Package `fitODBOD`

January 16, 2020

Type Package

Title Modeling Over Dispersed Binomial Outcome Data Using BMD and ABD

BugReports https://github.com/Amalan-ConStat/R-fitODBOD/issues

Version 1.4.1-1

Depends R (>= 3.5.0)

License GPL-2

LazyData TRUE

RoxygenNote 7.0.2

Imports hypergeo, stats, bbmle

Suggests testthat, devtools, covr, knitr

Encoding UTF-8

Language en-US

NeedsCompilation no

Author Amalan Mahendran [aut, cre] (<https://orcid.org/0000-0002-0643-9052>), Pushpakanthie Wijekoon [aut, ctb] (<https://orcid.org/0000-0003-4242-1017>)

Maintainer Amalan Mahendran <amalan0595@gmail.com>

Repository CRAN

Date/Publication 2020-01-16 13:20:19 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol_data</td>
<td>4</td>
</tr>
<tr>
<td>BOData</td>
<td>5</td>
</tr>
<tr>
<td>Chromosome_data</td>
<td>5</td>
</tr>
<tr>
<td>Course_data</td>
<td>6</td>
</tr>
<tr>
<td>dAddBin</td>
<td>7</td>
</tr>
<tr>
<td>dBETA</td>
<td>9</td>
</tr>
<tr>
<td>dBetaBin</td>
<td>11</td>
</tr>
<tr>
<td>dBetaCorrBin</td>
<td>13</td>
</tr>
<tr>
<td>dCOMPBin</td>
<td>15</td>
</tr>
<tr>
<td>dCorrBin</td>
<td>17</td>
</tr>
<tr>
<td>dGAMMA</td>
<td>19</td>
</tr>
<tr>
<td>dGammaBin</td>
<td>21</td>
</tr>
<tr>
<td>dBeta1</td>
<td>23</td>
</tr>
<tr>
<td>dGHGBeta</td>
<td>25</td>
</tr>
<tr>
<td>dGrassiaIIBin</td>
<td>27</td>
</tr>
<tr>
<td>dKUM</td>
<td>30</td>
</tr>
<tr>
<td>dKumBin</td>
<td>32</td>
</tr>
<tr>
<td>dLMBin</td>
<td>34</td>
</tr>
<tr>
<td>dMcGBB</td>
<td>36</td>
</tr>
<tr>
<td>dMultiBin</td>
<td>38</td>
</tr>
<tr>
<td>dTRI</td>
<td>40</td>
</tr>
<tr>
<td>dTriBin</td>
<td>42</td>
</tr>
<tr>
<td>dUNI</td>
<td>44</td>
</tr>
<tr>
<td>dUniBin</td>
<td>46</td>
</tr>
<tr>
<td>Epidemic_Cold</td>
<td>48</td>
</tr>
<tr>
<td>EstMGFBetaBin</td>
<td>50</td>
</tr>
<tr>
<td>EstMLEAddBin</td>
<td>51</td>
</tr>
<tr>
<td>EstMLEBetaBin</td>
<td>52</td>
</tr>
<tr>
<td>EstMLEBetaCorrBin</td>
<td>54</td>
</tr>
<tr>
<td>EstMLECOMPBin</td>
<td>55</td>
</tr>
<tr>
<td>EstMLECorrBin</td>
<td>57</td>
</tr>
<tr>
<td>EstMLEGammaBin</td>
<td>58</td>
</tr>
<tr>
<td>EstMLEGrassiaIIBin</td>
<td>59</td>
</tr>
<tr>
<td>EstMLEKumBin</td>
<td>61</td>
</tr>
<tr>
<td>EstMLELMBin</td>
<td>62</td>
</tr>
<tr>
<td>EstMLEMcGBB</td>
<td>63</td>
</tr>
<tr>
<td>EstMLEMultiBin</td>
<td>64</td>
</tr>
<tr>
<td>EstMLETriBin</td>
<td>66</td>
</tr>
<tr>
<td>Exam_data</td>
<td>67</td>
</tr>
<tr>
<td>fitAddBin</td>
<td>69</td>
</tr>
<tr>
<td>fitBetaBin</td>
<td>70</td>
</tr>
<tr>
<td>fitBetaCorrBin</td>
<td>71</td>
</tr>
<tr>
<td>fitBin</td>
<td>72</td>
</tr>
<tr>
<td>fitCOMPBin</td>
<td>73</td>
</tr>
<tr>
<td>fitKumBin</td>
<td>75</td>
</tr>
<tr>
<td>fitLMBin</td>
<td>77</td>
</tr>
<tr>
<td>fitMultiBin</td>
<td>78</td>
</tr>
</tbody>
</table>
Description

Lemmens, Knibbe and Tan (1988) described a study of self-reported alcohol frequencies. The number of alcohol consumption data in two reference weeks is separately self-reported by a randomly selected sample of 399 respondents in the Netherlands in 1983. Number of days a given individual consumes alcohol out of 7 days a week can be treated as a binomial variable. The collection of all such variables from all respondents would be defined as "Binomial Outcome Data".

