Package ‘ezplot’

August 8, 2021

Type Package
Title Functions for Common Chart Types
Version 0.7.2
Author Wojtek Kostelecki
Maintainer Wojtek Kostelecki <wojtek.kostelecki@gmail.com>
Description Wrapper for the 'ggplot2' package that creates a variety of common charts (e.g. bar, line, area, ROC, waterfall, pie) while aiming to reduce typing.
License MIT + file LICENSE
Encoding UTF-8
Depends R (>= 3.3)
RoxygenNote 7.1.1
Imports dplyr, forcats, ggplot2, lubridate, rlang
Suggests covr, DT, e1071, knitr, methods, miniUI, rmarkdown, ROCR, shiny, stats, testthat, tibble, tidyr, tsibble, tsibbledata
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2021-08-08 04:10:02 UTC

R topics documented:

agg_data .. 2
area_plot .. 3
bar_plot .. 5
calendar_plot .. 7
density_plot .. 7
distribution_plot 8
ez_app ... 9
ez_col .. 10
ez_jet ... 10
Description

Aggregates data
area_plot

Usage

agg_data(
 data,
 cols = names(data),
 group_by = NULL,
 agg_fun = function(x) sum(x, na.rm = TRUE),
 group_by2 = NULL,
 env = parent.frame()
)

Arguments

data A data.frame.

cols Named character vector of column names.

group_by Vector of grouping columns.

agg_fun Function to use for aggregating.

group_by2 Vector of grouping column names to use for delayed (post aggregation) calculation.

env Environment for extra variables.

Value

An aggregated data.frame.

Examples

library(tsibble)
library(tsibbledata)
agg_data(ansett, c("Passengers", count = "1"))
agg_data(ansett["Class"])
agg_data(ansett[c("Class", "Passengers")])
agg_data(ansett, "Passengers", "Class")
agg_data(ansett, "Passengers", c("Class", "Airports"))
agg_data(ansett, c(x = "Airports", y = "Passengers"), c(x = "Airports"))
agg_data(ansett, c(x = "Class", y = "1", group = "Airports"), c(x = "Class", group = "Airports"))

area_plot

Description

Aggregates a data.frame and creates a stacked area chart.
area_plot

Usage

area_plot(
 data,
 x,
 y = "1",
 group = NULL,
 facet_x = NULL,
 facet_y = NULL,
 size = 11,
 reorder = c("group", "facet_x", "facet_y"),
 palette = ez_col,
 labels_y = if (position == "fill") { function(x) ez_labels(100 * x, append = "\%") } else { ez_labels },
 labels_x = NULL,
 use_theme = theme_ez,
 position = c("stack", "fill"),
 facet_scales = "fixed",
 facet_ncol = NULL,
 legend_ncol = NULL,
 env = parent.frame()
)

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
y A named character value. Evaluates to a column.
group A character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
facet_y A character. Evaluates to a column.
size theme size for use_theme(). Default is 14.
reorder A character vector specifying the group variables to reorder. Default is c("group", "facet_x", "facet_y")
palette Colour function.
labels_y label formatting function
labels_x label formatting function
use_theme ggplot theme function
position Either "stack" (default) or "fill"
facet_scales Option passed to scales argument in facet_wrap or facet_grid. Default is "fixed"
facet_ncol Option passed to ncol argument in facet_wrap or facet_grid. Default is NULL.
legend_ncol Number of columns in legend.
env environment for evaluating expressions.
bar_plot

Value
A ggplot object.

Examples

```r
library(tsibble)
library(tsibbledata)
area_plot(ansett, x = "as.Date(Week)", y = "Passengers")
area_plot(ansett,
  x = "as.Date(Week)", y = c("Weekly Passengers" = "Passengers"), "Class")
area_plot(ansett, "as.Date(Week)",
  y = c("Weekly Passengers" = "Passengers"),
  group = "substr(Airports, 5, 7)",
  facet_x = "substr(Airports, 1, 3)",
  facet_y = "Class",
  facet_scales = "free_y")
```

