Package ‘fastshap’

February 2, 2020

Type Package
Title Fast Approximate Shapley Values
Version 0.0.5
Description Computes fast (relative to other implementations) approximate Shapley values for any supervised learning model. Shapley values help to explain the predictions from any black box model using ideas from game theory; see Strumbel and Kononenko (2014) (doi:10.1007/s10115-013-0679-x) for details.
License GPL (>= 2)
URL https://github.com/bgreenwell/fastshap
BugReports https://github.com/bgreenwell/fastshap/issues
Imports abind, ggplot2, gridExtra, matrixStats, pYlr, Rcpp (>= 1.0.1), tibble
Suggests AmesHousing, covr, earth, htmltools, knitr, ranger, reticulate, rmarkdown, rstudioapi, tinytest, titanic, xgboost
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.0.2
NeedsCompilation yes
Author Brandon Greenwell [aut, cre] (<https://orcid.org/0000-0002-8120-0084>)
Maintainer Brandon Greenwell <greenwell.brandon@gmail.com>
Repository CRAN
Date/Publication 2020-02-02 05:10:02 UTC

R topics documented:

```
  autoplot.explain .................................................. 2  
  explain ............................................................... 3  
  force_plot ........................................................... 6  
  gen_friedman ......................................................... 8  
```

Index 9
autoplot.explain

Plotting Shapley values

Description

Construct Shapley-based importance plots or Shap-based dependence plots.

Usage

```r
## S3 method for class 'explain'
autoplot(
  object,
  type = c("importance", "dependence", "contribution"),
  feature = NULL,
  num_features = NULL,
  X = NULL,
  color_by = NULL,
  smooth = FALSE,
  smooth_color = "red",
  smooth_linetype = "solid",
  smooth_size = 1,
  smooth_alpha = 1,
  row_num = NULL,
  ...
)
```

Arguments

- **object** An object of class "explain".
- **type** Character string specifying which type of plot to construct. Current options are "importance" (for Shapley-based variable importance plots), "dependence" (for Shapley-based dependence plots), and "contribution" (for visualizing the feature contributions to an individual prediction).
- **feature** Character string specifying which feature to use when type = "dependence". If NULL (default) the first feature will be used to construct the plot.
- **num_features** Integer specifying the number of variables to plot. Default is NULL which will cause all variables to be displayed.
- **X** A matrix-like R object (e.g., a data frame or matrix) containing ONLY the feature columns from the training data.
- **color_by** Character string specifying an optional feature column in X to use for coloring whenever type = "dependence".
- **smooth** Logical indicating whether or not to add a smoother to the scatterplot whenever type = "dependence". Default is TRUE.
- **smooth_color** The color to use for the smoother whenever smooth = TRUE. The default is "black"; see `geom_smooth` for details.
smooth_linetype
The type of line to use for the smoother whenever smooth = TRUE. The default is "solid"; see geom_smooth for details.
smooth_size
The size to use for the smoother whenever smooth = TRUE. The default is 1; see geom_smooth for details.
smooth_alpha
The transparency to use for the smoother whenever smooth = TRUE. The default is 1; see geom_smooth for details.
row_num
Integer specifying a single row/instance in object to plot the explanation when type = "contribution". If NULL (the default) the explanation for the first row/instance will be used.
...
Additional optional arguments to be passed on to geom_col (if type = "importance") or geom_point (if type = "dependence").

Value
A "ggplot" object; see ggplot2-package for details.

Examples
#
A projection pursuit regression (PPR) example
#
Load the sample data; see ?datasets::mtcars for details
data(mtcars)

Fit a projection pursuit regression model
mtcars.ppr <- ppr(mpg ~ ., data = mtcars, nterms = 1)

Compute approximate Shapley values using 10 Monte Carlo simulations
set.seed(101) # for reproducibility
shap <- explain(mtcars.ppr, X = subset(mtcars, select = -mpg), nsim = 10,
 pred_wrapper = predict)
shap

Shapley-based plots
library(ggplot2)
autoplot(shap) # Shapley-based importance plot
autoplot(shap, type = "dependence", feature = "wt", X = mtcars)
autoplot(shap, type = "contribution", row_num = 1) # explain first row of X

explain

Fast approximate Shapley values

Description
Compute fast (approximate) Shapley values for a set of features.
Usage

explain(object, ...)

Default S3 method:
explain(
 object,
 feature_names = NULL,
 X = NULL,
 nsim = 1,
 pred_wrapper = NULL,
 newdata = NULL,
 adjust = FALSE,
 ...
)

S3 method for class 'lm'
explain(
 object,
 feature_names = NULL,
 X,
 nsim = 1,
 pred_wrapper,
 newdata = NULL,
 exact = FALSE,
 ...
)

S3 method for class 'xgb.Booster'
explain(
 object,
 feature_names = NULL,
 X = NULL,
 nsim = 1,
 pred_wrapper,
 newdata = NULL,
 exact = FALSE,
 ...
)

Arguments

object A fitted model object (e.g., a ranger or an xgboost object).
... Additional optional arguments to be passed on to laply.
feature_names Character string giving the names of the predictor variables (i.e., features) of interest. If null (default) they will be taken from the column names of X.
X A matrix-like R object (e.g., a data frame or matrix) containing ONLY the feature columns from the training data. **Note:** This argument is required whenever exact = FALSE.
nsim
The number of Monte Carlo repetitions to use for estimating each Shapley value (only used when `exact = FALSE`). Default is 1. **NOTE:** To obtain the most accurate results, `nsim` should be set as large as feasibly possible.

pred_wrapper
Prediction function that requires two arguments, `object` and `newdata`. **NOTE:** This argument is required whenever `exact = FALSE`. The output of this function should be determined according to:

Regression A numeric vector of predicted outcomes.

