Package ‘fasano.franceschini.test’

September 3, 2021

Title Fasano-Franceschini Test: A 2-D Kolmogorov-Smirnov Two-Sample Test

Version 1.1.0

Description An implementation of the 2-D Kolmogorov-Smirnov (KS) two-sample test as defined by Fasano and Franceschini (Fasano and Franceschini 1987). The ‘fasano.franceschini.test’ package provides three improvements over the current 2-D KS test on the Comprehensive R Archive Network (CRAN): (i) the Fasano and Franceschini test has been shown to run in O(n^2) versus the Peacock implementation which runs in O(n^3); (ii) the package implements a procedure for handling ties in the data; and (iii) the package implements a parallelized permutation procedure for improved significance testing. Ultimately, the ‘fasano.franceschini.test’ package presents a robust statistical test for analyzing random samples defined in 2-dimensions.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Imports stats, parallel, methods

Suggests tidyverse, knitr, rmarkdown, bookdown, testthat (>= 3.0.0)

URL https://github.com/nesscoder/fasano.franceschini.test

BugReports https://github.com/nesscoder/fasano.franceschini.test/issues

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Elan Ness-Cohn [aut, cre] (<https://orcid.org/0000-0002-3935-6667>), Rosemary Braun [ctb, ths] (<https://orcid.org/0000-0001-9668-9866>)

Maintainer Elan Ness-Cohn <elanness-cohn2017@u.northwestern.edu>

Repository CRAN

Date/Publication 2021-09-02 23:20:05 UTC
R topics documented:

fasano.franceschini.test .. 2
getDstat ... 3
ksCDF ... 4
quadCount .. 5

fasano.franceschini.test

Fasano Franceschini Test

Description

Computes the 2-D Kolmogorov-Smirnov two-sample test as described by Fasano and Franceschini (1987).

Usage

```
fasano.franceschini.test(S1, S2, nBootstrap = 0, nPermute = 0, cores = 1)
```

Arguments

- **S1** a [n by 2] data.frame of x and y coordinates of sample 1
- **S2** a [n by 2] data.frame of x and y coordinates of sample 2
- **nBootstrap** a depreciated numeric argument defining the number of bootstrapped samples to be generated for computing the empirical p-value. nBootstrap is set to be replaced by nPermute in the next released version of the package.
- **nPermute** a numeric defining the number of permuted samples to be generated for computing the empirical p-value (note this procedure is slow and computationally expensive on the order of nPermute*O(n^2). Default is set to 0. If nPermute is 0, the Fasano Franceschini distributional approximation is used for defining the p-value. See Fasano and Franceschini test (1987) for details.
- **cores** a numeric defining the number of cores to use for processing

Details

Value

the 2-D ks statistic and p-value
getDstat

References

Examples

```r
#Underlying distributions are different
#set seed for reproducible example
set.seed(123)

#create 2-D samples with different underlying distributions
sample1Data <- data.frame(x = rnorm(n = 50, mean = 0, sd = 3), y = rnorm(n = 50, mean = 0, sd = 1))
sample2Data <- data.frame(x = rnorm(n = 50, mean = 0, sd = 1), y = rnorm(n = 50, mean = 0, sd = 3))
fasano.franceschini.test(S1 = sample1Data, S2 = sample2Data)

#Underlying distributions are the same
#set seed for reproducible example
set.seed(123)

#create 2-D samples with the same underlying distributions
sample1Data <- data.frame(x = rnorm(n = 50, mean = 0, sd = 1), y = rnorm(n = 50, mean = 0, sd = 1))
sample2Data <- data.frame(x = rnorm(n = 50, mean = 0, sd = 1), y = rnorm(n = 50, mean = 0, sd = 1))
fasano.franceschini.test(S1 = sample1Data, S2 = sample2Data)
```

getDstat

Get KS Stat

Description

Loop through each row as(i.e. data point) and defines D stat as the largest difference between the quadfrequencies, looping though each point in the sample as the origin

Usage

```r
getAddress(originSamples, S1, S2, cores = 1)
```
Arguments

originSamples a [n by 2] data.frame of x and y coordinates that defines the origins data points.
S1 a [n by 2] data.frame of x and y coordinates of sample 1
S2 a [n by 2] data.frame of x and y coordinates of sample 2
cores a numeric defining the number of cores to use of processing

Details

Value

a numeric defining the D stat with the largest difference between the quad frequencies, after checking each point as the origin

ksCDF KS probability

Description

p-value of getting the specified 2-D KS stat.

Usage

ksCDF(lambda)

Arguments

lambda a numeric defining the difference in cumulative distribution function between two data sets

Details

Value

a numeric defining the p-value of observing the given 2-D KS stat
quadCount

Description
Counts the frequency of points in the four quadrants - starting from the upper right going counter clockwise. Quadrants defined by the origin points x and y.

Usage
quadCount(x_origin, y_origin, x, y)

Arguments
- x_origin: a numeric defining the x coordinate of the origin defining the 4 quadrants
- y_origin: a numeric defining the y coordinate of the origin defining the 4 quadrants
- x: a vector of numeric x coordinates
- y: a vector of numeric y coordinates

Details

Value
a vector of frequencies of the number of points in each of the four quadrants defined by the origin point
Index

fasano.franceschini.test, 2
getDstat, 3
ksCDF, 4
quadCount, 5