Description

bar_plot

Usage

```r
bar_plot(
  data,
  x,
  y = "1",
  group = NULL,
  facet_x = NULL,
  facet_y = NULL,
  size = 1.1,
  width = NULL,
  reorder = c("group", "facet_x", "facet_y"),
  palette = ez_col,
  labels_y = if (position == "fill") {
      function(x) ez_labels(100 * x, append = 
      "\%")
    } else {
      ez_labels
  },
  labels_x = identity,
  label_pos = c("auto", "inside", "top", "both", "none"),
  rescale_y = 1.1,
  label_cutoff = 0.12,
  use_theme = theme_ez,
  position = "stack",
  facet_scales = "fixed",
)```
legend_ncol = NULL, coord_flip = FALSE)

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
y A named character value. Evaluates to a column.
group A character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
facet_y A character. Evaluates to a column.
size theme size for use_theme(). Default is 14.
width Width of bar.
reorder A character vector specifying the group variables to reorder. Default is c("group", "facet_x", "facet_y").
palette Colour function.
labels_y label formatting function
labels_x label formatting function
label_pos Position of labels. Can be "auto", "inside", "top", "both" or "none".
rescale_y Rescaling factor for y-axis limits
label_cutoff Cutoff size (proportion of y data range) for excluding labels
use_theme ggplot theme function
position Either "stack" (default) or "fill"
facet_scales Option passed to scales argument in facet_wrap or facet_grid. Default is "fixed".
legend_ncol Number of columns in legend.
coord_flip logical (default is FALSE). If TRUE, flips the x and y coordinate using ggplot2::coord_flip()

Value

A ggplot object.

Examples

library(tsibble)
library(tsibbledata)
library(lubridate)
bar.plot(ansett, "year(Week)", "Passengers", size = 16)
bar.plot(ansett, "year(Week)", "Passengers", "Class")
bar.plot(ansett, "Airports", c("Share of Passengers" = "Passengers"), "Class", position = "fill")
bar.plot(ansett, "Airports", "Passengers", "Class", reorder = NULL, label_pos = "both")
bar.plot(ansett, "Airports",
        c(Passengers = "ifelse(Class == 'Economy', Passengers, -Passengers)", "Class", label_pos = "both")
bar.plot(ansett, "year(Week)", "Passengers", "Class", label_pos = "both", coord_flip = TRUE)
calendar_plot

Description

calendar_plot

Usage

calendar_plot(data, x, y, ...)

Arguments

- **data**: A data.frame.
- **x**: date column
- **y**: A named character value. Evaluates to a column.
- **...**: additional arguments for tile_plot

Examples

library(tsibbledata)
calendar_plot(vic_elec, "Time", "Demand", zlim = c(NA, NA))

density_plot

Description

creates a density plot

Usage

density_plot(
  data,
  x,
  group = NULL,
  facet_x = NULL,
  facet_y = NULL,
  palette = ez_col,
  adjust = 1,
  alpha = 0.5,
  facet_scales = "fixed",
  facet_ncol = NULL,
  legend_ncol = NULL,
  env = parent.frame()
)
Arguments

- **data**: A data.frame.
- **x**: A named character value. Evaluates to a column.
- **group**: A character value. Evaluates to a column.
- **facet_x**: A character value. Evaluates to a column.
- **facet_y**: A character. Evaluates to a column.
- **palette**: Colour function.
- **alpha**: multipliciate bandwidth adjustment
- **adjust**: alpha
- **facet_scales**: Option passed to scales argument in facet_wrap or facet_grid. Default is “fixed”.
- **facet_ncol**: Option passed to ncol argument in facet_wrap or facet_grid. Default is NULL.
- **legend_ncol**: Number of columns in legend.
- **env**: environment for evaluating expressions.

Examples

```r
library(tsibbledata)
density_plot(mtcars, "wt", "cyl")
density_plot(subset(tsibbledata::olympic_running, Length == 100 & Year >= 1980),
 "Time", "Year - Year %% 10", "Sex", facet_scales = "free", facet_ncol = 1, adjust = 2)
```

Description

distribution_plot

Usage

distribution_plot(
  data,
  x,
  facet_x = NULL,
  nbins = 20,
  use_theme = theme_ez,
  size = 11,
  env = parent.frame()
)
Arguments

- **data**: A data.frame.
- **x**: A named character value. Evaluates to a column.
- **facet_x**: A character value. Evaluates to a column.
- **nbins**: Number of bins for histogram. Default is 20.
- **use_theme**: ggplot theme function
- **size**: theme size for use_theme(). Default is 14.
- **env**: environment for evaluating expressions.

Examples

```r
n = 100
df = data.frame(residuals = rnorm(n),
 group1 = sample(c("a", "b"), n, replace = TRUE))
distribution_plot(df, "residuals")
distribution_plot(df, "residuals", "group1")
```

Description

ez_app

Usage

```
ez_app(data = NULL)
```

Arguments

- **data**: A data frame

Examples

```r
Not run:
library(tsibble)
library(tsibbledata)
ez_app(ansett)
End(Not run)
```
ez_col

Color palette interpolation

Description

Color palette interpolation

Usage

```r
ez_col(n = 50, palette = NULL)
```

Arguments

- `n`: number of colours
- `palette`: palette to interpolate from

Value

- `rgb`

Examples

```r
ez_col(15)
ez_col(2, c("blue", "red"))
ez_col(3, c("blue", "red"))
```

ez_jet

Description

color palette for

Usage

```r
ez_jet(
 n = 100,
 palette = c("dodgerblue4", "steelblue2", "olivedrab3", "darkgoldenrod1", "brown")
)
```

Arguments

- `n`: Number of colours to return.
- `palette`: Vector of colours.
**ez_labels**

**Examples**

```r
ez_jet(100)
ez_jet(1)
```

---

**ez_labels**  
*Function for formatting numeric labels*

---

**Description**

Function for formatting numeric labels

**Usage**

