Package ‘fastqq’

August 19, 2021

Type Package
Title Faster Generation of Quantile Quantile Plots with Large Samples
Version 0.1.2
Maintainer Gudmundur Einarsson <gudmundur.einarsson.phd@gmail.com>
Description New and faster implementations for quantile quantile plots. The package also includes a function to prune data for quantile quantile plots. This can drastically reduce the running time for large samples, for 100 million samples, you can expect a factor 80X speedup.
URL https://github.com/gumeo/fastqq
BugReports https://github.com/gumeo/fastqq/issues
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.1
Imports Rcpp
LinkingTo Rcpp
NeedsCompilation yes
Author Gudmundur Einarsson [aut, cre], Hafsteinn Einarsson [aut]
Repository CRAN
Date/Publication 2021-08-19 09:40:06 UTC

R topics documented:

 drop_dense .. 2
 qq .. 2
 qqnorm ... 3
 qqplot ... 4

Index 5
drop_dense

Internal function to prune quantiles of non-important values for visualization.

Description

This function is not exposed, since we want to hard-code the parameters for simplicity of usage.

Usage

\[
drop_dense(x, y, N_{hard} = 10000)
\]

Arguments

- **x**: A numeric vector of sample/theoretical points.
- **y**: A numeric vector of theoretical/sample points.
- **N_{hard}**: Desired upper bound on the number of points to plot.

Value

data.frame with o and e pruned as columns.

qq

Creates a Q-Q plot

Description

Creates a quantile-quantile plot from p-values from an association study, e.g. a genome wide association study (GWAS). We compare the data quantile with a theoretical quantile from a uniform distribution. This code is mostly adapted from the *qqman* package, but improved for speed. A graph with a hundred million points should only take a few seconds to generate.

Usage

\[
qq(pvector, ...)
\]

Arguments

- **pvector**: A numeric vector of p-values.
- **...**: Other arguments passed to *plot()*

Value

No return value, called for plotting side effects.

Examples

\[
qq(stats::runif(1e6))
\]
qqnorm

Creates a Q-Q plot for comparing with normal quantiles

Description

Faster alternative to stats::qqnorm(). For more than 1e5 points we remove excess points, that would not be visible in the plot, since the points are so close. Otherwise this should work exactly the same, and the code is mostly adapted from stats::qqnorm(). This code produces more lightweight plots for excessive amounts of data.

Usage

```r
qqnorm(
  y,
  ylim,
  main = "Normal Q-Q Plot",
  xlab = "Theoretical Quantiles",
  ylab = "Sample Quantiles",
  plot.it = TRUE,
  datax = FALSE,
  ...
)
```

Arguments

- `y` : sample, to compare to normal quantiles.
- `ylim` : graphical limits.
- `main` : Plot title.
- `xlab` : X label.
- `ylab` : Y label.
- `plot.it` : Should the plot be created.
- `datax` : logical. Should data values be on x-axis?
- `...` : Other arguments passed to `plot()`

Value

data.frame with sorted sample and normal quantiles, NA values are excluded.

Examples

```r
qqnorm(stats::rnorm(1e6))
```
qqplot

Creates a Q-Q plot

Description

Faster alternative to stats::qqplot(). For more than 1e5 points we remove excess points, that would not be visible in the plot, since the points are so close.

Usage

```r
qqplot(
  x,
  y,
  plot.it = TRUE,
  xlab = deparse1(substitute(x)),
  ylab = deparse1(substitute(y)),
  ...
)
```

Arguments

- `x` : First sample for qqplot.
- `y` : Second sample for qqplot.
- `plot.it` : Should the plot be created.
- `xlab` : x label for plot.
- `ylab` : y label for plot.
- `...` : Other arguments passed to `plot()`

Value

list with sorted samples, interpolated to be same size.

Examples

```r
qqplot(stats::runif(1e6), stats::runif(1e6))
```
Index

* qqplot
 qq, 2
 qnorm, 3
 qplot, 4

* qq
 qq, 2
 qnorm, 3
 qplot, 4

* visualization
 qq, 2
 qnorm, 3
 qplot, 4

drop_dense, 2

qq, 2
qnorm, 3
qplot, 4