Title Fair Data Adaptation with Quantile Preservation
Description An implementation of the fair data adaptation with quantile
preservation described in Plecko & Meinshausen (2019) \<arXiv:1911.06685>. The adaptation procedure uses the specified causal graph to pre-process the
given training and testing data in such a way to remove the bias caused by
the protected attribute. The procedure uses tree ensembles for quantile
regression.
Version 0.2.1
License GPL (>= 3)
Encoding UTF-8
Language en-US
LazyData true
URL https://github.com/dplecko/fairadapt
BugReports https://github.com/dplecko/fairadapt/issues
Depends R (>= 3.5.0)
Imports ranger (>= 0.13.1), assertthat, quantreg, qrnn, igraph,
ggplot2, cowplot, scales
Suggests testthat (>= 3.0.3), knitr, rmarkdown, markdown, data.table,
rticles, mvtnorm, magick, ggraph, pdftools
RoxygenNote 7.1.2
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Drago Plecko [aut, cre],
Nicolas Bennett [aut]
Maintainer Drago Plecko <drago.plecko@stat.math.ethz.ch>
Repository CRAN
Date/Publication 2021-10-19 17:20:02 UTC

R topics documented:

- `adaptedData` .. 2
- `computeQuants` .. 2
- `fairadapt` .. 3
- `fairTwins` .. 5
- `gov_census` .. 6
- `graphModel` .. 7
- `linearQuants` .. 8
- `mcqrnnQuants` ... 8
- `rangerQuants` .. 9
- `uni_admission` ... 10
- `visualizeGraph` ... 10

Index

```
adaptedData             Convenience function for returning adapted data
```

Description

Convenience function for returning adapted data

Usage

adaptedData(x, train = TRUE)

Arguments

- `x` Object of class `fairadapt`, a result of an adaptation procedure.
- `train` A logical indicating whether train data should be returned. Defaults to `TRUE`. If `FALSE`, test data is returned.

```
computeQuants             Compute Quantiles generic for the Quantile Learning step.
```

Description

Compute Quantiles generic for the Quantile Learning step.

Usage

computeQuants(x, data, newdata, ind, ...)

Arguments

- **x**: Object with an associated `computeQuants()` method, to be used for inferring quantiles.
- **data**: `data.frame` containing samples used in the quantile regression.
- **newdata**: `data.frame` containing counterfactual values for which the quantiles need to be inferred.
- **ind**: A logical vector of length `nrow(data)`, indicating which samples have the baseline value of the protected attribute.
- **...**: Additional arguments to be passed down to respective method functions.

Value

A vector of counterfactual values corresponding to `newdata`.

Description

Implementation of fair data adaptation with quantile preservation (Plecko & Meinshausen 2019). Uses only plain R.

Usage

```r
fairadapt(
  formula,
  prot.attr,
  adj.mat,
  train.data,
  test.data = NULL,
  cfd.mat = NULL,
  top.ord = NULL,
  res.vars = NULL,
  quant.method = rangerQuants,
  visualize.graph = FALSE,
  ...
)
```

Arguments

- **formula**: Object of class `formula` describing the response and the covariates.
- **prot.attr**: A value of class `character` describing the binary protected attribute. Must be one of the entries of `colnames(adj.mat)`.
adj.mat Matrix of class matrix encoding the relationships in the causal graph. \(M[i,j] = 1 \) implies the existence of an edge from node i to node j. Must include all the variables appearing in the formula object. When the adj.mat argument is set to NULL, then the top.ord argument has to be supplied.

train.data, test.data Training data & testing data, both of class data.frame. Test data is by default NULL.

cfd.mat Symmetric matrix of class matrix encoding the bidirected edges in the causal graph. \(M[i,j] = M[j,i] = 1 \) implies the existence of a bidirected edge between nodes i and j. Must include all the variables appearing in the formula object.

top.ord A vector of class character describing the topological ordering of the causal graph. Default value is NULL, but this argument must be supplied if adj.mat is not specified. Also must include all the variables appearing in the formula object.

res.vars A vector of class character listing all the resolving variables, which should not be changed by the adaptation procedure. Default value is NULL, corresponding to no resolving variables. Resolving variables should be a subset of the descendants of the protected attribute.

quant.method A function choosing the method used for quantile regression. Default value is rangerQuants (using random forest quantile regression). Other implemented options are linearQuants and mcqrnnQuants. A custom function can be supplied by the user here, and the associated method for the S3 generic computeQuants needs to be added.

visualize.graph A logical indicating whether the causal graph should be plotted upon calling the fairadapt() function. Default value is FALSE.