```r
ez_labels(
 x,
 prepend = "",
 append = "",
 as_factor = FALSE,
 round = Inf,
 signif = Inf
)
```

**Arguments**

- `x` : numeric
- `prepend` : character
- `append` : character
- `as_factor` : logical
- `round` : numeric passed to `round()`
- `signif` : numeric passed to `signif()`

**Value**

- `y`

**Examples**

```r
ez_labels(10^(0:10))
ez_labels(2000, append = " apples")
ez_labels(0:10, append = " apples", as_factor = TRUE)
ez_labels(c(0, 0.1, 0.01, 0.001, 0.0001))
```
Description

Saves ggplot or ezplot objects to png (with useful defaults).

Usage

```r
ez_png(
 g, # A ggplot or ezplot object.
 file, # A png file path.
 width = 1200, # Image width (in pixels). Default is 1200.
 height = 600, # Image height (in pixels). Default is 600.
 res = 72, # Resolution (PPI) of output image. Default is 72.
 resx = 1, # Resolution multiplier. Default is 1.
 ... # Further arguments to pass to png().
 vp = NULL, # A viewport object created with grid::viewport.
 dir.create = FALSE, # Logical. If TRUE, creates the directory to save into. Default is FALSE.
 check = TRUE # Logical. If TRUE, opens png file after saving. Default is TRUE.
)
```

Arguments

- `g`: A ggplot or ezplot object.
- `file`: A png file path.
- `width`: Image width (in pixels). Default is 1200.
- `height`: Image height (in pixels). Default is 600.
- `res`: Resolution (PPI) of output image. Default is 72.
- `resx`: Resolution multiplier. Default is 1.
- `...`: Further arguments to pass to `png()`.
- `vp`: A viewport object created with `grid::viewport`.
- `dir.create`: Logical. If `TRUE`, creates the directory to save into. Default is `FALSE`.
- `check`: Logical. If `TRUE`, opens png file after saving. Default is `TRUE`. 
ez_server

**Description**
ez_server

**Usage**
ez_server(data)

**Arguments**
data: A data frame

---

ez_ui

**Description**
ez_ui

**Usage**
ez_ui(data)

**Arguments**
data: A data frame

---

get_incr

**Description**
returns the minimum increment between sorted unique values of a vector

**Usage**
get_incr(x)

**Arguments**
x: A numeric or date vector
**Description**

creates a histogram plot

**Usage**

```r
histogram_plot(
 data,
 x,
 y = "..count..",
 group = NULL,
 facet_x = NULL,
 facet_y = NULL,
 palette = ez_col,
 position = "stack",
 bins = 30,
 alpha = 0.5,
 facet_scales = "fixed",
 facet_ncol = NULL,
 legend_ncol = NULL,
 env = parent.frame()
)
```

**Arguments**

data A data.frame.

x A named character value. Evaluates to a column.

y A named character value. Evaluates to a column.

group A character value. Evaluates to a column.

facet_x A character value. Evaluates to a column.

facet_y A character. Evaluates to a column.

palette Colour function.

position Either "stack" (default) or "fill"

bins number of bins

alpha fill alpha

facet_scales Option passed to scales argument in facet_wrap or facet_grid. Default is "fixed".

facet_ncol Option passed to ncol argument in facet_wrap or facet_grid. Default is NULL.

legend_ncol Number of columns in legend.

e env environment for evaluating expressions.
ks_plot

Examples

```r
histogram_plot(airquality, "Wind", group = "Month")
histogram_plot(airquality, "Wind", ".density.", facet_x = "Month")
```

---

ks_plot | ks_plot

---

Description

ks plot

Usage

```r
ks_plot(
 data,
 fitted,
 actual,
 palette = ez_col,
 size_line = 1,
 size = 11,
 env = parent.frame()
)
```

Arguments

data | A data.frame.
fitted | Vector of fitted values
actual | Vector of actual values
palette | Colour function.
size_line | width of line for geom_line(). Default is 1.
size | theme size for use_theme(). Default is 14.
env | environment for evaluating expressions.

Examples

```r
ks_plot(mtcars, ".-disp", "am")
x = c(rnorm(100), rnorm(100) + 2)
label = c(rep("low", 100), rep("high", 100))
ks_plot(data.frame(x, label), "x", "label")
ks_plot(data.frame(x, label = factor(label, c("low", "high"))), "x", "label")
```
Description

precision-recall plot

Usage

```r
lift_plot(
 data,
 fitted,
 actual,
 group = NULL,
 facet_x = NULL,
 facet_y = NULL,
 size_line = 1,
 size = 11,
 env = parent.frame()
)
```

Arguments

- **data** 
  A data.frame.
- **fitted** 
  Vector of fitted values
- **actual** 
  Vector of actual values
- **group** 
  A character value. Evaluates to a column.
- **facet_x** 
  A character value. Evaluates to a column.
- **facet_y** 
  A character. Evaluates to a column.
- **size_line** 
  width of line for `geom_line()`. Default is 1.
- **size** 
  theme size for `use_theme()`. Default is 14.
- **env** 
  environment for evaluating expressions.

Examples

