Package ‘fairmodels’

October 8, 2021

Type Package

Title Flexible Tool for Bias Detection, Visualization, and Mitigation

Version 1.2.0

Description Measure fairness metrics in one place for many models. Check how big is model's bias towards different races, sex, nationalities etc. Use measures such as Statistical Parity, Equal odds to detect the discrimination against unprivileged groups. Visualize the bias using heatmap, radar plot, biplot, bar chart (and more!). There are various pre-processing and post-processing bias mitigation algorithms implemented. Package also supports calculating fairness metrics for regression models. Find more details in (Wiśniewski, Biecek (2021)) <arXiv:2104.00507>.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5)

Imports DALEX, ggplot2, scales, stats, patchwork,

Suggests ranger, gbm, knitr, rmarkdown, covr, testthat, spelling,

ggdendro, ggrepel,

RoxygenNote 7.1.1.9001

VignetteBuilder knitr

URL https://fairmodels.drwhy.ai/

BugReports https://github.com/ModelOriented/fairmodels/issues

Language en-US

NeedsCompilation no

Author Jakub Wiśniewski [aut, cre],
 Przemysław Biecek [aut] (<https://orcid.org/0000-0001-8423-1823>)

Maintainer Jakub Wiśniewski <jakwisn@gmail.com>

Repository CRAN

Date/Publication 2021-10-08 11:20:02 UTC
R topics documented:

- adult
- adult_test
- all_cutoffs
- calculate_group_fairness_metrics
- ceteris_paribus_cutoff
- choose_metric
- compas
- confusion_matrix
- disparate_impact_remover
- expand_fairness_object
- fairness_check
- fairness_check_regression
- fairness_heatmap
- fairness_pca
- fairness_radar
- german
- group_matrices
- group_metric
- group_model_performance
- metric_scores
- performance_and_fairness
- plot.all_cutoffs
- plot.ceteris_paribus_cutoff
- plot.chosen_metric
- plot.fairness_heatmap
- plot.fairness_object
- plot.fairness_pca
- plot.fairness_radar
- plot.fairness_regression_object
- plot.group_metric
- plot.metric_scores
- plot.performance_and_fairness
- plot.stacked_metrics
- plot_density
- plot_fairmodels
- pre_process_data
- print.all_cutoffs
- print.ceteris_paribus_cutoff
- print.chosen_metric
- print.fairness_heatmap
- print.fairness_object
- print.fairness_pca
- print.fairness_radar
- print.fairness_regression_object
- print.group_metric
- print.metric_scores
adult

Description

adult dataset consists of many columns containing various information about relationship, hours worked per week, workclass etc... and about salary, whether more than 50K a year or not. Lot’s of possible protected attributes such as sex, race age. Some columns contain level "unknown" and these values are not removed and removing them depends on user as they might contain some information.

Usage

data(adult)

Format

A data frame with 32561 rows and 15 variables:

- **salary** factor, <=50K/>50K whether a person salary exceeds 50K a year or not
- **age** integer, age of person
- **workclass** factor, field of work
- **fnlwgt** numeric
- **education** factor, completed education degree
- **education_num** numeric, education number in converted from education factor, the bigger the better
- **marital_status** factor
- **occupation** factor, where this person works
- **relationship** factor, relationship information
- **race** factor, ethnicity of a person
- **sex** factor, gender of a person
- **capital_gain** numeric
- **capital_loss** numeric
- **hours_per_week** numeric, how many hours per week does this person work
- **native_country** factor, in which country was this person born
adult_test

Source

Data from UCL https://archive.ics.uci.edu/ml/datasets/adult

adult_test

Adult test dataset

Description

adult_test dataset consists of many columns containing various information about relationship, hours worked per week, workclass etc... and about salary, whether more than 50K a year or not. Lots of possible protected attributes such as sex, race, age. Some columns contain level "unknown" and these values are not removed and removing them depends on user as they might contain some information. Data is designed for testing and ready to go.

Usage

data(adult_test)

Format

A data frame with 16281 rows and 15 variables:

- **salary** factor, <=50K/>50K whether a person salary exceeds 50K a year or not
- **age** integer, age of person
- **workclass** factor, field of work
- **fnlwgt** numeric
- **education** factor, completed education degree
- **education_num** numeric, education number in converted from education factor, the bigger the better
- **marital_status** factor
- **occupation** factor, where this person works
- **relationship** factor, relationship information
- **race** factor, ethnicity of a person
- **sex** factor, gender of a person
- **capital_gain** numeric
- **capital_loss** numeric
- **hours_per_week** numeric, how many hours per week does this person work
- **native_country** factor, in which country was this person born

Source

Data from UCL https://archive.ics.uci.edu/ml/datasets/adult
Description

Create all_cutoffs object and see how with the change of cutoffs parity loss of fairness metrics changes. Value of cutoff changes equally for all subgroups. User can pick which fairness metrics to create the object with via fairness_metrics vector.

Usage

```r
all_cutoffs(  
  x,  
  grid_points = 101,  
  fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP")
)
```

Arguments

- `x` object of class `fairness_object`
- `grid_points` numeric, grid for cutoffs to test. Number of points between 0 and 1 spread evenly
- `fairness_metrics` character, name of parity_loss metric or vector of multiple metrics names. Full names can be found in `fairness_check` documentation.

Value

all_cutoffs object, data.frame containing information about label, metric and parity_loss at particular cutoff

Examples

```r
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,  
  data = german,  
  family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,  
  protected = german$Sex,  
  privileged = "male"
)
```
calculate_group_fairness_metrics

Calculate fairness metrics in groups

Description
Create data.frame from group_matrices object containing metric scores for each subgroup.

Usage
calculate_group_fairness_metrics(x)

Arguments
x object of class group_matrices

Value

group_metric_matrix object It's a data.frame with metrics as row names and scores for those metrics for each subgroup in columns
Ceteris paribus cutoff

Description

Ceteris paribus cutoff is a way to check how will parity loss behave if only cutoff for one subgroup was changed. By using parameter `new_cutoffs` parity loss for metrics with new cutoffs will be calculated. Note that cutoff for subgroup (passed as parameter) will change no matter `new_cutoffs` value at that position. When parameter `cumulated` is set to `true`, all metrics will be summed and facets will collapse to one plot with different models on it. Sometimes due to the fact that some metric might contain NA for all cutoff values, cumulated plot might be present without this model.

Usage

```r
ceteris_paribus_cutoff(
  x,
  subgroup,
  new_cutoffs = NULL,
  fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"),
  grid_points = 101,
  cumulated = FALSE
)
```

Arguments

- **x**: object of class `fairness_object`
- **subgroup**: character, name of subgroup (level in protected variable)
- **new_cutoffs**: list of cutoffs with names matching those of subgroups. Each value should represent cutoff for particular subgroup. Position corresponding to subgroups in levels will be changed. Default is `NULL`.
- **fairness_metrics**: character, name of parity_loss metric or vector of multiple metrics, for full metric names check `fairness_check` documentation.
- **grid_points**: numeric, grid for cutoffs to test. Number of points between 0 and 1 spread evenly.
- **cumulated**: logical, if `TRUE` facets will collapse to one plot and parity loss for each model will be summed. Default `FALSE`.