Usage

Alcohol_data

Format

A data frame with 3 columns and 8 rows.

Days No of Days Drunk
week1 Observed frequencies for week1
week2 Observed frequencies for week2

Source

Extracted from

Available at: http://www.ccsenet.org/journal/index.php/ijsp/article/view/23491

Examples

Alcohol_data$Days # extracting the binomial random variables
sum(Alcohol_data$week2) # summing all the frequencies in week2
Description

The below function has the ability to extract from the raw data to Binomial Outcome Data. This function simplifies the data into more presentable way to the user.

Usage

BODextract(data)

Arguments

data vector of observations

Details

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of BODextract gives a list format consisting

RV binomial random variables in vector form

Freq corresponding frequencies in vector form

Examples

datapoints <- sample(0:10,340,replace=TRUE) #creating a sample set of observations
BODextract(datapoints) #extracting binomial outcome data from observations
Random.variable <- BODextract(datapoints)$RV #extracting the binomial random variables

Chromosome_data

Description

Data in this example refer to 337 observations on the secondary association of chromosomes in Brassika; n, which is now the number of chromosomes, equals 3 and X is the number of pairs of bivalents showing association.

Usage

Chromosome_data
Course_data

Format

A data frame with 2 columns and 4 rows

No.of.Asso No of Associations
fre Observed frequencies

Source

Extracted from
Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

Examples

Chromosome_data$No.of.Asso #extracting the binomial random variables
sum(Chromosome_data$fre) #summing all the frequencies

Description

The data refer to the numbers of courses taken by a class of 65 students from the first year of the Department of Statistics of Athens University of Economics. The students enrolled in this class attended 8 courses during the first year of their study. The total numbers of successful examinations (including resits) were recorded.

Usage

Course_data

Format

A data frame with 2 columns and 9 rows

sub.pass subjects passed
fre Observed frequencies

Source

Extracted from
Available at: http://dx.doi.org/10.1007/978-0-8176-4626-4_2.
Examples

```r
Course_data$sub.pass # extracting the binomial random variables
sum(Course_data$fre) # summing all the frequencies
```

dAddBin
Additive Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Additive Binomial Distribution.

Usage

```r
dAddBin(x,n,p,alpha)
```

Arguments

- `x`: vector of binomial random variables.
- `n`: single value for no of binomial trials.
- `p`: single value for probability of success
- `alpha`: single value for alpha parameter.

Details

The probability function and cumulative function can be constructed and are denoted below

The cumulative probability function is the summation of probability function values.

\[
P_{AddBin}(x) = \binom{n}{x}p^x(1-p)^{n-x}\left(\frac{alpha}{2} \left(\frac{(n-1)x}{p} + \frac{(n-x)(n-x-1)}{1-p} - \frac{alpha(n-1)n}{2}\right) + 1\right)
\]

The alpha is in between

\[
\frac{-2}{n(n-1)} \min\left(\frac{p}{1-p}, \frac{1-p}{p}\right) \leq alpha \leq (\frac{n + (2p-1)^2}{4p(1-p)})^{-1}
\]

\[
x = 0, 1, 2, 3, \ldots n \\
n = 1, 2, 3, \ldots \\
0 < p < 1 \\
-1 < alpha < 1
\]

The mean and the variance are denoted as

\[
E_{Addbin}[x] = np \\
Var_{Addbin}[x] = np(1-p)(1 + (n-1)alpha)
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of `dAddBin` gives a list format consisting

- `pdf` probability function values in vector form.
- `mean` mean of Additive Binomial Distribution.
- `var` variance of Additive Binomial Distribution.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