```r
library(ggplot2)
n = 1000
df = data.frame(actual = sample(c(FALSE, TRUE), n, replace = TRUE),
 runif = runif(n))
df["fitted"] = runif(n) ^ ifelse(df["actual"] == 1, 0.5, 2)
density_plot(df, "fitted", "actual")

lift_plot(df, "fitted", "actual")
lift_plot(df, "fitted", "actual") + scale_y_log10()
```
lift_plot(df, "runif", "actual", size_line = 0.5)

library(dplyr, warn.conflicts = FALSE)
lift_plot(df, "fitted", "actual", "sample(c(1, 2), n(), TRUE)"")
lift_plot(df, "fitted", "actual", 
        "sample(c(1, 2), n(), TRUE)",
        "sample(c(3, 4), n(), TRUE)"
)
lift_plot(df, "fitted", "actual", 
        "sample(c(1, 2), n(), TRUE)",
        "sample(c(3, 4), n(), TRUE)",
        "sample(c(5, 6), n(), TRUE)"
)

line_plot

Description

Creates line plots.

Usage

line_plot(
  data,
  x,
  y = "1",
  group = NULL,
  facet_x = NULL,
  facet_y = NULL,
  yoy = FALSE,
  size_line = 1,
  size = 11,
  reorder = c("group", "facet_x", "facet_y"),
  palette = ez_col,
  labels_y = ez_labels,
  limits_y = c(NA, NA),
  use_theme = theme_ez,
  facet_scales = "fixed",
  legend_ncol = NULL
)

Arguments

data A data.frame.

x A named character value. Evaluates to a column.
A named character value. Evaluates to a column.

group

A character value. Evaluates to a column.

facet_x

A character value. Evaluates to a column.

facet_y

A character. Evaluates to a column.

yoy

Logical used to indicate whether a YOY grouping should be created. Default is FALSE.

size_line

width of line for geom_line(). Default is 1.

size

theme size for use_theme(). Default is 14.

reorder

A character vector specifying the group variables to reorder. Default is c("group","facet_x","facet_y").

palette

Colour function.

labels_y

label formatting function

limits_y

vector of c(min, max) y-axis limits

use_theme

ggplot theme function

facet_scales

Option passed to scales argument in facet_wrap or facet_grid. Default is "fixed".

legend_ncol

Number of columns in legend.

Value

A ggplot object.

Examples

library(tsibble)
library(tsibbledata)
line_plot(ansett, x = "Week", y = "Passengers")
line_plot(ansett, x = "Week", y = "Passengers", "Class")
line_plot(pelt, "Year", "Hare", limits_y = c(0, NA))
line_plot(pelt, "Year", c("Hare", "Lynx"))
line_plot(pelt, "Year", "Hare", use_theme = ggplot2::theme_bw)
line_plot(pelt, "Year", c("Hare Population" = "Hare"))

Description

describe

model_plot
Usage

model_plot(
  data,  
  x, 
  actual, 
  fitted, 
  facet_x = NULL, 
  point_size = 2, 
  res_bins = NA_real_, 
  size = 11
)

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
actual A character value. Evaluates to a logical or binary column.
fitted A character value. Evaluates to a numeric column.
facet_x A character value. Evaluates to a column.
point_size Numeric. Default is 2.
res_bins Number of bins in the residual distribution. Default value (NA) doesn’t show the distribution.
size theme size for use_theme(). Default is 14.

Value

A ggplot object.

Examples

y = rnorm(26)
df = data.frame(ID = 1:26, actual = y + rnorm(26), fitted = y, id = letters)
model_plot(df, "ID", "actual", "fitted")  
model_plot(df, "id", "actual", "fitted")
model_plot(df, "ID", "actual", "fitted", res_bins = 10)
model_plot(df, "id", "actual", "fitted", res_bins = 10)

Description

Names unnamed elements of a character vector.
Usage

nameifnot(x, make.names = FALSE)

Arguments

x
  A character vector.
make.names
  Logical. Whether to force names of x to be valid variable names. Default is FALSE.

Value

A named vector.

Description

Visual representation of the NAs in a data.frame

Usage

na_plot(data, palette = ez_col)

Arguments

data
  A data.frame.
palette
  Colour function.

Value

A ggplot object.

Examples

na_plot(airquality)
Description

Returns names of non-numeric columns.

Usage

not_numeric(x)

Arguments

x A data.frame.

Value

A character vector.

Description

Converts "NULL" character to NULL.

Usage

no_null(x)

Arguments

x A character vector.

Value

y

Examples

no_null(NULL)
no_null("NULL")
no_null("NOPE")
Description

Precision recall calculation

Usage