Value

ceteris_paribus_cutoff data.frame containing information about label, metric and parity_loss at particular cutoff.
Examples

data("compas")

positive outcome - not being recidivist
two_yr_recidivism <- factor(compas$Two_yr_Recidivism, levels = c(1, 0))
y_numeric <- as.numeric(two_yr_recidivism) - 1
compas$Two_yr_Recidivism <- two_yr_recidivism

lm_model <- glm(Two_yr_Recidivism ~ .,
data = compas,
family = binomial(link = "logit")
)
explainer_lm <- DALEX::explain(lm_model, data = compas[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
protected = compas$Ethnicity,
privileged = "Caucasian"
)
cpc <- ceteris_paribus_cutoff(fobject, "African_American")
plot(cpc)

rf_model <- ranger::ranger(Two_yr_Recidivism ~ .,
data = compas,
probability = TRUE,
um.trees = 200
)
explainer_rf <- DALEX::explain(rf_model, data = compas[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
protected = compas$Ethnicity,
privileged = "Caucasian"
)
cpc <- ceteris_paribus_cutoff(fobject, "African_American")
plot(cpc)

choose_metric

<table>
<thead>
<tr>
<th>Choose metric</th>
</tr>
</thead>
</table>

Description

Extracts metrics from `metric_data` from fairness object. It allows to visualize and compare parity loss of chosen metric values across all models.
choose_metric

Usage

choose_metric(x, fairness_metric = "FPR")

Arguments

x object of class fairness_object

fairness_metric char, single name of metric, one of metrics:

• TPR - parity loss of True Positive Rate (Sensitivity, Recall, Equal Odds)
• TNR - parity loss of True Negative Rate (Specificity)
• PPV - parity loss of Positive Predictive Value (Precision)
• NPV - parity loss of Negative Predictive Value
• FNR - parity loss of False Negative Rate
• FPR - parity loss of False Positive Rate
• FDR - parity loss of False Discovery Rate
• FOR - parity loss of False Omission Rate
• TS - parity loss of Threat Score
• ACC - parity loss of Accuracy
• STP - parity loss of Statistical Parity
• F1 - parity loss of F1 Score

Value

chosen_metric object It is a list with following fields:

• parity_loss_metric_data data.frame with columns: parity_loss_metric and label
• metric chosen metric
• label character, vector of model labels

Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
 family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
protected = german$Sex,
privileged = "male"
```r
cm <- choose_metric(fobject, "TPR")
plot(cm)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
um.trees = 200
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

cm <- choose_metric(fobject, "TPR")
plot(cm)
```

compas

Modified COMPAS dataset

Description

compas dataset. From ProPublica: across the nation, judges, probation and parole officers are increasingly using algorithms to assess a criminal defendant’s likelihood to re-offend.

Usage

data(compas)

Format

A data frame with 6172 rows and 7 variables:

Details

- **Two_yr_Recidivism** factor, 1/0 for future recidivism or no recidivism. Models should predict this values
- **Number_of_Priors** numeric, number of priors
- **Age_Above_FourtyFive** factor, 1/0 for age above 45 years or not
- **Age_Below_TwentyFive** factor, 1/0 for age below 25 years or not
- **Misdemeanor** factor, 1/0 for having recorded misdemeanor(s) or not
- **Ethnicity** factor, Caucasian, African American, Asian, Hispanic, Native American or Other
- **Sex** factor, female/male for gender

confusion_matrix

<table>
<thead>
<tr>
<th>confusion_matrix</th>
<th>Confusion matrix</th>
</tr>
</thead>
</table>

Description

Calculates confusion matrix for given cutoff

Usage

```r
confusion_matrix(probs, observed, cutoff)
```

Arguments

- `probs` numeric, vector with probabilities given by model
- `observed` numeric, vector with actual values from outcome, either 0 or 1
- `cutoff` numeric, single value denoting cutoff/threshold

Value

object of class `confussion_matrix` It is a list with following fields:

- `tp` number of True Positives
- `fp` number of False Positives
- `tn` number of True Negatives
- `fn` number of False Negatives

Examples

```r
probs <- rnorm(20, 0.4, 0.1)
observed <- round(runif(20))
round(runif(20))

confusion_matrix(probs, observed, 0.5)
```
disparate_impact_remover

Disparate impact remover

Description

Disparate impact remover is a pre-processing bias mitigation method. It removes bias hidden in numeric columns in data. It changes distribution of ordinal features of data with regard to earth mover distance. It works best if among subgroups there is similar number of observations.

Usage

disparate_impact_remover(data, protected, features_to_transform, lambda = 1)

Arguments

data data.frame, data to be transformed
protected factor, vector containing sensitive information such as gender, race etc... If vector is character it will transform it to factor.
features_to_transform character, vector of column names to be transformed. Columns must have numerical, ordinal values
lambda numeric, amount of repair desired. Value from 0 to 1, where 0 will return almost unchanged dataset and 1 fully repaired dataset

Details

This is implementation of geometric method which preserves ranks unlike combinatorial repair. lambda close to 1 denotes that distributions will be very close to each other and lambda close to 0 means that densities will barely change. Note that although lambda equal 0 should mean that original data will be returned, it usually changes distributions slightly due to pigeonholing. The number of pigeonholes is fixed and equal to min101, unique(a), where a is vector with values for subgroup. So if some subgroup is not numerous and the distribution is discrete with small number of variables then there will be small number of pigeonholes. It will affect data significantly.

Value

repaired data (data.frame object)

References

This method was implemented based on Feldman, Friedler, Moeller, Scheidegger, Venkatasubramanian 2015 https://arxiv.org/pdf/1412.3756.pdf
Examples

library("ggplot2")

set.seed(1)
custom data frame with kind and score
custom_data <- data.frame(
 kind = as.factor(c(rep("second", 500), rep("first", 500))),
 score = c(rnorm(500, 400, 40), rnorm(500, 600, 100))
)

ggplot(custom_data, aes(score, fill = kind)) +
 geom_density(alpha = 0.5)

fixed_data <- disparate_impact_remover(
 data = custom_data,
 protected = custom_data$kind,
 features_to_transform = "score",
 lambda = 0.8
)

ggplot(fixed_data, aes(score, fill = kind)) +
 geom_density(alpha = 0.5)
lambda 1 gives identical distribution, lambda 0 (almost) original distributions

fixed_data_unchanged <- disparate_impact_remover(
 data = custom_data,
 protected = custom_data$kind,
 features_to_transform = "score",
 lambda = 0
)

ggplot(fixed_data_unchanged, aes(score, fill = kind)) +
 geom_density(alpha = 0.5)

fixed_data_fully_changed <- disparate_impact_remover(
 data = custom_data,
 protected = custom_data$kind,
 features_to_transform = "score",
 lambda = 1
)

ggplot(fixed_data_fully_changed, aes(score, fill = kind)) +
 geom_density(alpha = 0.5) +
 facet_wrap(kind ~ ., nrow = 2)

expand_fairness_object

Expand Fairness Object
Description

Unfold fairness object to 3 columns (metrics, label, score) to construct better base for visualization.

Usage

```r
expand_fairness_object(
  x,  # object of class fairness_object
  scale = FALSE,  # logical, if TRUE standardized.
  drop_metrics_with_na = FALSE,  # logical, if TRUE metrics with NA will be omitted
  fairness_metrics = NULL  # character, vector of fairness metrics names indicating from which expand.
)
```

Arguments

- `x`: object of class `fairness_object`
- `scale`: logical, if TRUE standardized.
- `drop_metrics_with_na`: logical, if TRUE metrics with NA will be omitted
- `fairness_metrics`: character, vector of fairness metrics names indicating from which expand.

Value

object of class `expand_fairness_object`. It is a `data.frame` with scores for each metric and model.