Examples

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58, 0.59, 0.6, 0.61, 0.62)
b <- c(0.022, 0.023, 0.024, 0.025, 0.026)
plot(0,0,main="Additive binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
  lines(0:10,dAddBin(0:10,10,a[i],b[i])$pdf,col = col[i],lwd=2.85)
  points(0:10,dAddBin(0:10,10,a[i],b[i])$pdf,col = col[i],pch=16)
}
dAddBin(0:10,10,0.58,0.022)$pdf #extracting the probability values
dAddBin(0:10,10,0.58,0.022)$mean #extracting the mean
dAddBin(0:10,10,0.58,0.022)$var #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(5)
a <- c(0.58, 0.59, 0.6, 0.61, 0.62)
b <- c(0.022, 0.023, 0.024, 0.025, 0.026)
plot(0,0,main="Additive binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
  lines(0:10,pAddBin(0:10,10,a[i],b[i]),col = col[i],lwd=2.85)
  points(0:10,pAddBin(0:10,10,a[i],b[i]),col = col[i],pch=16)
}
pAddBin(0:10,10,0.58,0.022) #acquiring the cumulative probability values
```
dBETA

Beta Distribution

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Beta Distribution bounded between [0,1]

Usage

dBETA(p , a, b)

Arguments

p vector of probabilities.

a single value for shape parameter alpha representing as a.

b single value for shape parameter beta representing as b.

Details

The probability density function and cumulative density function of a unit bounded Beta distribution with random variable P are given by

\[g_P(p) = \frac{p^{a-1}(1-p)^{b-1}}{B(a,b)} \]

\[: 0 \leq p \leq 1 \]

\[G_P(p) = \frac{B_P(a,b)}{B(a,b)} \]

\[: 0 \leq p \leq 1 \]

\[a, b > 0 \]

The mean and the variance are denoted by

\[E[P] = \frac{a}{a + b} \]

\[var[P] = \frac{ab}{(a + b)^2(a + b + 1)} \]

The moments about zero is denoted as

\[E[P^r] = \prod_{i=0}^{r-1} \frac{a + i}{a + b + i} \]

\[r = 1, 2, 3, ... \]

Defined as \[B_P(a,b) = \int_0^p t^{a-1}(1 - t)^{b-1} dt \] is incomplete beta integrals and \(B(a,b) \) is the beta function.

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of dBETA gives a list format consisting pdf probability density values in vector form.
mean mean of the Beta distribution.
var variance of the Beta distribution.

References

Available at: http://linkinghub.elsevier.com/retrieve/pii/0167947396900158.

See Also

Beta
or

Examples

#plotting the random variables and probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,4))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),dBETA(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])
}
dBETA(seq(0,1,by=0.01),2,3)$pdf #extracting the pdf values
dBETA(seq(0,1,by=0.01),2,3)$mean #extracting the mean
dBETA(seq(0,1,by=0.01),2,3)$var #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),pBETA(seq(0,1,by=0.01),a[i],a[i]),col = col[i])
}
pBETA(seq(0,1,by=0.01),2,3) #acquiring the cumulative probability values
mazBETA(1.4,3,2) #acquiring the moment about zero values
mazBETA(2,3,2)-mazBETA(1,3,2)^2 #acquiring the variance for a=3,b=2
#only the integer value of moments is taken here because moments cannot be decimal
mazBETA(1.9,5.5,6)

dBetaBin

Beta-Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Beta-Binomial Distribution.

Usage