```r
perf(fitted, actual, x_measure, y_measure)
```

Arguments

- `fitted`: Vector with values between 0 and 1
- `actual`: Vector with two levels
- `x_measure`: metric for ROCR::performance
- `y_measure`: metric for ROCR::performance

Examples

```r
ezplot:::perf(runif(1), sample(c(TRUE, FALSE), 1, replace = TRUE), "rpp", "lift")
ezplot:::perf(runif(10), sample(c(TRUE, FALSE), 10, replace = TRUE), "rpp", "lift")
ezplot:::perf(runif(5), sample(c(TRUE, FALSE), 5, replace = TRUE), "rec", "prec")
ezplot:::perf(runif(5), sample(c(TRUE, FALSE), 5, replace = TRUE), "fpr", "tpr")
ezplot:::perf(runif(5), sample(c(TRUE, FALSE), 5, replace = TRUE), "cutoff", "tpr")
```

Description

plots binary classification performance metrics

Usage

```r
performance_plot(
 data,
 fitted,
 actual,
 group = NULL,
 facet_x = NULL,
 facet_y = NULL,
 x = "fpr",
 y = "tpr",
 auc = c("title", "group"),
```
perf_df

```r
size_line = 1,
size = 11,
env = parent.frame()
```

Arguments

- `data`: A data.frame.
- `fitted`: A character value. Evaluates to a numeric column.
- `actual`: A character value. Evaluates to a logical or binary column.
- `group`: A character value. Evaluates to a column.
- `facet_x`: A character value. Evaluates to a column.
- `facet_y`: A character. Evaluates to a column.
- `x`: ROCR::performance() measure
- `y`: ROCR::performance() measure
- `auc`: character vector indicating which AUC values should be displayed. Options are 'title' and 'group'
- `size_line`: width of line for geom_line(). Default is 1.
- `size`: theme size for use_theme(). Default is 14.
- `env`: environment for evaluating expressions.

Examples

```r
performance_plot(mtcars, "-disp", "am")
performance_plot(mtcars, "-disp", "am", "cyl")
performance_plot(mtcars, "-disp", "am", "cyl", x = "rec", y = "prec")
performance_plot(mtcars, "-disp", "am", x = "rpp", y = "gain")
performance_plot(mtcars, "-disp", "am", x = "rpp", y = "lift")
performance_plot(mtcars, "-disp", "am", x = "cutoff", y = "tpr")
```

Description

shows classification performance statistics as a table

Usage

```r
perf_df(fitted, actual, quantiles = NULL)
```
pie_plot

Arguments

fitted A character value. Evaluates to a numeric column.
actual A character value. Evaluates to a logical or binary column.
quantiles Number of quantiles to show. If NULL, uses distinct values of fitted for the cutoffs rather than showing quantiles.

Examples

perf_df(mtcars$mpg, mtcars$am)
perf_df(mtcars$mpg, mtcars$am, quantiles = 4)
perf_df(mtcars$mpg, mtcars$am, quantiles = 10)
perf_df(mtcars$wt, mtcars$am==0)

Description

Creates pie charts.

Usage

pie_plot(
  data,
  x,
  y = "1",
  facet_x = NULL,
  facet_y = NULL,
  labels_y = function(x) ez_labels(x * 100, append = "\%", round = round, signif = signif),
  size = 11,
  label_cutoff = 0.04,
  round = Inf,
  signif = 3,
  palette = ez_col,
  reorder = c("x", "facet_x", "facet_y"),
  label_x = 0.8,
  legend_ncol = NULL
)

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
y A named character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
prec_rec

facet_y  A character. Evaluates to a column.
labels_y label formatting function
size     theme size for use_theme(). Default is 14.
label_cutoff Cutoff size (proportion of y data range) for excluding labels
round    Option for rounding label.
signif   Option for retaining significant figures in label.
palette  Colour function.
reorder  A character vector specifying the group variables to reorder. Default is c("group","facet_x","facet_y").
label_x  Position of label from centre of pie. 0 is the centre of the pie and 1 is the outer edge.
legend_ncol Number of columns in legend.

Value

ggplot object

Examples

library(tsibble)
library(tsibbledata)
pie_plot(ansett, "Class", "Passengers")
pie_plot(ansett, "Class", "Passengers", reorder = NULL, label_x = 0.5)
pie_plot(ansett, "Class", "Passengers", "Airports", reorder = NULL, label_x = 0.5)

Description

Precision recall calculation

Usage

prec_rec(fitted, actual)

Arguments

fitted Vector with values between 0 and 1
actual Vector with two levels

Examples

ezplot:::prec_rec(runif(1), sample(c(TRUE, FALSE), 1, replace = TRUE))
ezplot:::prec_rec(runif(5), sample(c(TRUE, FALSE), 5, replace = TRUE))
pr_plot

Description

precision-recall plot

Usage

pr_plot(
  data,
  fitted,
  actual,
  group = NULL,
  facet_x = NULL,
  facet_y = NULL,
  palette = ez_col,
  size_line = 1,
  size = 11,
  labs = "short",
  env = parent.frame()
)

Arguments

data A data.frame.
fitted Vector of fitted values
actual Vector of actual values
group A character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
facet_y A character. Evaluates to a column.
palette Colour function.
size_line width of line for geom_line(). Default is 1.
size theme size for use_theme(). Default is 14.
labs ‘short’ or ‘long’
env environment for evaluating expressions.

Examples

library(ggplot2)
n = 1000
df = data.frame(actual = sample(c(FALSE, TRUE), n, replace = TRUE),
  runif = runif(n))
df["fitted"] = runif(n) ^ ifelse(df["actual"] == 1, 0.5, 2)
quick_facet

**Quick facet**

---

**Description**

Applies faceting to ggplot objects when g["data"] has a facet_x or facet_y column.

**Usage**