Examples

```r
data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,  # data = german,
  family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,  # protected = german$Sex,
  privileged = "male"
)

expand_fairness_object(fobject, drop_metrics_with_na = TRUE)

rf_model <- ranger::ranger(Risk ~ .,  # data = german,
  probability = TRUE,  # num.trees = 200
  data = german,
  probability = TRUE,
  num.trees = 200
)"
 explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

expand_fairness_object(fobject, drop_metrics_with_na = TRUE)

---

### Fairness check

**Description**

Fairness check creates fairness\_object which measures different fairness metrics and wraps data, explainers and parameters in useful object. This is fundamental object in this package. It enables to visualize fairness metrics and models in many ways and compare models on both fairness and performance level. Fairness check acts as merger and wrapper for explainers and fairness objects. While other fairness\_objects values are not changed, fairness check assigns cutoffs and labels to provided explainers so same explainers with changed labels/cutoffs might be gradually added to fairness\_object. Users through print and plot methods may quickly check values of most popular fairness metrics. More on that topic in details.

**Usage**

```r
fairness_check(
 x,
 ...,
 protected = NULL,
 privileged = NULL,
 cutoff = NULL,
 label = NULL,
 epsilon = 0.8,
 verbose = TRUE,
 colorize = TRUE
)
```

**Arguments**

- **x** object created with `explain` or of class `fairness\_object`. It can be multiple fairness\_objects, multiple explainers, or combination on both, as long as they predict the same data. If at least one fairness\_object is provided there is no need to pass protected and privileged parameters. Explainers must be binary classification type.

- **...** possibly more objects created with `explain` and/or objects of class `fairness\_object`
protected factor, protected variable (also called sensitive attribute), containing privileged and unprivileged groups

privileged factor/character, one value of protected, in regard to what subgroup parity loss is calculated

cutoff numeric, vector of cutoffs (thresholds) for each value of protected variable, affecting only explainers.

label character, vector of labels to be assigned for explainers, default is explainer label.

epsilon numeric, boundary for fairness checking, lowest acceptable ratio of metrics between unprivileged and privileged subgroups. Default value is 0.8. More on the idea behind epsilon in details section.

verbose logical, whether to print information about creation of fairness object

colorize logical, whether to print information in color

Details

Fairness check

Metrics used are made for each subgroup, then base metric score is subtracted leaving loss of particular metric. If absolute loss of metrics ratio is not within acceptable boundaries than such metric is marked as "not passed". It means that values of metrics should be within (epsilon, 1/epsilon) boundary. The default ratio is set to 0.8 which adhere to US 80 score achieved in metrics by privileged subgroup. For example if TPR_unprivileged/TPR_privileged is less than 0.8 then such ratio is sign of discrimination. On the other hand if TPR_privileged/TPR_unprivileged is more than 1.25 (1/0.8) than there is discrimination towards privileged group. Epsilon value can be adjusted to user’s needs. It should be interpreted as the lowest ratio of metrics allowed. There are some metrics that might be derived from existing metrics (For example Equalized Odds - equal TPR and FPR for all subgroups). That means passing 5 metrics in fairness check asserts that model is even more fair. In fairness_check models must always predict positive result. Not adhering to this rule may lead to misinterpretation of the plot. More on metrics and their equivalents: https://fairware.cs.umass.edu/papers/Verma.pdf https://en.wikipedia.org/wiki/Fairness_(machine_learning)

Parity loss - visualization tool

Parity loss is computed as follows: M_parity_loss = sum(abs(log(metric/metric_privileged)))

where:
M - some metric mentioned above
metric - vector of metric scores from each subgroup metric_privileged - value of metric vector for privileged subgroup
base_metric - scalar, value of metric for base subgroup

Value

An object of class fairness_object which is a list with elements:

- parity_loss_metric_data - data.frame containing parity loss for various fairness metrics. Created with following metrics:
  - TPR - True Positive Rate (Sensitivity, Recall)
- TNR - True Negative Rate (Specificity)
- PPV - Positive Predictive Value (Precision)
- NPV - Negative Predictive Value
- FNR - False Negative Rate
- FPR - False Positive Rate
- FDR - False Discovery Rate
- FOR - False Omission Rate
- TS - Threat Score
- STP - Statistical Parity
- ACC - Accuracy
- F1 - F1 Score

- groups_data - metrics across levels in protected variable
- groups_confusion_matrices - confusion matrices for each subgroup
- explainers - list of DALEX explainers used to create object
- cutoffs - list of cutoffs for each explainer and subgroup
- fairness_check_data - data.frame used for for plotting fairness_object
- ... - other parameters passed to function

References

Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
protected = german$Sex,
privileged = "male"
)

plot(fobject)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
fairness_check_regression

Fairness check regression

Description

This is an experimental approach. Please have it in mind when using it. Fairness_check_regression enables to check fairness in regression models. It uses so-called probabilistic classification to approximate fairness measures. The metrics in use are independence, separation, and sufficiency. The intuition behind this method is that the closer to 1 the metrics are the better. When all metrics are close to 1 then it means that from the perspective of a predictive model there are no meaningful differences between subgroups.

Usage

fairness_check_regression(
  x,
  ..., 
  protected = NULL, 
  privileged = NULL, 
  label = NULL, 
  epsilon = NULL, 
  verbose = TRUE, 
  colorize = TRUE
)

Arguments

- **x**: object created with `explain` or of class `fairness_regression_object`. It can be multiple fairness_objects, multiple explainers, or combination on both, as long as they predict the same data. If at least one fairness_object is provided there is no need to pass protected and privileged parameters. Explainers must be of type regression

- **...**: possibly more objects created with `explain` and/or objects of class `fairness_regression_object`

- **protected**: factor, protected variable (also called sensitive attribute), containing privileged and unprivileged groups

- **privileged**: factor/character, one value of protected, denoting subgroup suspected of the most privilege

- **label**: character, vector of labels to be assigned for explainers, default is explainer label.

- **epsilon**: numeric, boundary for fairness checking, lowest/maximal acceptable metric values for unprivileged. Default value is 0.8.

- **verbose**: logical, whether to print information about creation of fairness object

- **colorize**: logical, whether to print information in color

Details

Sometimes during metric calculation faze approximation algorithms (logistic regression models) might not coverage properly. This might indicate that the membership to subgroups has strong predictive power.

References


Examples

```R
set.seed(123)
data <- data.frame(
 x = c(rnorm(500, 500, 100), rnorm(500, 400, 200)),
 pop = c(rep("A", 500), rep("B", 500))
)
data$y <- rnorm(length(data$x), 1.5 * data$x, 100)

create model
model <- lm(y ~ ., data = data)

create explainer
exp <- DALEX::explain(model, data = data, y = data$y)

create fobject
fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A")
```
# results

fobject
plot(fobject)

model_ranger <- ranger::ranger(y ~ ., data = data, seed = 123)
exp2 <- DALEX::explain(model_ranger, data = data, y = data$y)

fobject <- fairness_check_regression(exp2, fobject)

# results
fobject
plot(fobject)

---

### fairness_heatmap

**Fairness heatmap**

**Description**

Create `fairness_heatmap` object to compare both models and metrics. If parameter `scale` is set to `TRUE` metrics will be scaled to median = 0 and sd = 1. If NA's appear heatmap will still plot, but with gray area where NA's were.

**Usage**

`fairness_heatmap(x, scale = FALSE)`

**Arguments**

- `x` object of class `fairness_object`
- `scale` logical, if code `TRUE` metrics will be scaled to mean 0 and sd 1. Default `FALSE`

**Value**

`fairness_heatmap` object.

It is a list with following fields:

- `heatmap_data` - `data.frame` with information about score for model and parity loss metric
- `matrix_model` - matrix used in dendogram plots
- `scale` - logical parameter passed to `fairness_heatmap`
- `label` - character, vector of model labels
Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
num.threads = 1)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
protected = german$Sex,
privileged = "male"
)

# same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
protected = german$Sex,
privileged = "male",
cutoff = list(female = 0.4),
label = c("lm_2", "rf_2")
)

fh <- fairness_heatmap(fobject)

plot(fh)

Description

Calculate PC for metric_matrix to see similarities between models and metrics. If omit_models_with_NA is set to TRUE models with NA will be omitted as opposed to default behavior, when metrics are omitted.

Usage

fairness_pca(x, omit_models_with_NA = FALSE)
Arguments

x

object of class fairness object

omit_models_with_NA

logical, if TRUE omits rows in metric_matrix, else omits columns (default)

Value

fairness_pca object It is list containing following fields:

• pc_1_2 - amount of data variance explained with each component
• rotation - rotation from stats::prcomp
• x - x from stats::prcomp
• sdev - sdev from stats::prcomp
• label - model labels

Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
 data = german,
 family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
 data = german,
 probability = TRUE,
 num.trees = 200,
 num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
 protected = german$Sex,
 privileged = "male"
)

# same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
 protected = german$Sex,
 privileged = "male",
 cutoff = list(female = 0.4),
 label = c("lm_2", "rf_2")
)
fpca <- fairness_pca(fobject)
plot(fpca)

---

### fairness_radar

#### Fairness radar

#### Description

Make fairness_radar object with chosen fairness_metrics. Note that there must be at least three metrics that does not contain NA.

#### Usage