```r
dBetaBin(x, n, a, b)
```

Arguments

- `x`: vector of binomial random variables.
- `n`: single value for no of binomial trials.
- `a`: single value for shape parameter alpha representing as a.
- `b`: single value for shape parameter beta representing as b.

Details

Mixing Beta distribution with Binomial distribution will create the Beta-Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{BetaBin}(x) = \binom{n}{x} \frac{B(a + x, n + b - x)}{B(a, b)}
\]

\[a, b > 0\]
\[x = 0, 1, 2, 3, ... n\]
\[n = 1, 2, 3, ...\]

The mean, variance and over dispersion are denoted as

\[E_{BetaBin}[x] = \frac{na}{a + b}\]
\[Var_{BetaBin}[x] = \frac{(nab)(a + b + n)}{(a + b)^2 (a + b + 1)}\]
\[overdispersion = \frac{1}{a + b + 1}\]

Defined as \(B(a, b)\) is the beta function.
Value

The output of dBetaBin gives a list format consisting
pdf probability function values in vector form.
mean mean of the Beta-Binomial Distribution.
var variance of the Beta-Binomial Distribution.
over.dis.para over dispersion value of the Beta-Binomial Distribution.

References

Available at: http://linkinghub.elsevier.com/retrieve/pii/0167947396900158.

Examples

#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,0.2)
plot(0,0,main="Beta-binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)
}
dBetaBin(0:10,10,4,.2)$pdf #extracting the pdf values
dBetaBin(0:10,10,4,.2)$mean #extracting the mean
dBetaBin(0:10,10,4,.2)$var #extracting the variance
dBetaBin(0:10,10,4,.2)$over.dis.para #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:4)
{
 lines(0:10,pBetaBin(0:10,10,a[i],a[i]),col = col[i])
 points(0:10,pBetaBin(0:10,10,a[i],a[i]),col = col[i])
}
pBetaBin(0:10, 10, 4, .2) # acquiring the cumulative probability values

Beta-Correlated Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Beta-Correlated Binomial Distribution.

Usage

dBetaCorrBin(x, n, cov, a, b)

Arguments

- **x**
 vector of binomial random variables.
- **n**
 single value for no of binomial trials.
- **cov**
 single value for covariance.
- **a**
 single value for alpha parameter.
- **b**
 single value for beta parameter.

Details

The probability function and cumulative function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{\text{BetaCorrBin}}(x) = \binom{n}{x} \frac{B(a + x, b + n - x)}{B(a + b)} \left[1 + \frac{\text{cov}}{2} \left(\frac{(x - 1) \prod_{k=1}^{x}(a + b + n - k)}{(a + b) \prod_{k=1}^{x}(a + b + n - k)} \right) \right]
\]

\[
= \frac{(2x(n - 1) \prod_{k=1}^{x}(a + b + n - k))}{(x + a - 1) \prod_{k=1}^{x}(n - x + b - k)} + \frac{(n(n - 1) \prod_{k=1}^{x}(a + b + n - k))}{(n - a) \prod_{k=1}^{x}(n - x + b - k)}
\]

\[x = 0, 1, 2, 3, \ldots n\]

\[n = 1, 2, 3, \ldots\]

\[0 < a, b\]

\[-\infty < \text{cov} < +\infty\]

\[0 < p < 1\]

\[p = \frac{a}{a + b}\]

\[\Theta = \frac{1}{a + b}\]
The Correlation is in between
\[
-\frac{2}{n(n-1)} \min(\frac{p}{1-p}, \frac{1-p}{p}) \leq \text{correlation} \leq \frac{2p(1-p)}{(n-1)p(1-p) + 0.25 - f_0}
\]
where \(f_0 = \min[(x - (n-1)p - 0.5)^2]\)

The mean and the variance are denoted as
\[
E_{BetaCorrBin}[x] = np
\]
\[
Var_{BetaCorrBin}[x] = np(1-p)(n\Theta + 1)(1 + \Theta)^{-1} + n(n-1)\text{cov}
\]
\[
Corr_{BetaCorrBin}[x] = \frac{\text{cov}}{p(1-p)}
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of \(dBetaCorrBin\) gives a list format consisting

- pdf probability function values in vector form.
- mean mean of Beta-Correlated Binomial Distribution.
- var variance of Beta-Correlated Binomial Distribution.
- corr correlation of Beta-Correlated Binomial Distribution.
- mincorr minimum correlation value possible.
- maxcorr maximum correlation value possible.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

Examples

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(9.0,10,11,12,13)
b <- c(8.0,8.1,8.2,8.3,8.4)
plot(0,0,main="Beta-Correlated binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
lines(0:10,dBetaCorrBin(0:10,10,0.001,a[i],b[i])$pdf,col = col[i],lwd=2.85)
points(0:10,dBetaCorrBin(0:10,10,0.001,a[i],b[i])$pdf,col = col[i],pch=16)
}
dBetaCorrBin(0:10,10,0.001,10,13)$pdf  #extracting the pdf values
dBetaCorrBin(0:10,10,0.001,10,13)$mean  #extracting the mean
```
#extracting the variance
dBetaCorrBin(0:10,10,0.001,10,13)
#extracting the correlation
dBetaCorrBin(0:10,10,0.001,10,13)
#extracting the minimum correlation value
dBetaCorrBin(0:10,10,0.001,10,13)
#extracting the maximum correlation value
dBetaCorrBin(0:10,10,0.001,10,13)

#plotting the random variables and cumulative probability values
col <- rainbow(5)
a <- c(9.0,10,11,12,13)
b <- c(8.0,8.1,8.2,8.3,8.4)
plot(0,0,main="Beta-Correlated binomial probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
 lines(0:10,pBetaCorrBin(0:10,10,0.001,a[i],b[i]),col = col[i],lwd=2.85)
 points(0:10,pBetaCorrBin(0:10,10,0.001,a[i],b[i]),col = col[i],pch=16)
}
pBetaCorrBin(0:10,10,0.001,10,13) #acquiring the cumulative probability values

dCOMPBin

COM Poisson Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the COM Poisson Binomial Distribution.