... Additional arguments forwarded to the function passed as ‘quant.method’.

Details

The procedure takes the training and testing data as an input, together with the causal graph given by an adjacency matrix and the list of resolving variables, which should be kept fixed during the adaptation procedure. The procedure then calculates a fair representation of the data, after which any classification method can be used. There are, however, several valid training options yielding fair predictions, and the best of them can be chosen with cross-validation. For more details we refer the user to the original paper. Most of the running time is due to the quantile regression step using the ranger package.

Value

An object of class fairadapt, containing the original and adapted training and testing data, together with the causal graph and some additional meta-information.

Author(s)

Drago Plecko
References

Plecko, D. & Meinshausen, N. (2019). Fair Data Adaptation with Quantile Preservation

Examples

```r
uni.adj.mat <- array(0, dim = c(4, 4))
colnames(uni.adj.mat) <- rownames(uni.adj.mat) <-
c("gender", "edu", "test", "score")

uni.adj.mat["gender", c("edu", "test")]
uni.adj.mat["edu", c("test", "score")]
uni.adj.mat["test", "score"] <- 1L

FA <- fairadapt(score ~ .,
                train.data = uni_admission[1:100, ],
                test.data = uni_admission[101:150, ],
                adj.mat = uni.adj.mat, prot.attr = "gender")
```

`fairTwins`功能方便快捷。

Description

Fair Twin Inspection convenience function.

Usage

```r
fairTwins(x, train.id = seq_len(nrow(x$train)), test.id = NULL, cols = NULL)
```

Arguments

- **x**: Object of class `fairadapt`, a result of an adaptation procedure.
- **train.id**: A vector of indices specifying which rows of the training data should be displayed.
- **test.id**: A vector of indices specifying which rows of the test data should be displayed.
- **cols**: A character vector, subset of `names(train.data)`, which specifies which subset of columns is to be displayed in the result.

Value

A `data.frame`, containing the original and adapted values of the requested individuals. Adapted columns have `_adapted` appended to their original name.
Examples

```r
uni.adj.mat <- array(0, dim = c(4, 4))
colnames(uni.adj.mat) <- rownames(uni.adj.mat) <-
c("gender", "edu", "test", "score")

uni.adj.mat["gender", c("edu", "test")] <-
uni.adj.mat["edu", c("test", "score")] <-
uni.adj.mat["test", "score"] <- 1L

FA <- fairadapt(score ~ .,
    train.data = uni_admission[1:100, ],
    test.data = uni_admission[101:150, ],
    adj.mat = uni.adj.mat, prot.attr = "gender")

fairTwins(FA, train.id = 1:5)
```

gov_census

Census information of US government employees.

Description

The dataset contains various demographic, education and work information of the employees of the US government. The data is taken from the 2018 US Census data.

Usage

gov_census

Format

A data frame with 204,309 rows and 10 variables:

- **sex** gender of the employee
- **age** employee age in years
- **race** race of the employee
- **hispanic_origin** indicator of hispanic origin
- **citizenship** citizenship of the employee
- **nativity** indicator of nativity to the US
- **marital** marital status
- **family_size** size of the employee’s family
- **children** number of children of the employee
- **education_level** education level measured in years
- **english_level**
- **salary** yearly salary in US dollars
get the graphical causal model (GCM)

Description

Obtaining the graphical causal model (GCM)

Usage

```r
graphModel(adj.mat, cfd.mat = NULL, res.vars = NULL)
```

Arguments

- `adj.mat`: Matrix of class `matrix` encoding the relationships in the causal graph. \(M[i,j] = 1 \) implies the existence of an edge from node \(i \) to node \(j \).
- `cfd.mat`: Symmetric matrix of class `matrix` encoding the bidirected edges in the causal graph. \(M[i,j] = M[j,i] = 1 \) implies the existence of a bidirected edge between nodes \(i \) and \(j \).
- `res.vars`: A vector of class `character` listing all the resolving variables, which should not be changed by the adaption procedure. Default value is `NULL`, corresponding to no resolving variables. Resolving variables should be a subset of `colnames(adj.mat)`. Resolving variables are marked with a different color in the output.