```r
fairness_radar(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
```

#### Arguments

- `x`: object of class `fairness_object`
- `fairness_metrics`: character, vector of metric names, at least 3 metrics without NA needed. Full names of metrics can be found in `fairness_check` documentation.

#### Value

`fairness_radar` object. It is a list containing:
- `radar_data` - data.frame containing scores for each model and parity loss metric
- `label` - model labels

#### Examples

```r
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
 data = german,
 family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
 protected = german$Sex,
 privileged = "male"
)

fradar <- fairness_radar(fobject, fairness_metrics = c(}
"ACC", "STP", "TNR",
"TPR", "PPV"
))

plot(fradar)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
num.threads = 1
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

fradar <- fairness_radar(fobject, fairness_metrics = c(
 "ACC",
 "STP",
 "TNR",
 "TPR",
 "PPV"
))

plot(fradar)

german

Modified German Credit data dataset

Description

german dataset. Data contains information about people and their credit risks.

Usage

data(german)

Format

A data frame with 1000 rows and 10 variables:

Risk factor, good/bad risk connected with giving the credit. Models should predict this values

Sex factor, male/female, considered to be protected group
Job numeric, job titles converted to integers where 0- unemployed/unskilled, 3- management/self-employed/highly qualified employee/officer

Housing factor, rent/own/free where this person lives

Saving.accounts factor, little/moderate/quite rich/rich/not_known, where not_known indicates NA

Checking.account factor, little/moderate/rich/not_known, where not_known indicates NA

Credit.amount numeric, amount of money in credit

Duration numeric, duration of credit

Purpose factor, purpose of credit

Age numeric, age of person that applied for credit

Source

group_matrices

Group confusion matrices

Description

Calculates confusion matrices for each subgroup

Usage

`group_matrices(protected, probs, preds, cutoff)`

Arguments

- `protected`: vector containing protected variable
- `probs`: character name of column with probabilities
- `preds`: numeric, vector with predictions
- `cutoff`: numeric cutoff for probabilities, default = 0.5

Value

`group_matrices` object It is a list with values:

For each subgroup:

- subgroup
 - `tp`: number of true positives
 - `fp`: number of false positives
 - `tn`: number of true negatives
 - `fn`: number of false negatives
Examples

data("compas")

glm_compas <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit"))
y_prob <- glm_compas$fitted.values

y_numeric <- as.numeric(compas$Two_yr_Recidivism) - 1

gm <- group_matrices(compas$Ethnicity, y_prob, y_numeric, cutoff = list(
 Asian = 0.45,
 African_American = 0.5,
 Other = 0.5,
 Hispanic = 0.5,
 Caucasian = 0.4,
 Native_American = 0.5
))

gm

group_metric

<table>
<thead>
<tr>
<th>Group metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Group metric enables to extract data from metrics generated for each subgroup (values in protected variable). The closer metric values are to each other, the less bias particular model has. If parity_loss parameter is set to TRUE, distance between privileged and unprivileged subgroups will be measured. When plotted shows both fairness metric and chosen performance metric.</td>
</tr>
</tbody>
</table>

Usage

group_metric(
 x,
 fairness_metric = NULL,
 performance_metric = NULL,
 parity_loss = FALSE,
 verbose = TRUE
)

Arguments

x object of class fairness_object

fairness_metric character, fairness metric name, if NULL the default metric will be used which is TPR.
group_metric

- **performance_metric**
 character, performance metric name
- **parity_loss**
 logical, if TRUE parity loss will supersede basic metric
- **verbose**
 logical, whether to print information about metrics on console or not. Default TRUE

Details

Available metrics:

Fairness metrics (Full names explained in *fairness_check* documentation):

- TPR
- TNR
- PPV
- NPV
- FNR
- FPR
- FDR
- FOR
- TS
- ACC
- STP
- F1

Performance metrics

- recall
- precision
- accuracy
- f1
- auc

Value

`group_metric` object. It is a list with following items:

- `group_metric_data` - `data.frame` containing fairness metric scores for each model
- `performance_data` - `data.frame` containing performance metric scores for each model
- `fairness_metric` - name of fairness metric
- `performance_metric` - name of performance metric
Examples

```r
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ ., 
  data = german, 
  family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, 
  protected = german$Sex, 
  privileged = "male"
)

gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE)
plot(gm)

rf_model <- ranger::ranger(Risk ~ ., 
  data = german, 
  probability = TRUE, 
  num.trees = 200
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE)
plot(gm)
```

group_model_performance

Group model performance

Description

Special method for model performance evaluation. Counts number of tp, tn, fp, fn for each subgroup (and therefore potentially distinct cutoff), sums afterwards.

Usage

```r
group_model_performance(x, protected, cutoff, performance_metric)
```
Arguments

- **x**
 object created with `explain`
- **protected**
 factor, vector with levels as subgroups
- **cutoff**
 vector of thresholds for each subgroup
- **performance_metric**
 name of performance metric

Value

score in performance metric between 0 and 1

description

Creates `metric_scores` object to facilitate visualization. Check how the metric scores differ among models, what is this score, and how it changes for example after applying bias mitigation technique. The vertical black lines denote the scores for privileged subgroup. It is best to use only few metrics (using `fairness_metrics` parameter).

Usage

```r
metric_scores(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
```

Arguments

- **x**
 object of class `fairness_object`
- **fairness_metrics**
 character, vector with fairness metric names. Default metrics are ones in `fairness_check` plot, full names can be found in `fairness_check` documentation.

Value

`metric_scores` object. It is a list containing:

- `metric_scores_data` - data.frame with information about score in particular subgroup, metric, and model
- `privileged` - name of privileged subgroup
Examples

```r
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
protected = german$Sex,
privileged = "male"
)

ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
plot(ms)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
plot(ms)
```

performance_and_fairness

Performance and fairness

Description

Measure performance in both fairness metric and

Usage

`performance_and_fairness(x, fairness_metric = NULL, performance_metric = NULL)`
Arguments

x object of class fairness_object
fairness_metric fairness metric, one of metrics in fairness_objects parity_loss_metric_data (ACC, TPR, PPV, ...) Full list in fairness_check documentation.
performance_metric performance metric, one of

Details

Creates performance_and_fairness object. Measure model performance and model fairness metric at the same time. Choose best model according to both metrics. When plotted y axis is inversed to accentuate that models in top right corner are the best according to both metrics.

Value

performance_and_fairness object. It is list containing:

• paf_data - performance and fairness data.frame containing fairness and performance metric scores for each model
• fairness_metric - chosen fairness metric name
• performance_metric - chosen performance_metric name
• label - model labels

Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ ., data = german,
family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male")

paf <- performance_and_fairness(fobject)
plot(paf)

rf_model <- ranger::ranger(Risk ~ ., data = german,
plot.all_cutoffs

Plot all cutoffs

Description

All cutoffs plot allows to check how parity loss of chosen metrics is affected by the change of cutoff. Values of cutoff are the same for all subgroups (levels of protected variable) no matter what cutoff values were in fairness_object.