Usage

dCOMPBin(x,n,p,v)

Arguments

- **x**: vector of binomial random variables.
- **n**: single value for no of binomial trials.
- **p**: single value for probability of success.
- **v**: single value for v.

Details

The probability function and cumulative function can be constructed and are denoted below:

The cumulative probability function is the summation of probability function values.

\[
P_{\text{COMPBin}}(x) = \frac{\binom{n}{x} p^x (1-p)^{n-x}}{\sum_{j=0}^{n} \binom{n}{j} p^j (1-p)^{n-j}}
\]

\[x = 0, 1, 2, 3, \ldots n\]
$$n = 1, 2, 3, ...$$
$$0 < p < 1$$
$$-\infty < v < +\infty$$

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `dCOMPBin` gives a list format consisting of

- pdf probability function values in vector form.
- mean mean of COM Poisson Binomial Distribution.
- var variance of COM Poisson Binomial Distribution.

References

Extracted from

Available at: http://conteudo.icmc.usp.br/CMS/Arquivos/arquivos_enviados/BIBLIOTECA_113_NSE_90.pdf

Examples

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58, 0.59, 0.6, 0.61, 0.62)
b <- c(0.022, 0.023, 0.024, 0.025, 0.026)
plot(0,0,main="COM Poisson Binomial probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
  lines(0:10,dCOMPBin(0:10,10,a[i],b[i])$pdf,col = col[i],lwd=2.85)
  points(0:10,dCOMPBin(0:10,10,a[i],b[i])$pdf,col = col[i],pch=16)
}
dCOMPBin(0:10,10,0.58,0.022)$pdf #extracting the pdf values
dCOMPBin(0:10,10,0.58,0.022)$mean #extracting the mean
dCOMPBin(0:10,10,0.58,0.022)$var #extracting the variance
```

```r
#plotting the random variables and cumulative probability values
col <- rainbow(5)
a <- c(0.58, 0.59, 0.6, 0.61, 0.62)
b <- c(0.022, 0.023, 0.024, 0.025, 0.026)
plot(0,0,main="COM Poisson Binomial probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
}
```
dCorrBin

Correlated Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Correlated Binomial Distribution.

Usage

```r
dCorrBin(x,n,p,cov)
```

Arguments

- `x`: vector of binomial random variables.
- `n`: single value for no of binomial trials.
- `p`: single value for probability of success.
- `cov`: single value for covariance.

Details

The probability function and cumulative function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{CorrBin}(x) = \binom{n}{x} p^x (1-p)^{n-x} (1 + \frac{cov}{2p^2(1-p)^2}) ((x - np)^2 + x(2p - 1) - np^2))
\]

\[x = 0, 1, 2, 3, ... n\]
\[n = 1, 2, 3, ...
\[0 < p < 1\]
\[-\infty < cov < +\infty\]

The Correlation is in between

\[
\frac{-2}{n(n-1)} \min\left(\frac{p}{1-p}, \frac{1-p}{p}\right) \leq \text{correlation} \leq \frac{2p(1-p)}{(n-1)p(1-p) + 0.25 - fo}
\]

where \(fo = \min[(x - (n-1)p - 0.5)^2]\)
The mean and the variance are denoted as

\[
E_{CorrBin}[x] = np
\]
\[
Var_{CorrBin}[x] = n(p(1 - p) + (n - 1)\text{cov})
\]
\[
Corr_{CorrBin}[x] = \frac{\text{cov}}{p(1 - p)}
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `dCorrBin` gives a list format consisting

- `pdf` probability function values in vector form.
- `mean` mean of Correlated Binomial Distribution.
- `var` variance of Correlated Binomial Distribution.
- `corr` correlation of Correlated Binomial Distribution.
- `mincorr` minimum correlation value possible.
- `maxcorr` maximum correlation value possible.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

See Also

`CBprob`

Examples

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="Correlated binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
  lines(0:10,dCorrBin(0:10,10,a[i],b[i])$pdf,col = col[i],lwd=2.85)
  points(0:10,dCorrBin(0:10,10,a[i],b[i])$pdf,col = col[i],pch=16)
```
dGAMMA

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for Gamma Distribution bounded between [0,1].

Usage

dGAMMA(p,c,l)

Arguments

p vector of probabilities.

c single value for shape parameter c.

l single value for shape parameter l.