```r
quick_facet(g, ncol = NULL, ...)
```

**Arguments**

- `g`: A ggplot object.
- `ncol`: Number of facet columns.
- `...`: Arguments to pass to facet_grid or facet_wrap.

---

**reorder_levels**

**Order levels of factor columns using fct_reorder**

---

**Description**

Order levels of factor columns using fct_reorder

```r
density_plot(df, "fitted", "actual")

pr_plot(df, "fitted", "actual")
pr_plot(df, "runif", "actual", size_line = 0.5)

library(dplyr, warn.conflicts = FALSE)
pr_plot(df, "fitted", "actual", "sample(c(1, 2), n(), TRUE)"

pr_plot(df, "fitted", "actual",
 "sample(c(1, 2), n(), TRUE),
 "sample(c(3, 4), n(), TRUE)"

pr_plot(df, "fitted", "actual",
 "sample(c(1, 2), n(), TRUE),
 "sample(c(3, 4), n(), TRUE),
 "sample(c(5, 6), n(), TRUE)"
```
Usage

reorder_levels(
  data,
  cols = c("group", "facet_x", "facet_y"),
  y = "y",
  .desc = rep(TRUE, length(cols))
)

Arguments

  data         A data.frame.
  cols         Names of columns to reorder.
  y            Numeric column for order priority.
  .desc        A logical vector of length 1 or ncol(data). Default is TRUE for all columns in cols.

Value

  A data.frame.

Examples

str(ezplot::reorder_levels(mtcars, "cyl", "1"))
str(ezplot::reorder_levels(mtcars, "cyl", "1", FALSE))
str(ezplot::reorder_levels(mtcars, "cyl", "mpg"))

---

roc

Description

  Calculates ROC and AUC

Usage

roc(fitted, actual)

Arguments

  fitted       Vector with values between 0 and 1
  actual       Vector with two levels

Examples

ezplot::roc(runif(1), sample(c(TRUE, FALSE), 1, replace = TRUE))
ezplot::roc(runif(3), sample(c(TRUE, FALSE), 3, replace = TRUE))
**Description**

roc_plot

**Usage**

roc_plot(
  data,
  fitted,
  actual,
  group = NULL,
  facet_x = NULL,
  facet_y = NULL,
  palette = ez_col,
  size_line = 1,
  size = 11,
  env = parent.frame()
)

**Arguments**

- **data** A data.frame.
- **fitted** Vector of fitted values
- **actual** Vector of actual values
- **group** A character value. Evaluates to a column.
- **facet_x** A character value. Evaluates to a column.
- **facet_y** A character. Evaluates to a column.
- **palette** Colour function.
- **size_line** width of line for geom_line(). Default is 1.
- **size** theme size for use_theme(). Default is 14.
- **env** environment for evaluating expressions.

**Examples**

```r
library(ggplot2)
n = 1000
df = data.frame(actual = sample(c(FALSE, TRUE), n, replace = TRUE),
 runif = runif(n))
df["fitted"] = runif(n) ^ ifelse(df["actual"] == 1, 0.5, 2)

ggplot(df) +
 geom_density(aes(fitted, fill = actual), alpha = 0.5)
```
roc_plot(df, "actual", "actual")
roc_plot(df, "fitted", "actual")
roc_plot(df, "runif", "actual", size_line = 0.5)

library(dplyr, warn.conflicts = FALSE)
roc_plot(df, "fitted", "actual", "sample(c(1, 2), n(), TRUE)"

roc_plot(df, "fitted", "actual",
"sample(c(1, 2), n(), TRUE)",
"sample(c(3, 4), n(), TRUE)"

roc_plot(df, "fitted", "actual",
"sample(c(1, 2), n(), TRUE)",
"sample(c(3, 4), n(), TRUE)",
"sample(c(5, 6), n(), TRUE)"

Description

Saves ggplot or ezplot objects to png.

Usage

save_png(g, file, width, height, res, ..., vp = NULL)

Arguments

g A ggplot or ezplot object.
file A png file path.
width Width of output image.
height Height or output image.
res Resolution of output image.
... Further arguments to pass to png().
vp A viewport object created with grid::viewport.
Description

create a scatter plot

Usage