Usage

```r
## S3 method for class 'all_cutoffs'
plot(x, ..., label = NULL)
```

Arguments

- `x` all_cutoffs object
- `...` other plot parameters
- `label` character, label of model to plot. Default NULL. If default prints all models.

Value

 ggplot2 object
Examples

```r
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
protected = german$Sex,
privileged = "female"
)

ac <- all_cutoffs(fobject)
plot(ac)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 100,
seed = 1
)

explainer_rf <- DALEX::explain(rf_model,
data = german[, -1],
y = y_numeric
)

fobject <- fairness_check(explainer_rf, fobject)

ac <- all_cutoffs(fobject)
plot(ac)
```

Description

Ceteris paribus cutoff is a way to check how will parity loss behave if we changed only cutoff in one subgroup. It plots object of class ceteris_paribus_cutoff. It might have two types - default and
cumulated. Cumulated sums metrics and plots it all in one plot. When default one is used all chosen metrics will be plotted for each model.

Usage

```r
## S3 method for class 'ceteris_paribus_cutoff'
plot(x, ...)
```

Arguments

- `x`: ceteris_paribus_cutoff object
- `...`: other plot parameters

Value

`ggplot2` object

Examples

```r
data("compas")

# positive outcome - not being recidivist
two_yr_recidivism <- factor(compas$Two_yr_Recidivism, levels = c(1, 0))
y_numeric <- as.numeric(two_yr_recidivism) - 1
compas$Two_yr_Recidivism <- two_yr_recidivism

lm_model <- glm(Two_yr_Recidivism ~ .,
data = compas,
family = binomial(link = "logit")
)
explainer_lm <- DALEX::explain(lm_model, data = compas[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
protected = compas$Ethnicity,
privileged = "Caucasian"
)

cpc <- ceteris_paribus_cutoff(fobject, "African_American")
plot(cpc)

rf_model <- ranger::ranger(Two_yr_Recidivism ~ .,
data = compas,
probability = TRUE,
um.trees = 200
)
explainer_rf <- DALEX::explain(rf_model, data = compas[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
```
plot.chosen_metric

```
protected = compas$Ethnicity,
privileged = "Caucasian"
)

cpc <- ceteris_paribus_cutoff(fobject, "African_American")
plot(cpc)
```

Description

Choose metric from parity loss metrics and plot it for every model. The one with the least parity loss is more fair in terms of this particular metric.

Usage

```
## S3 method for class 'chosen_metric'
plot(x, ...)
```

Arguments

- `x`: object of class `chosen_metric`
- `...`: other objects of class `chosen_metric`

Value

`ggplot2` object

Examples

```
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ ., 
data = german,
  family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, 
  protected = german$Sex, 
  privileged = "male"
)
```
```r
cm <- choose_metric(fobject, "TPR")
plot(cm)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

cm <- choose_metric(fobject, "TPR")
plot(cm)
```

Description

Heatmap shows all parity loss metrics across all models while displaying similarity between variables (in form of dendograms). All metrics are visible. Some have identical values as it should be in terms of their parity loss (eg. TPR parity loss == FNR parity loss, because TPR = 1 - FNR). NA's in metrics are gray.

Usage

```r
## S3 method for class 'fairness_heatmap'
plot(
x,
...,  
midpoint = NULL,
title = NULL,
subtitle = NULL,
text = TRUE,
text_size = 3,
flip_axis = FALSE
)
```

Arguments

- `x` : fairness_heatmap
- `...` : other fairness_heatmap objects
midpoint numeric, midpoint on gradient scale
title character, title of the plot
subtitle character, subtitle of the plot
text logical, default TRUE means it shows values on tiles
text_size numeric, size of text
flip_axis logical, whether to change axis with metrics on axis with models

Value
list of ggplot2 objects

Examples

```r
data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
num.threads = 1,
seed = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
protected = german$Sex,
privileged = "male"
)

# same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
protected = german$Sex,
privileged = "male",
cutoff = list(female = 0.4),
label = c("lm_2", "rf_2")
)

fh <- fairness_heatmap(fobject)

plot(fh)
```
Description

Plot fairness check enables to look how big differences are between base subgroup (privileged) and unprivileged ones. If bar plot reaches red zone it means that for this subgroup fairness goal is not satisfied. Multiple subgroups and models can be plotted. Red and green zone boundary can be moved through epsilon parameter, that needs to be passed through `fairness_check`.

Usage

```r
## S3 method for class 'fairness_object'
plot(x, ..., fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
```

Arguments

- `x` fairness_object object
- `...` other plot parameters
- `fairness_metrics` character, vector of metrics. Subset of fairness metrics to be used. The full set is defined as `c("ACC", "TPR", "PPV", "FPR", "STP")`.

Value

ggplot2 object

Examples

```r
data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
protected = german$Sex,
privileged = "male"
)

plot(fobject)

rf_model <- ranger::ranger(Risk ~ .,
...)
```
```
data = german,
probability = TRUE,
max.depth = 3,
num.trees = 100,
seed = 1
)

explainer_rf <- DALEX::explain(rf_model,
data = german[, -1],
y = y_numeric
)

fobject <- fairness_check(explainer_rf, fobject)
plot(fobject)

# custom print
plot(fobject, fairness_metrics = c("ACC", "TPR"))
```

plot.fairness_pca

Plot fairness PCA

Description

Plot pca calculated on fairness_object metrics. Similar models and metrics should be close to each other. Plot doesn’t work on multiple fairness_pca objects. Unlike in other plots here other fairness_pca objects cannot be added.

Usage

```
## S3 method for class 'fairness_pca'
plot(x, scale = 0.5, ...)
```

Arguments

- `x` fairness_pca object
- `scale` scaling loadings plot, from 0 to 1
- `...` other plot parameters

Value

`ggplot2` object
Examples

```r
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
protected = german$Sex,
privileged = "male"
)

# same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
protected = german$Sex,
privileged = "male",
cutoff = list(female = 0.4),
label = c("lm_2", "rf_2")
)

fpca <- fairness_pca(fobject)

plot(fpca)
```

Description

Makes radar plot showing different fairness metrics that allow to compare models.

Usage

```r
## S3 method for class 'fairness_radar'
plot(x, ...)
```
Arguments

- `x` fairness_radar object
- `...` other plot parameters

Value

ggplot2 object

References

code based on ModelOriented auditor package, thanks agosiewska! https://modeloriented.github.io/auditor/

Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
 data = german,
 family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
 protected = german$Sex,
 privileged = "male"
)

fradar <- fairness_radar(fobject, fairness_metrics = c(
 "ACC", "STP", "TNR",
 "TPR", "PPV"
))

plot(fradar)

rf_model <- ranger::ranger(Risk ~ .,
 data = german,
 probability = TRUE,
 num.trees = 200,
 num.threads = 1
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)
fradar <- fairness_radar(fobject, fairness_metrics = c(
 "ACC", "STP", "TNR",
 "TPR", "PPV"
))

plot(fradar)

Description

Please note that this is experimental approach. Plot fairness check regression enables to look how big differences are between base subgroup (privileged) and unprivileged ones. If bar plot reaches red zone it means that for this subgroup fairness goal is not satisfied. Multiple subgroups and models can be plotted. Red and green zone boundary can be moved through epsilon parameter, that needs to be passed through `fairness_check`.