Details

The probability density function and cumulative density function of a unit bounded Gamma distribution with random variable P are given by

\[
g_P(p) = \frac{c^l p^{c-1}}{\gamma(l)} \left[\ln(1/p) \right]^{l-1}
\]
\(: 0 \leq p \leq 1 \)
\[
G_P(p) = \frac{Ig(l, c\ln(1/p))}{\gamma(l)}
\]

\(: 0 \leq p \leq 1 \)
\[l, c > 0\]

The mean the variance are denoted by
\[
E[P] = \left(\frac{c}{c+1}\right)^l
\]
\[
\text{var}[P] = \left(\frac{c}{c+2}\right)^l - \left(\frac{c}{c+1}\right)^{2l}
\]

The moments about zero is denoted as
\[
E[P^r] = \left(\frac{c}{c+r}\right)^l
\]
\[r = 1, 2, 3, \ldots\]

Defined as \(\gamma(l) \) is the gamma function Defined as \(Ig(l, c\ln(1/p)) = \int_0^{c\ln(1/p)} t^{l-1}e^{-t}dt \) is the Lower incomplete gamma function

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of \texttt{dGAMMA} gives a list format consisting
\begin{itemize}
 \item pdf probability density values in vector form.
 \item mean mean of the Gamma distribution.
 \item var variance of Gamma distribution.
\end{itemize}

References

See Also

\texttt{GammaDist}

Examples

```r
# plotting the random variables and probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,4))
for (i in 1:4)
{
  lines(seq(0,1,by=0.01),dGAMMA(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])
```
dGammaBin

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Gamma Binomial Distribution.

Usage

dGammaBin(x,n,c,l)

Arguments

x vector of binomial random variables.
n single value for no of binomial trials.
c single value for shape parameter c.
l single value for shape parameter l.

Details

Mixing Gamma distribution with Binominal distribution will create the the Gamma Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.

\[P_{\text{GammaBin}}[x] = \left(\begin{array}{c} n \\ x \end{array} \right) \sum_{j=0}^{n-x} \left(\begin{array}{c} n-x \\ j \end{array} \right) (-1)^j \left(\frac{c}{c+x+j} \right)^l \]

\[c, l > 0 \]
\[x = 0, 1, 2, ..., n \]
\[n = 1, 2, 3, ... \]

The mean, variance and overdispersion are denoted as

\[E_{\text{GammaBin}}[x] = \left(\frac{c}{c+1} \right)^l \]

\[\text{Var}_{\text{GammaBin}}[x] = n^2 \left[\left(\frac{c}{c+2} \right)^l - \left(\frac{c}{c+1} \right)^{2l} \right] + n \left(\frac{c}{c+1} \right)^{l-1} \left(\frac{c+1}{c+2} \right)^l \]

\[\text{overdispersion} = \frac{\left(\frac{c}{c+2} \right)^l - \left(\frac{c}{c+1} \right)^{2l}}{\left(\frac{c+1}{c+2} \right)^l [1 - \left(\frac{c}{c+1} \right)^l]} \]

Value

The output of dGammaBin gives a list format consisting

pdf probability function values in vector form.

mean mean of the Gamma Binomial Distribution.

var variance of the Gamma Binomial Distribution.

over.dis.para over dispersion value of the Gamma Binomial Distribution.

References

Examples

#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,0.2)
plot(0,0,main="Gamma Binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)
}
dGammaBin(0:10,10,4,.2)$pdf #extracting the pdf values
dGammaBin(0:10,10,4,.2)$mean #extracting the mean
dGBeta1

dGBeta1

Generalized Beta Type-1 Distribution

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Generalized Beta Type-1 Distribution bounded between [0,1].

Usage

dGBeta1(p,a,b,c)

Arguments

- **p**: vector of probabilities.
- **a**: single value for shape parameter alpha representing as a.
- **b**: single value for shape parameter beta representing as b.
- **c**: single value for shape parameter gamma representing as c.