Value

An object of class `igraph`, containing the causal graphical, with directed and bidirected edges.

Examples

```r
adj.mat <- cfd.mat <- array(0L, dim = c(3, 3))
colnames(adj.mat) <- rownames(adj.mat) <-
colnames(cfd.mat) <- rownames(cfd.mat) <- c("A", "X", "Y")

adj.mat["A", "X"] <- adj.mat["X", "Y"] <-
cfd.mat["X", "Y"] <- cfd.mat["Y", "X"] <- 1L
gcm <- graphModel(adj.mat, cfd.mat, res.vars = "X")
```
linearQuants

Description
Compute Quantiles using linear quantile regression (‘quantreg’ package) in the Quantile Learning step.

Usage

```r
linearQuants(
  data,
  A.root,
  ind,
  tau = c(0.001, seq(0.005, 0.995, by = 0.01), 0.999),
  ...
)
```

Arguments
- `data`: A `data.frame` with data to be used for quantile regression.
- `A.root`: A `logical(1L)` indicating whether the protected attribute ‘A’ is a root node of the causal graph. Used for splitting the quantile regression.
- `ind`: A `logical` vector of length `nrow(data)`, indicating which samples have the baseline value of the protected attribute.
- `tau, ...`: Forwarded to `[quantreg::rq()]`.

Value
A ‘rqs’ or a ‘quantregsplit’ ‘S3’ object, depending on the value of the ‘A.root’ argument.

mcqrnnQuants

Description
Compute Quantiles using monotone quantile regression neural networks (‘mcqrnn’ package) in the Quantile Learning step.
rangerQuants

Usage

mcqrnnQuants(
 data,
 A.root,
 ind,
 tau = seq(0.005, 0.995, by = 0.01),
 iter.max = 500,
 ...
)

Arguments

data A data.frame with data to be used for quantile regression.
A.root A logical(1L) indicating whether the protected attribute ‘A’ is a root node of the causal graph. Used for splitting the quantile regression.
ind A logical vector of length ‘nrow(data)’, indicating which samples have the baseline value of the protected attribute.
tau, iter.max,...
Forwarded to [qrnn::mcqrnn.fit()].

Value

An ‘mcqrnn’ ‘S3’ object.

rangerQuants Compute Quantiles using random forests (‘ranger’ package) in the Quantile Learning step.

Description

Compute Quantiles using random forests (‘ranger’ package) in the Quantile Learning step.

Usage

rangerQuants(data, A.root, ind, min.node.size = 20, ...)

Arguments

data A data.frame with data to be used for quantile regression.
A.root A logical(1L) indicating whether the protected attribute ‘A’ is a root node of the causal graph. Used for splitting the quantile regression.
ind A logical vector of length ‘nrow(data)’, indicating which samples have the baseline value of the protected attribute.
min.node.size,...
Forwarded to [ranger::ranger()].
Value

A ‘ranger’ or a ‘rangersplit’ ‘S3’ object, depending on the value of the ‘A.root’ argument.

uni_admission

Univeristy admission data of 1,000 students.

Description

A simulated dataset containing the evaluation of students’ abilities.

Usage

```r
uni_admission
```

Format

A data frame with 1,000 rows and 4 variables:

- `gender`: the gender of the student
- `edu`: educational achievement, for instance GPA
- `test`: performance on a university admission test
- `score`: overall final score measuring the quality of a candidate

visualizeGraph

Visualize Graphical Causal Model

Description

Visualize Graphical Causal Model

Usage

```r
visualizeGraph(x, ...)
```

Arguments

- `x`: Object of class `fairadapt`, a result of an adaptation procedure.
- `...`: Additional arguments passed to the graph plotting function.
Index

* datasets
 - gov_census, 6
 - uni_admission, 10
 - adaptedData, 2
 - computeQuants, 2
 - fairadapt, 3
 - fairTwins, 5
 - gov_census, 6
 - graphModel, 7
 - linearQuants, 8
 - mcqrnnQuants, 8
 - rangerQuants, 9
 - uni_admission, 10
 - visualizeGraph, 10