Usage

```r
## S3 method for class 'fairness_regression_object'
plot(x, ...)
```

Arguments

- `x` fairness_regression_object object
- `...` other plot parameters

Value

`ggplot2` object

Examples

```r
set.seed(123)
data <- data.frame(
  x = c(rnorm(500, 500, 100), rnorm(500, 400, 200)),
  pop = c(rep("A", 500), rep("B", 500))
)
data$y <- rnorm(length(data$x), 1.5 * data$x, 100)

# create model
model <- lm(y ~ ., data = data)
```
create explainer
exp <- DALEX::explain(model, data = data, y = data$y)

create fobject
fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A")

results
fobject
plot(fobject)

model_ranger <- ranger::ranger(y ~ ., data = data, seed = 123)
exp2 <- DALEX::explain(model_ranger, data = data, y = data$y)

fobject <- fairness_check_regression(exp2, fobject)

results
fobject
plot(fobject)

plot.group_metric
Plot group metric

Description

Plot chosen metric in group. Notice how models are treating different subgroups. Compare models both in fairness metrics and in performance. Parity loss can be enabled when creating group.metric object.

Usage

```r
## S3 method for class 'group_metric'
plot(x, ...)
```

Arguments

- `x` object of class group_metric
- `...` other group_metric objects and other parameters

Value

list of ggplot2 objects
Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
protected = german$Sex,
privileged = "male"
)

gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE)
plot(gm)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE)

plot(gm)

plot.metric_scores

Plot metric scores

Description

Plot metric scores

Usage

S3 method for class 'metric_scores'
plot(x, ...)
Arguments

- `x` metric_scores object
- `...` other plot parameters

Value

ggplot2 object

Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
 data = german,
 family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
 protected = german$Sex,
 privileged = "male"
)

ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
plot(ms)

rf_model <- ranger::ranger(Risk ~ .,
 data = german,
 probability = TRUE,
 num.trees = 200
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
plot(ms)
Description

visualize fairness and model metric at the same time. Note that fairness metric parity scale is reversed so that the best models are in top right corner.

Usage

```r
## S3 method for class 'performance_and_fairness'
plot(x, ...)
```

Arguments

- `x` performance_and_fairness object
- `...` other plot parameters

Value

`ggplot` object

Examples

```r
data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
  family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
  protected = german$Sex,
  privileged = "male"
)

paf <- performance_and_fairness(fobject)
plot(paf)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
  probability = TRUE,
  num.trees = 200
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)
```
same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
 protected = german$Sex,
 privileged = "male",
 cutoff = list(female = 0.4),
 label = c("lm_2", "rf_2")
)

paf <- performance_and_fairness(fobject)

plot(paf)

plot.stacked_metrics

Plot stacked Metrics

Description

Stacked metrics is like plot for chosen_metric but with all unique metrics stacked on top of each other. Metrics containing NA’s will be dropped to enable fair comparison.

Usage

S3 method for class 'stacked_metrics'
plot(x, ...)

Arguments

x stacked_metrics object

... other plot parameters

Value

ggplot2 object

Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
 data = german,
 family = binomial(link = "logit")
)
```
explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
  protected = german$Sex,
  privileged = "male"
)

sm <- stack_metrics(fobject)
plot(sm)

rf_model <- ranger::ranger(Risk ~ .,
  data = german,
  probability = TRUE,
  num.trees = 200
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

sm <- stack_metrics(fobject)
plot(sm)
```

plot_density
Plot fairness object

Description

Plot distribution for models output probabilities. See how being in particular subgroup affects models decision.

Usage

```
plot_density(x, ...)
```

Arguments

- `x`
 object of class fairness_object

- `...`
 other plot parameters

Value

ggplot2 object
Examples

```r
data("compas")

glm_compas <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit"))

y_numeric <- as.numeric(compas$Two_yr_Recidivism) - 1

explainer_glm <- DALEX::explain(glm_compas, data = compas, y = y_numeric)

fobject <- fairness_check(explainer_glm,
                           protected = compas$Ethnicity,
                           privileged = "Caucasian"
)

plot_density(fobject)
```

plot_fairmodels

Plot fairmodels

Description

Easier access to all plots in fairmodels. Provide plot type (that matches to function name), pass additional parameters and plot.

Usage

```r
plot_fairmodels(x, type, ...)
```

```r
## S3 method for class 'explainer'
plot_fairmodels(x, type = "fairness_check", ..., protected, privileged)
```

```r
## S3 method for class 'fairness_object'
plot_fairmodels(x, type = "fairness_check", ...)
```

```r
## Default S3 method:
plot_fairmodels(x, type = "fairness_check", ...)
```

Arguments

- `x` object created with `fairness_check` or with `explain`.
- `type` character, type of plot. Should match function name in fairmodels. Default is `fairness_check`.
- `...` other parameters passed to fairmodels functions.
- `protected` factor, vector containing sensitive attributes such as gender, race, etc.
- `privileged` character/factor, level in factor denoting privileged subgroup.
Details

types (function names) available:

- fairness_check
- stack_metrics
- fairness_heatmap
- fairness_pca
- fairness_radar
- group_metric
- choose_metric
- metric_scores
- performance_and_fairness
- all_cutoffs
- ceteris_paribus_cutoff

Value

ggplot2 object

Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
 data = german,
 family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

works with explainer when protected and privileged are passed
plot_fairmodels(explainer_lm,
 type = "fairness_radar",
 protected = german$Sex,
 privileged = "male"
)

or with fairness_object
fobject <- fairness_check(explainer_lm,
 protected = german$Sex,
 privileged = "male"
)

plot_fairmodels(fobject, type = "fairness_radar")
Description

Function aggregates all pre-processing algorithms for bias mitigation. User passes unified arguments and specifies type to receive transformed `data.frame`

Usage

```r
pre_process_data(data, protected, y, type = "resample_uniform", ...)
```

Arguments

- `data` `data.frame`
- `protected` factor, protected attribute (sensitive variable) containing information about gender, race etc...
- `y` numeric, numeric values of predicted variable. 1 should denote favorable outcome.
- `type` character, type of pre-processing algorithm to be used, one of:
 - `resample_uniform`
 - `resample_preferential`
 - `reweight`
 - `disparate_impact_remover`
- `...` other parameters passed to pre-processing algorithms

Value

modified `data.frame`. In case of `type = 'reweight'` data has feature `_weights_` containing weights that need to be passed to model. In other cases data is ready to be passed as training data to a model.

Examples

```r
data("german")

pre_process_data(german, 
   german$Sex, 
   as.numeric(german$Risk) - 1, 
   type = "disparate_impact_remover", 
   features_to_transform = "Age"
)
```
print.all_cutoffs Print all cutoffs

Description
Print all cutoffs

Usage
S3 method for class 'all_cutoffs'
print(x, ..., label = NULL)

Arguments
- x all_cutoffs object
- ... other print parameters
- label character, label of model to plot. Default NULL. If default prints all models.

Examples

data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
um.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
protected = german$Sex,
privileged = "male"
)

ac <- all_cutoffs(fobject,
fairness_metrics = c("TPR", "FPR")
print.ceteris_paribus_cutoff

Description
Print ceteris paribus cutoff

Usage
S3 method for class 'ceteris_paribus_cutoff'
print(x, ...)

Arguments
x ceteris_paribus_cutoff object
... other print parameters

Examples

data("german")
german <- german[1:500,]
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
protected = german$Sex,
privileged = "male"
)
ceteris_paribus_cutoff(fobject, "female")
Description

Choose metric from parity loss metrics and plot it for every model. The one with the least parity loss is more fair in terms of this particular metric.