Details

The probability density function and cumulative density function of a unit bounded Generalized Beta Type-1 Distribution with random variable P are given by

\[
g_p(p) = \frac{c}{B(a,b)} p^{ac-1} (1-p^c)^{b-1}
\]

; \(0 \leq p \leq 1\)

\[
G_P(p) = \frac{p^{ac}}{aB(a,b)} 2F1(a,1-b; p^c; a+1)
\]
$0 \leq p \leq 1$

$a, b, c > 0$

The mean and the variance are denoted by

$$E[P] = \frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})}$$

$$\text{var}[P] = \frac{B(a + b, \frac{2}{c})}{B(a, \frac{2}{c})} - \left(\frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} \right)^2$$

The moments about zero is denoted as

$$E[P^r] = \frac{B(a + b, \frac{r}{c})}{B(a, \frac{r}{c})}$$

$r = 1, 2, 3,...$

Defined as $B(a, b)$ is Beta function. Defined as $2F1(a, b; c; d)$ is Gaussian Hypergeometric function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of dGBeta1 gives a list format consisting

- pdf probability density values in vector form.
- mean mean of the Generalized Beta Type-1 Distribution.
- var variance of the Generalized Beta Type-1 Distribution.

References

Examples

#plotting the random variables and probability values
col <- rainbow(5)
a <- c(.1,.2,.3,1.5,2.15)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,10))
for (i in 1:5)
{
 lines(seq(0,1,by=0.001),dGBeta1(seq(0,1,by=0.001),a[i],1,2*a[i])$pdf,col = col[i])
}
dGBeta1(seq(0,1,by=0.01),2,3,1)$pdf #extracting the pdf values
dGBeta1(seq(0,1,by=0.01),2,3,1)$mean #extracting the mean
dGBeta1(seq(0,1,by=0.01),2,3,1)$var #extracting the variance
pGBeta1(0.04,2,3,4) #acquiring the cdf values for a=2,b=3,c=4
mazGBeta1(1.4,3,2,2) #acquiring the moment about zero values
mazGBeta1(2,3,2,2)-mazGBeta1(1,3,2,2)^2 #acquiring the variance for a=3,b=2,c=2

#only the integer value of moments is taken here because moments cannot be decimal
mazGBeta1(3.2,3,2,2)

dGHGBB

Gaussian Hypergeometric Generalized Beta Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Gaussian Hypergeometric Generalized Beta Binomial distribution.

Usage

dGHGBB(x,n,a,b,c)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>vector of binomial random variables.</td>
</tr>
<tr>
<td>n</td>
<td>single value for no of binomial trials.</td>
</tr>
<tr>
<td>a</td>
<td>single value for shape parameter alpha value representing a.</td>
</tr>
<tr>
<td>b</td>
<td>single value for shape parameter beta value representing b.</td>
</tr>
<tr>
<td>c</td>
<td>single value for shape parameter lambda value representing c.</td>
</tr>
</tbody>
</table>
Details

Mixing Gaussian Hypergeometric Generalized Beta distribution with Binomial distribution will create the Gaussian Hypergeometric Generalized Beta Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[P_{GHGBB}(x) = \frac{1}{2F1(-n,a;-b-n+1;c)} \binom{n}{x} \frac{B(x+a,n-x+b)}{B(a,b+n)} (c^x) \]

\[a, b, c > 0 \]
\[x = 0, 1, 2, \ldots n \]
\[n = 1, 2, 3, \ldots \]

The mean, variance and over dispersion are denoted as

\[E_{GHGBB}[x] = nE_{GHGBeta} \]
\[Var_{GHGBB}[x] = nE_{GHGBeta}(1 - E_{GHGBeta}) + n(n - 1)Var_{GHGBeta} \]
\[\text{overdispersion} = \frac{var_{GHGBeta}}{E_{GHGBeta}(1 - E_{GHGBeta})} \]

Defined as \(B(a,b) \) is the beta function. Defined as \(2F1(a,b;c;d) \) is the Gaussian Hypergeometric function

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of dGHGBB gives a list format consisting

pdf probability function values in vector form.
mean mean of Gaussian Hypergeometric Generalized Beta Binomial Distribution.
var variance of Gaussian Hypergeometric Generalized Beta Binomial Distribution.
over.dis.para over dispersion value of Gaussian Hypergeometric Generalized Beta Binomial Distribution.

References

Available at: http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x.

See Also

hypergeo_powerseries
Examples

```r
#plotting the random variables and probability values
col <- rainbow(6)
a <- c(.1,.2,.3,1.5,2.1,3)
plot(0,0,main="GHGBB probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,7),ylim = c(0,0.9))
for (i in 1:6)
{
  lines(0:7,dGHGBB(0:7,7,1+a[i],0.3,1+a[i])$pdf,col = col[i],lwd=2.85)
  points(0:7,dGHGBB(0:7,7,1+a[i],0.3,1+a[i])$pdf,col = col[i],pch=16)
}
dGHGBB(0:7,7,1.3,0.3,1.3)$pdf #extracting the pdf values
dGHGBB(0:7,7,1.3,0.3,1.3)$mean #extracting the mean
dGHGBB(0:7,7,1.3,0.3,1.3)$var #extracting the variance
dGHGBB(0:7,7,1.3,0.3,1.3)$over.dis.par #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,7),ylim = c(0,1))
for (i in 1:4)
{
  lines(0:7,pGHGBB(0:7,7,1+a[i],0.3,1+a[i]),col = col[i])
  points(0:7,pGHGBB(0:7,7,1+a[i],0.3,1+a[i]),col = col[i])
}
pGHGBB(0:7,7,1.3,0.3,1.3) #acquiring the cumulative probability values
```

