fddm: Fast Implementation of the Diffusion Decision Model

Provides the probability density function (PDF) of the diffusion decision model (DDM; e.g., Ratcliff & McKoon, 2008, <doi:10.1162/neco.2008.12-06-420>) with across-trial variability in the drift rate. Because the PDF of the DDM contains an infinite sum, it needs to be approximated. 'fddm' implements all published approximations (Navarro & Fuss, 2009, <doi:10.1016/j.jmp.2009.02.003>; Gondan, Blurton, & Kesselmeier, 2014, <doi:10.1016/j.jmp.2014.05.002>) plus new approximations. All approximations are implemented purely in 'C++' providing faster speed than existing packages.

Version: 0.2-1
Depends: R (≥ 3.5.0)
Imports: Rcpp (≥ 1.0.1)
LinkingTo: Rcpp
Suggests: rtdists, RWiener, ggplot2, reshape2, testthat, knitr, rmarkdown, microbenchmark, ggnewscale
Published: 2020-10-13
Author: Kendal B. Foster [aut], Henrik Singmann ORCID iD [ctb, cre]
Maintainer: Henrik Singmann <singmann at gmail.com>
BugReports: https://github.com/rtdists/fddm/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/rtdists/fddm
NeedsCompilation: yes
SystemRequirements: C++11
Materials: README NEWS
CRAN checks: fddm results

Downloads:

Reference manual: fddm.pdf
Vignettes: Benchmark Testing
Fitting Example Using dfddm
Mathematical Description of Methods
Validity of Methods
Package source: fddm_0.2-1.tar.gz
Windows binaries: r-devel: fddm_0.2-1.zip, r-release: fddm_0.2-1.zip, r-oldrel: fddm_0.1-1.zip
macOS binaries: r-release: fddm_0.2-1.tgz, r-oldrel: fddm_0.2-1.tgz
Old sources: fddm archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=fddm to link to this page.