Usage

```r
## S3 method for class 'chosen_metric'
print(x, ...)
```

Arguments

- `x` chosen_metric object
- `...` other print parameters

Examples

```r
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
    data = german,
    family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
    data = german,
    probability = TRUE,
    num.trees = 200,
    num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
    protected = german$Sex,
    privileged = "male"
)

cm <- choose_metric(fobject, "TPR")
print(cm)
```
print.fairness_heatmap

Description

Print fairness heatmap

Usage

```r
## S3 method for class 'fairness_heatmap'
print(x, ...)
```

Arguments

- `x` fairness_heatmap object
- `...` other print parameters

Examples

```r
data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
  data = german,
  family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
  data = german,
  probability = TRUE,
  num.trees = 200,
  num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
  protected = german$Sex,
  privileged = "male"
)

# same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
  protected = german$Sex,
  privileged = "male",
)`
cutoff = list(female = 0.4),
label = c("lm_2", "rf_2")
)

fh <- fairness_heatmap(fobject)
print(fh)

print.fairness_object  

Description
Print Fairness Object

Usage
## S3 method for class 'fairness_object'
print(
  x,
  ..., 
  colorize = TRUE,
  fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"),
  fair_level = NULL,
  border_width = 1,
  loss_aggregating_function = NULL
)

Arguments
x  fairness_object object
... other parameters
colorize logical, whether information about metrics should be in color or not
fairness_metrics character, vector of metrics. Subset of fairness metrics to be used. The full set is defined as c("ACC", "TPR", "PPV", "FPR", "STP").
fair_level numerical, amount of fairness metrics that need do be passed in order to call a model fair. Default is 5.
border_width numerical, width of border between fair and unfair models. If border_width is 1 and model passes one metric less than the fair_level it will be printed with yellow. If border_width is 0 information will be printed in either red or green.
loss_aggregating_function function, loss aggregating function that may be provided. It takes metric scores as vector and aggregates them to one value. The default is 'Total loss' that measures the total sum of distances to 1. It may be interpreted as sum of bar heights in fairness_check.
Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ ., 
data = german, 
family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ ., 
data = german, 
probability = TRUE, 
max.depth = 3, 
num.trees = 100, 
seed = 1, 
num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

explainer_rf <- DALEX::explain(rf_model, 
data = german[, -1], 
y = y_numeric
)

fobject <- fairness_check(explainer_lm, explainer_rf, 
protected = german$Sex, 
privileged = "male"
)

print(fobject)

# custom print
print(fobject, 
fairness_metrics = c("ACC", "TPR"), # amount of metrics to be printed 
border_width = 0, # in our case 2/2 will be printed in green and 1/2 in red 
loss_aggregating_function = function(x) sum(abs(x)) + 10
) # custom loss function - takes vector

---

**Description**

Print principal components after using pca on fairness object
## S3 method for class 'fairness_pca'
print(x, ...)

### Arguments

- **x**: fairness_pca object
- **...**: other print parameters

### Examples

```r
data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[-1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[-1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
protected = german$Sex,
privileged = "male"
)

same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
protected = german$Sex,
privileged = "male",
cutoff = list(female = 0.4),
label = c("lm_2", "rf_2")
)

fpca <- fairness_pca(fobject)
print(fpca)
```
### Description

Print fairness radar

### Usage

```r
S3 method for class 'fairness_radar'
print(x, ...)
```

### Arguments

- `x`: fairness_radar object
- `...`: other print parameters

### Examples

```r
data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
 data = german,
 family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
 data = german,
 probability = TRUE,
 num.trees = 200,
 num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
 protected = german$Sex,
 privileged = "male"
)

fradar <- fairness_radar(fobject)

print(fradar)
```
### Print Fairness Regression Object

#### Description

Print Fairness Regression Object

#### Usage

```r
S3 method for class 'fairness_regression_object'
print(x, ..., colorize = TRUE)
```

#### Arguments

- `x` fairness_regression_object object
- `...` other parameters
- `colorize` logical, whether information about metrics should be in color or not

#### Examples

```r
set.seed(123)
data <- data.frame(
 x = c(rnorm(500, 500, 100), rnorm(500, 400, 200)),
 pop = c(rep("A", 500), rep("B", 500))
)
data$y <- rnorm(length(data$x), 1.5 * data$x, 100)

create model
model <- lm(y ~ ., data = data)

create explainer
exp <- DALEX::explain(model, data = data, y = data$y)

create fobject
fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A")

results
fobject

model_ranger <- ranger::ranger(y ~ ., data = data, seed = 123)
exp2 <- DALEX::explain(model_ranger, data = data, y = data$y)

fobject <- fairness_check_regression(exp2, fobject)
```
Description

Print group metric

Usage

```r
S3 method for class 'group_metric'
print(x, ...)
```

Arguments

- `x` group_metric object
- `...` other print parameters

Examples

```r
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
 data = german,
 family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
 data = german,
 probability = TRUE,
 num.trees = 200,
 num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
 protected = german$Sex,
 privileged = "male"
)
```
print.metric_scores

gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE)

print(gm)

---

print.metric_scores  Print metric scores data

Description

Print metric scores data

Usage

## S3 method for class 'metric_scores'
print(x, ...)

Arguments

x  metric_scores object
...
other print parameters

Examples

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
    data = german,
    family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
    data = german,
    probability = TRUE,
    num.trees = 200,
    num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
    protected = german$Sex,
    privileged = "male"
)

ms <- metric_scores(fobject, fairness_metrics = c("TPR", "STP", "ACC"))

ms
print.performance_and_fairness

Print performance and fairness

Description
Print performance and fairness

Usage
## S3 method for class 'performance_and_fairness'
print(x, ...)

Arguments
x performance_and_fairness object
...
other print parameters

Examples

data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
um.trees = 200,
um.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
protected = german$Sex,
privileged = "male"
)

# same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
protected = german$Sex,
privileged = "male",
)
```r
cutoff = list(female = 0.4),
label = c("lm_2", "rf_2")
)
paf <- performance_and_fairness(fobject)
paf

print.stacked_metrics Print stacked metrics

Description
Stack metrics sums parity loss metrics for all models. Higher value of stacked metrics means the
model is less fair (has higher bias) for subgroups from protected vector.

Usage
S3 method for class 'stacked_metrics'
print(x, ...)

Arguments
x stacked_metrics object
...
other print parameters

Examples

data("german")
y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
```
protected = german$Sex,
privileged = "male"
)

sm <- stack_metrics(fobject)
print(sm)

---

**regression_metrics**

*Regression metrics*

**Description**

Regression metrics

**Usage**

`regression_metrics(explainer, protected, privileged)`

**Arguments**

- **explainer**: object created with `explain`
- **protected**: factor, protected variable (also called sensitive attribute), containing privileged and unprivileged groups
- **privileged**: factor/character, one value of `protected`, denoting subgroup suspected of the most privilege

**Value**

data.frame

---

**resample**

*Resample*

**Description**

Method of bias mitigation. Similarly to reweight this method computes desired number of observations if the protected variable is independent from y and on this basis decides if this subgroup with certain class (+ or -) should be more or less numerous. Than performs oversampling or undersampling depending on the case. If type of sampling is set to 'preferential' and probs are provided than instead of uniform sampling preferential sampling will be performed. Preferential sampling depending on the case will sample observations close to border or far from border.

**Usage**

`resample(protected, y, type = "uniform", probs = NULL, cutoff = 0.5)`
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protected</td>
<td>factor, protected variables with subgroups as levels (sensitive attributes)</td>
</tr>
<tr>
<td>y</td>
<td>numeric, vector with classes 0 and 1, where 1 means favorable class.</td>
</tr>
<tr>
<td>type</td>
<td>character, either (default) 'uniform' or 'preferential'</td>
</tr>
<tr>
<td>probs</td>
<td>numeric, vector with probabilities for preferential sampling</td>
</tr>
<tr>
<td>cutoff</td>
<td>numeric, threshold for probabilities</td>
</tr>
</tbody>
</table>

Value

numeric vector of indexes

References

This method was implemented based on Kamiran, Calders 2011 [https://link.springer.com/content/pdf/10.1007/s10115-011-0463-8.pdf](https://link.springer.com/content/pdf/10.1007/s10115-011-0463-8.pdf)

Examples