Binary classification A vector of predicted class probabilities for the reference class.

Multiclass classification A vector of predicted class probabilities for the reference class.

newdata
A matrix-like R object (e.g., a data frame or matrix) containing ONLY the feature columns for the observation(s) of interest; that is, the observation(s) you want to compute explanations for. Default is `NULL` which will produce approximate Shapley values for all the rows in `X` (i.e., the training data).

adjust
Logical indicating whether or not to adjust the sum of the estimated Shapley values to satisfy the additivity (or local accuracy) property; that is, to equal the difference between the model’s prediction for that sample and the average prediction over all the training data (i.e., `X`).

exact
Logical indicating whether to compute exact Shapley values. Currently only available for `lm` and `xgboost` objects. Default is `FALSE`. Note that setting `exact = TRUE` will return explanations for each of the terms in an `lm` object.

Value
A tibble with one column for each feature specified in `feature_names` (if `feature_names = NULL`, the default, there will be one column for each feature in `X`) and one row for each observation in `newdata` (if `newdata = NULL`, the default, there will be one row for each observation in `X`).

Note
Setting `exact = TRUE` with a linear model (i.e., an `lm` or `glm` object) assumes that the input features are independent. Also, setting `adjust = TRUE` is experimental and we follow the same approach as in shap.

See Also
You can find more examples (with larger and more realistic data sets) on the fastshap GitHub repository: https://github.com/bgreenwell/fastshap.

Examples
```
# A projection pursuit regression (PPR) example
#
# Load the sample data; see ?datasets::mtcars for details
data(mtcars)
```
Fit a projection pursuit regression model
fit <- lm(mpg ~ ., data = mtcars)

Compute approximate Shapley values using 10 Monte Carlo simulations
set.seed(101) # for reproducibility
shap <- explain(fit, X = subset(mtcars, select = -mpg), nsim = 10,
 pred_wrapper = predict)
shap

Compute exact Shapley (i.e., LinearSHAP) values
shap <- explain(fit, exact = TRUE)
shap

Shapley-based plots
library(ggplot2)
autoplot(shap) # Shapley-based importance plot
autoplot(shap, type = "dependence", feature = "wt", X = mtcars)
autoplot(shap, type = "contribution", row_num = 1) # explain first row of X

force_plot

Additive force plots

Description

Visualize Shapley values with additive force style layouts from the Python shap package.

Usage

force_plot(object, ...)

S3 method for class 'explain'
force_plot(
 object,
 baseline = NULL,
 feature_values = NULL,
 display = c("viewer", "html"),
 ...
)

Arguments

object An object of class "explain".
...
Additional optional arguments. (Currently ignored.)
baseline Numeric giving the average prediction across all the training observations. **NOTE:** It is recommended to provide this argument whenever object contains approximate Shapley values.
force_plot

feature_values A matrix-like R object (e.g., a data frame or matrix) containing the corresponding feature values for the explanations in object.

display Character string specifying how to display the results. Current options are "viewer" (default) and "html". The latter is necessary for viewing the display inside of an rmarkdown document.

Details

The resulting plot shows how each feature contributes to push the model output from the baseline prediction (i.e., the average predicted outcome over the entire training set 'X') to the corresponding model output. Features pushing the prediction higher are shown in red, while those pushing the prediction lower are shown in blue.

Note

It should be noted that only exact Shapley explanations (i.e., calling fastshap::explain() with exact = TRUE) satisfy the so-called additivity property where the sum of the feature contributions for x must add up to the difference between the corresponding prediction for x and the average of all the training predictions (i.e., the baseline). Consequently, if you don't set adjust = TRUE in the call to explain before using fastshap::force_plot(), the output value displayed on the plot will not make much sense.

References

Examples

```r
## Not run:
#
# A projection pursuit regression (PPR) example
#

# Load the sample data; see ?datasets::mtcars for details
data(mtcars)

# Fit a projection pursuit regression model
mtcars.ppr <- ppr(mpg ~ ., data = mtcars, nterms = 1)

# Compute approximate Shapley values using 10 Monte Carlo simulations
set.seed(101)  # for reproducibility
shap <- explain(mtcars.ppr, X = subset(mtcars, select = -mpg), nsim = 10,
    pred_wrapper = predict, adjust = TRUE)

# Visualize first explanation
preds <- predict(mtcars.ppr, newdata = mtcars)
x <- subset(mtcars, select = -mpg)[1L, ]  # take first row of feature values
force_plot(shap[1L, ], baseline = mean(preds), feature_values = x)
```

Description

Simulate data from the Friedman 1 benchmark problem. These data were originally described in Friedman (1991) and Breiman (1996). For details, see sklearn.datasets.make_friedman1.

Usage

```r
gen_friedman(
  n_samples = 100,
  n_features = 10,
  n_bins = NULL,
  sigma = 0.1,
  seed = NULL
)
```

Arguments

- `n_samples` Integer specifying the number of samples (i.e., rows) to generate. Default is 100.
- `n_features` Integer specifying the number of features to generate. Default is 10.
- `n_bins` Integer specifying the number of (roughly) equal sized bins to split the response into. Default is NULL for no binning. Setting to a positive integer > 1 effectively turns this into a classification problem where `n_bins` gives the number of classes.
- `sigma` Numeric specifying the standard deviation of the noise.
- `seed` Integer specifying the random seed. If NULL (the default) the results will be different each time the function is run.

Note

This function is mostly used for internal testing.

References

Examples

```r
gen_friedman()
```
Index

autoplot.explain, 2
explain, 3, 7
force_plot, 6
gen_friedman, 8
geom_col, 3
ggeom_point, 3
ggeom_smooth, 2, 3
glm, 5
laply, 4
lm, 5
ranger, 4
terms, 5
xgboost, 4, 5