantile", prob = c(.9, .99))
Examples

data(fremantle)
fmla_gev <- list(SeaLevel ~ s(Year, k=5, bs="cr"), ~ 1, ~ 1)
m_gev <- evgam(fmla_gev, fremantle, family = "gev")
print(m_gev)

qev

Quantile estimation of a composite extreme value distribution

Description

Quantile estimation of a composite extreme value distribution

Usage

qev(
 p,
 loc,
 scale,
 shape,
 m = 1,
 alpha = 1,
 theta = 1,
 family,
 tau = 0,
 start = NULL
)

Arguments

p a scalar giving the quantile of the distribution sought
loc a scalar, vector or matrix giving the location parameter
scale as above, but scale parameter
shape as above, but shape parameter
m a scalar giving the number of values per return period unit, e.g. 365 for daily
data giving annual return levels
alpha a scalar, vector or matrix of weights if within-block variables not identically
distributed and of different frequencies
theta a scalar, vector or matrix of extremal index values
family a character string giving the family for which return levels sought
tau a scalar, vector or matrix of values giving the threshold quantile for the GPD
(i.e. 1 - probability of exceedance)
start a 2-vector giving starting values that bound the return level
Details

If F is the generalised extreme value or generalised Pareto distribution, qev solves

\[
\prod_{j=1}^{n} \{F(z_j)\}^{\alpha_j \theta_j} = p.
\]

For both distributions, location, scale and shape parameters are given by loc, scale and shape. The generalised Pareto distribution, for $\xi \neq 0$ and $z > u$, is parameterised as $1 - (1 - \tau)[1 + \xi(z - u)/\psi]^{-1/\xi}$, where u, ψ and ξ are its location, scale and shape parameters, respectively, and τ corresponds to argument tau.

Value

A scalar or vector of estimates of p

Examples

```r
qev(0.9, c(1, 2), c(1, 1.1), .1, family="gev")
qev(0.99, c(1, 2), c(1, 1.1), .1, family="gpd", tau=0.9)
```

runmax

Running maximum

Description

Running n-value maximum and data frame with variable swapped for running maximum

Usage

```r
runmax(y, n)
dfrunmax(data, cons, ynm, n = 2)
```

Arguments

- **y**: a vector
- **n**: an integer giving the number of observations to calculate running maximum over; defaults to 2
- **data**: a data frame
- **cons**: a character string for the variable in data that identifies consecutive observations
- **ynm**: a character string for the variable in data that is the observations
Value

runmax returns a vector of the same dimension as y
dfrunmax returns a data frame with observations swapped for n-observation running maximum

Examples

runmax(runif(10), 5)

dfrunmax(runif(10), 5)

Description

Generate a sequence of values between a range.

Usage

seq_between(x, length = NULL)

Arguments

x a 2-vector

length an integer

Value

A vector

See Also

seq, seq_len, seq_along

Examples

seq_between(c(1, 9))
seq_between(range(runif(10)), 5)

More Sequence Generation
Description

Simulations from a fitted evgam object

Usage

S3 method for class 'evgam'
simulate(
 object,
 nsim = 1000,
 seed = NULL,
 newdata,
 type = "link",
 probs = NULL,
 threshold = 0,
 marginal = TRUE,
 ...
)

Arguments

- **object**: a fitted evgam object
- **nsim**: an integer giving the number of simulations
- **seed**: an integer giving the seed for simulations
- **newdata**: a data frame
- **type**: a character string, as in `predict.evgam`; defaults to "quantile"
- **probs**: a scalar or vector of probabilities for quantiles; defaults to NULL
- **threshold**: a scalar, vector or matrix, which is added to each simulation if `family == "gpd"`; defaults to 0
- **marginal**: a logical: should simulations integrate out smoothing parameter uncertainty? Defaults to `TRUE`

Value

Simulations of parameters or quantiles

See Also

`predict.evgam`
Examples

```r
data(fremantle)
fmla_gev <- list(SeaLevel ~ s(Year, k=5, bs="cr"), ~ 1, ~ 1)
m_gev <- evgam(fmla_gev, fremantle, family = "gev")
# simulations of link GEV parameters for fremantle data
simulate(m_gev, nsim=5)
# simulations for Year 1989
y1989 <- data.frame(Year = 1989)
# link GEV parameter simulations
simulate(m_gev, nsim=5, newdata = y1989)
# GEV parameter simulations
simulate(m_gev, nsim=5, newdata = y1989, type = "response")
# 10-year return level simulations
simulate(m_gev, nsim=5, newdata = y1989, type = "quantile", prob = .9)
# 10- and 100-year return level simulations
simulate(m_gev, nsim=5, newdata = y1989, type = "quantile", prob = c(.9, .99))
```

summary.evgam

Summary method for a fitted evgam object

Description

Summary method for a fitted evgam object

Usage

```r
## S3 method for class 'evgam'
summary(object, ...)

## S3 method for class 'summary.evgam'
print(x, ...)```

**Arguments**

- `object` : a fitted evgam object
- `...` : not used
- `x` : a summary.evgam object

**Details**

The key part of `summary.evgam` is p-values for smooths. The tests use code directly taken from `mgcv 1.8-14`. This is to avoid use of `mgev:::...`. Tests implement the method of Wood (2013).

**Value**

A summary.evgam object
References


Examples

data(fremantle)

fmla_gev <- list(SeaLevel ~ s(Year, k=5, bs="cr"), ~ 1, ~ 1)

m_gev <- evgam(fmla_gev, fremantle, family = "gev")

summary(m_gev)
Index

* datasets
  COprcp, 3
  FCtmax, 9
  fremantle, 10

  COelev (COprcp), 3
  colplot, 2
  COprcp, 3
  COprcp_meta (COprcp), 3

  dfbind, 4
  dfrunmax (runmax), 17

  evgam, 5
  expand.grid, 6
  extremal, 8

  FCtmax, 9
  fevgam (evgam), 5
  fitted.evgam, 10
  fremantle, 10

  gam, 6
  ginv, 12
  ginv.evgam (pinv), 12

  heat.colors, 3

  legend, 3
  logLik.evgam, 11

  pinv, 12
  plot, 3
  plot.evgam, 13
  plot.gam, 13
  predict.evgam, 7, 14, 19
  pretty, 3
  print.evgam, 15
  print.summary.evgam (summary.evgam), 20

  qev, 16

rbind, 5
runmax, 17
s, 6
seq, 18
seq_along, 18
seq_between, 18
seq_len, 18
simulate.evgam, 19
summary.evgam, 20