```r
data("german")

data <- german

data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old"))
y_numeric <- as.numeric(data$Risk) - 1

rf <- ranger::ranger(Risk ~ .,
data = data,
probability = TRUE,
num.trees = 50,
num.threads = 1,
seed = 123
)

u_indexes <- resample(data$Age, y = y_numeric)

rf_u <- ranger::ranger(Risk ~ .,
data = data[u_indexes,],
probability = TRUE,
num.trees = 50,
num.threads = 1,
seed = 123
)

explainer_rf <- DALEX::explain(rf,
data = data[, -1],
y = y_numeric,
label = "not_sampled"
)

explainer_rf_u <- DALEX::explain(rf_u, data = data[, -1], y = y_numeric, label = "sampled_uniform")
```
fobject <- fairness_check(explainer_rf, explainer_rf_u,
  protected = data$Age,
  privileged = "old"
)

fobject
plot(fobject)

p_indexes <- resample(data$Age, y = y_numeric, type = "preferential", probs = explainer_rf$y_hat)
rf_p <- ranger::ranger(Risk ~ .,
  data = data[p_indexes, ],
  probability = TRUE,
  num.trees = 50,
  num.threads = 1,
  seed = 123
)

explainer_rf_p <- DALEX::explain(rf_p,
  data = data[, -1], y = y_numeric,
  label = "sampled_preferential"
)

fobject <- fairness_check(explainer_rf, explainer_rf_u, explainer_rf_p,
  protected = data$Age,
  privileged = "old"
)

fobject
plot(fobject)

---

**reweight**

**Reweight**

**Description**

Function returns weights for model training. The purpose of this weights is to mitigate bias in statistical parity. In fact this could potentially worsen the overall performance in other fairness metrics. This affects also model’s performance metrics (accuracy).

**Usage**

reweight(protected, y)

**Arguments**

- **protected** factor, protected variables with subgroups as levels (sensitive attributes)
- **y** numeric, vector with classes 0 and 1, where 1 means favorable class.
Details

Method produces weights for each subgroup for each class. Firstly assumes that protected variable and class are independent and calculates expected probability of this certain event (that subgroup == a and class = c). Than it calculates the actual probability of this event based on empirical data. Finally the weight is quotient of those probabilities.

Value

numeric, vector of weights

References

This method was implemented based on Kamiran, Calders 2011 https://link.springer.com/content/pdf/10.1007/s10115-011-0463-8.pdf

Examples

data("german")

data <- german

data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old"))
data$Risk <- as.numeric(data$Risk) - 1

# training 2 models
weights <- reweight(protected = data$Age, y = data$Risk)

gbm_model <- gbm::gbm(Risk ~ ., data = data)
gbm_model_weighted <- gbm::gbm(Risk ~ ., data = data, weights = weights)

gbm_explainer <- DALEX::explain(gbm_model, data = data[, -1], y = data$Risk)
gbm_weighted_explainer <- DALEX::explain(gbm_model_weighted, data = data[, -1], y = data$Risk)

fobject <- fairness_check(gbm_explainer, gbm_weighted_explainer,
protected = data$Age,
privileged = "old",
label = c("original", "weighted")
)
# fairness check
fobject
plot(fobject)

# radar
plot(fairness_radar(fobject))
Description

Reject Option based Classifier is post-processing bias mitigation method. Method changes labels of favorable, privileged and close to cutoff observations to unfavorable and the opposite for unprivileged observations (changing unfavorable and close to cutoff observations to favorable, more in details). By this potentially wrongfully labeled observations are assigned different labels. Note that in y in DALEX explainer 1 should indicate favorable outcome.

Usage

roc_pivot(explainer, protected, privileged, cutoff = 0.5, theta = 0.1)

Arguments

explainer created with explain
protected factor, protected variables with subgroups as levels (sensitive attributes)
privileged factor/character, level in protected denoting privileged subgroup
cutoff numeric, threshold for all subgroups
theta numeric, variable specifies maximal euclidean distance to cutoff resulting label switch

Details

Method implemented implemented based on article (Kamiran, Karim, Zhang 2012). In original implementation labels should be switched. Due to specific DALEX methods probabilities (y_hat) are assigned value in equal distance but other side of cutoff. The method changes explainers y_hat values in two cases.
1. When unprivileged subgroup is within (cutoff - theta, cutoff)
2. When privileged subgroup is within (cutoff, cutoff + theta)

Value

DALEX explainer with changed y_hat. This explainer should be used ONLY by fairmodels as it contains unchanged predict function (changed predictions (y_hat) can possibly be invisible by DALEX functions and methods).

References


Examples

data("german")
data <- german
data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old"))
y_numeric <- as.numeric(data$Risk) - 1

lr_model <- stats::glm(Risk ~ ., data = data, family = binomial())
lr_explainer <- DALEX::explain(lr_model, data = data[, -1], y = y_numeric)

fobject <- fairness_check(lr_explainer,
  protected = data$Age,
  privileged = "old"
)
plot(fobject)

lr_explainer_fixed <- roc_pivot(lr_explainer,
  protected = data$Age,
  privileged = "old"
)

fobject2 <- fairness_check(lr_explainer_fixed, fobject,
  protected = data$Age,
  privileged = "old",
  label = "lr_fixed"
)

fobject2
plot(fobject2)

---

**stack_metrics**

**Stack metrics**

**Description**

Stack metrics sums parity loss metrics for all models. Higher value of stacked metrics means the model is less fair (has higher bias) for subgroups from protected vector.

**Usage**

`stack_metrics(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))`

**Arguments**

- `x` object of class `fairness_object`
- `fairness_metrics` character, vector of fairness parity_loss metric names to include in plot. Full names are provided in `fairness_check` documentation.

**Value**

`stacked_metrics` object. It contains `data.frame` with information about score for each metric and model.
Examples

```r
data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
 data = german,
 family = binomial(link = "logit")
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
 protected = german$Sex,
 privileged = "male"
)

sm <- stack_metrics(fobject)
plot(sm)

rf_model <- ranger::ranger(Risk ~ .,
 data = german,
 probability = TRUE,
 num.trees = 200
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

sm <- stack_metrics(fobject)
plot(sm)
```
Index

adult, 3
adult_test, 4
all_cutoffs, 5
calculate_group_fairness_metrics, 6
ceteris_paribus_cutoff, 7
choose_metric, 8
comps, 10
confusion_matrix, 11
disparate_impact_remover, 12
expand_fairness_object, 13
explain, 15, 19, 29, 49, 65, 69
fairness_check, 15
fairness_check_regression, 18
fairness_heatmap, 20
fairness_pca, 21
fairness_radar, 23
german, 24
group_matrices, 25
group_metric, 26
group_model_performance, 28
metric_scores, 29
performance_and_fairness, 30
plot.all_cutoffs, 32
plot.ceteris_paribus_cutoff, 33
plot.chosen_metric, 35
plot.fairness_heatmap, 36
plot.fairness_object, 38
plot.fairness_pca, 39
plot.fairness_radar, 40
plot.fairness_regression_object, 42
plot.group_metric, 43
plot.metric_scores, 44
plot.performance_and_fairness, 45
plot.stacked_metrics, 47
plot_density, 48
plot_fairmodels, 49
pre_process_data, 51
print.all_cutoffs, 52
print.ceteris_paribus_cutoff, 53
print.chosen_metric, 54
print.fairness_heatmap, 55
print.fairness_object, 56
print.fairness_pca, 57
print.fairness_radar, 59
print.fairness_regression_object, 60
print.group_metric, 61
print.metric_scores, 62
print.performance_and_fairness, 63
print.stacked_metrics, 64
regression_metrics, 65
resample, 65
reweight, 67
roc_pivot, 68
stack_metrics, 70