```
scatter_plot(
 data,
 x,
 y,
 group = NULL,
 palette = ez_col,
 size = 11,
 point_size = 2.5,
 env = parent.frame()
)
```

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
y A named character value. Evaluates to a column.
group A character value. Evaluates to a column.
palette Colour function.
size theme size for use_theme(). Default is 14.
point_size Numeric. Default is 2.
env environment for evaluating expressions.

Examples

```
scatter_plot(mtcars, "wt", "hp")
scatter_plot(mtcars, "wt", "hp", "factor(cyl)")
scatter_plot(mtcars, "factor(cyl)", "hp")
```
**secondary_plot**

secondary_plot creates a plot with a secondary y-axis

**Description**

secondary_plot creates a plot with a secondary y-axis

**Usage**

```r
secondary_plot(
 data,
 x,
 y1 = "1",
 y2 = "1",
 facet_x = NULL,
 facet_y = NULL,
 palette = ez_col,
 size_line = 1,
 labels_y1 = ez_labels,
 labels_y2 = ez_labels,
 ylim1 = NULL,
 ylim2 = NULL,
 reorder = c("facet_x", "facet_y"),
 size = 11
)
```

**Arguments**

- `data`: A data.frame.
- `x`: A named character value. Evaluates to a column.
- `y1`: Variable to plot on the left-hand axis
- `y2`: Variable to plot on the right-hand axis
- `facet_x`: A character value. Evaluates to a column.
- `facet_y`: A character. Evaluates to a column.
- `palette`: Colour function.
- `size_line`: line size
- `labels_y1`: label formatting function
- `labels_y2`: label formatting function
- `ylim1`: (optional) left axis limits
- `ylim2`: (optional) right axis limits
- `reorder`: A character vector specifying the group variables to reorder. Default is `c("group","facet_x","facet_y")`.
- `size`: theme size for `use_theme()`. Default is 14.
side_plot

Value

A ggplot object.

Examples

library(tsibble)
library(tsibbledata)
secondary_plot(pelt, "Year", "Hare", "Lynx")
secondary_plot(pelt, "Year", c("Hare Population" = "Hare"), c("Lynx Population" = "Lynx"))
secondary_plot(aus_production, "Quarter",
               c("Quarterly Beer Production (megalitres)" = "Beer"),
               c("Quarterly Cement Production (tonnes)" = "Cement"),
               "lubridate::quarter(Quarter)",
               ylim1 = c(0, 600), ylim2 = c(0, 3000),
               size = 10)

Description

side_plot

Usage

side_plot(
  data,
  x,
  y = "1",
  labels_y = ez_labels,
  size = 14,
  palette = ez_col,
  signif = 3,
  reorder = TRUE,
  rescale_y = 1.25
)

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
y A named character value. Evaluates to a column.
labels_y label formatting function
size theme size for use_theme(). Default is 14.
palette Colour function.
signif Number of significant digits.
reorder A character vector specifying the group variables to reorder. Default is c("group", "facet_x", "facet_y")
rescale_y Rescaling factor for y-axis limits
Examples

side_plot(mtcars, "gear", "1", rescale_y = 4/3)
side_plot(mtcars, "cyl", c("Cars with <120 HP" = "hp < 120"))
side_plot(mtcars, "cyl", c(count = "ifelse(cyl == 4, 1, -1)", "hp <= 120"))
side_plot(mtcars, "cyl", c("hp <= 120", "- - wt / cyl"), rescale_y = 1.5)
side_plot(mtcars, "cyl", c("1", "-1"))

---

text_contrast

Description

text_contrast

Usage

text_contrast(x)

Arguments

x Vector of colours.

Value

Vector indicating whether black or white should be used for text overlayed on x.

Examples

text_contrast("#000000")
text_contrast("black")

---

theme_ez

Default theme

Description

Default theme

Usage

theme_ez(base_size = 11, base_family = "")

Arguments

base_size base font size
base_family base fond family
Value

theme

Examples

library(ggplot2)
ggplot(mtcars) + geom_point(aes(cyl, mpg)) + theme_ez()

Description

Creates tile plots.

Usage

tile_plot(
  data,
  x,
  y,
  z = c(Count = "1"),
  facet_x = NULL,
  facet_y = NULL,
  size = 11,
  facet_ncol = NULL,
  labels_x = NULL,
  labels_y = NULL,
  labels_z = ez_labels,
  zlim = function(x) c(pmin(0, x[1]), pmax(0, x[2])),
  palette = ez_jet,
  reorder = c("facet_x", "facet_y")
)

Arguments

data A data.frame.

x A named character value. Evaluates to a column.

y A named character value. Evaluates to a column.

z A named character. Evaluates to a column and is mapped to the fill colour of the tiles.

facet_x A character value. Evaluates to a column.

facet_y A character. Evaluates to a column.

size theme size for use_theme(). Default is 14.

facet_ncol Option passed to ncol argument in facet_wrap or facet_grid. Default is NULL.
unpack_cols

**Description**

Unpack cols argument to agg_data

**Usage**

unpack_cols(x)

**Arguments**

- **x**
  - cols

**Value**

- list

**Examples**

```r
ezplot::unpack_cols("x")
ezplot::unpack_cols(c(x = "x", y = "x + y", expr = "- x + y"))
```
variable_plot

Description

Plots variables (multiple "y" values) broken out as vertical facets.

Usage

variable_plot(
  data,
  x,
  y,
  group = NULL,
  facet_x = NULL,
  palette = ez_col,
  size = 14,
  labels_y = ez_labels,
  geom = "line",
  size_line = 1,
  legend_ncol = NULL,
  ylab = NULL,
  yoy = FALSE,
  switch = "y",
  rescale_y = 1
)

Arguments

data A data.frame.

x A named character value. Evaluates to a column.

y A named character value. Evaluates to a column.

group A character value. Evaluates to a column.

facet_x A character value. Evaluates to a column.

palette Colour function.

size theme size for use_theme(). Default is 14.

labels_y label formatting function

geom Either "line", "col" or "bar". Default is "line"

size_line width of line for geom_line(). Default is 1.

legend_ncol Number of columns in legend.

ylab y label text

yoy Logical used to indicate whether a YOY grouping should be created. Default is FALSE.
switch  Option to switch location of variable (facet) labels. Default is 'y' (yes) which shows facet strips on left side of panels.

rescale_y  Rescaling factor for y-axis limits

Examples

library(tsibble)
library(tsibbledata)
variable_plot(ansett, "Week", "Passengers", facet_x = "Class")
variable_plot(ansett, "Week", "Passengers", facet_x = "Class", yoy = TRUE)
variable_plot(pelt, "Year", c("Lynx", "Hare"), "round(Year, -1)")
variable_plot(hh_budget, "Year", c("Debt", "Expenditure"), "Country")
variable_plot(PBS, "Type", "Scripts", "Concession", switch = "y", geom = "col")

## Not run:
variable_plot(subset(hh_budget, Year > 2013), "Year", 
  c("Debt\n(% of disposable income)" = "Debt", 
  "Expenditure\nGrowth (%)" = "Expenditure", 
  "Unemployment (%)" = "Unemployment"), 
  facet_x = "Country", geom = "bar")
variable_plot(subset(hh_budget, Year > 2013), "Year", 
  c("Debt\n(% of disposable income)" = "Debt", 
  "Expenditure\nGrowth (%)" = "Expenditure", 
  "Unemployment (%)" = "Unemployment"), 
  group = "Country", geom = "bar")

## End(Not run)
```r
bottom_label = TRUE,
ingroup_label = FALSE,
n_x = 2,
env = parent.frame()
)

Arguments

- **data** A data.frame.
- **x** A named character value. Evaluates to a column.
- **y** A named character value. Evaluates to a column.
- **group** A character value. Evaluates to a column.
- **size** theme size for use_theme(). Default is 14.
- **labels** Function for formatting labels.
- **label_rescale** Scaling factor for chart labels (relative to axis labels).
- **y_min** Minimum limit of y axis.
- **rescale_y** Rescaling factor for y-axis limits
- **n_signif** Number of significant figures in labels.
- **rotate_xlabel** Logical.
- **bottom_label** Logical.
- **ingroup_label** Logical. Shows in-group percentage change.
- **n_x** Number of x levels to show in chart.
- **env** environment for evaluating expressions.

Examples

```r
call(data = tsibbledata)
waterfall_plot(aus_retail, 
  lubridate::year(Month), 
  "Turnover", 
  "sub( ' Territory', '
Territory', State), 
  rotate_xlabel = TRUE)
水falls_plot(aus_retail, 
  lubridate::year(Month), 
  "Turnover", 
  "sub( ' Territory', '
Territory', State), 
  rotate_xlabel = TRUE, 
  label_rescale = 0.5, 
  ingroup_label = TRUE, 
  bottom_label = FALSE, 
  n_x = 3, 
  size = 20, 
  y_min = 0)
```
Index

agg_data, 2
area_plot, 3
bar_plot, 5
calendar_plot, 7
density_plot, 7
distribution_plot, 8
ez_app, 9
ez_col, 10
ez_jet, 10
ez_labels, 11
ez_png, 12
ez_server, 13
ez_ui, 13
get_incr, 13
histogram_plot, 14
ks_plot, 15
lift_plot, 16
line_plot, 17
model_plot, 18
na_plot, 20
nameifnot, 19
no_null, 21
not_numeric, 21
perf, 22
perf_df, 23
performance_plot, 22
pie_plot, 24
pr_plot, 26
prec_rec, 25
quick_facet, 27
reorder_levels, 27
roc, 28
roc_plot, 29
save_png, 30
scatter_plot, 31
secondary_plot, 32
side_plot, 33
text_contrast, 34
theme_ez, 34
tile_plot, 35
unpack_cols, 36
variable_plot, 37
waterfall_plot, 38