dGHGBeta
Gaussian Hypergeometric Generalized Beta Distribution

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Gaussian Hypergeometric Generalized Beta distribution bounded between [0,1].

Usage

```r
dGHGBeta(p,n,a,b,c)
```

Arguments

- `p` vector of probabilities.
- `n` single value for no of binomial trials.
Details

The probability density function and cumulative density function of a unit bounded Gaussian Hypergeometric Generalized Beta Distribution with random variable P are given by

\[g_P(p) = \frac{1}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1}(1 - p)^{b-1} \frac{e^{b+n}}{(c + (1 - c)p)^{a+b+n}} \]

; \ 0 \leq p \leq 1

\[G_P(p) = \int_0^p \frac{1}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} t^{a-1}(1 - t)^{b-1} \frac{e^{b+n}}{(c + (1 - c)t)^{a+b+n}} dt \]

; \ 0 \leq p \leq 1

\[a, b, c > 0 \]

\[n = 1, 2, 3, \ldots \]

The mean and the variance are denoted by

\[E[P] = \int_0^1 \frac{p}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1}(1 - p)^{b-1} \frac{e^{b+n}}{(c + (1 - c)p)^{a+b+n}} dp \]

\[\text{var}[P] = \int_0^1 \frac{p^2}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1}(1 - p)^{b-1} \frac{e^{b+n}}{(c + (1 - c)p)^{a+b+n}} dp - (E[P])^2 \]

The moments about zero is denoted as

\[E[P^r] = \int_0^1 \frac{p^r}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1}(1 - p)^{b-1} \frac{e^{b+n}}{(c + (1 - c)p)^{a+b+n}} dp \]

\[r = 1, 2, 3, \ldots \]

Defined as \(B(a, b) \) as the beta function. Defined as \(2F1(a, b; c; d) \) as the Gaussian Hypergeometric function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of dGHGBeta gives a list format consisting

\[\text{pdf} \] probability density values in vector form.

\[\text{mean} \] mean of the Gaussian Hypergeometric Generalized Beta Distribution.

\[\text{var} \] variance of the Gaussian Hypergeometric Generalized Beta Distribution.
References

Available at: http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x

See Also

hypergeo_powerseries

Examples

#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1.2,3.1,5.2,1.5)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,10))
for (i in 1:5)
{
 lines(seq(0,by=0.001),dGHGBeta(seq(0,by=0.001),7,1+a[i],0.3,1+a[i])$pdf,col = col[i])
}
dGHGBeta(seq(0,by=0.01),7,1.6312,0.3913,0.6659)$pdf #extracting the pdf values
dGHGBeta(seq(0,by=0.01),7,1.6312,0.3913,0.6659)$mean #extracting the mean
dGHGBeta(seq(0,by=0.01),7,1.6312,0.3913,0.6659)$var #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(6)
a <- c(1.2,3.1,5.2,1.3)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",
xlim = c(0,1),ylim = c(0,1))
for (i in 1:6)
{
 lines(seq(0.01,by=0.001),pGHGBeta(seq(0.01,by=0.001),7,1+a[i],0.3,1+a[i]),col=col[i])
}
pGHGBeta(seq(0,by=0.01),7,1.6312,0.3913,0.6659) #acquiring the cumulative probability values
mazGHGBeta(1.4,7,1.6312,0.3913,0.6659) #acquiring the moment about zero values

#acquiring the variance for a=1.6312,b=0.3913,c=0.6659
mazGHGBeta(2,7,1.6312,0.3913,0.6659)-mazGHGBeta(1,7,1.6312,0.3913,0.6659)^2

#only the integer value of moments is taken here because moments cannot be decimal
mazGHGBeta(1.9,15,5,6,1)
dGrassiaIIBin

Grassia-II-Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Grassia-II-Binomial Distribution.

Usage

dGrassiaIIBin(x,n,a,b)

Arguments

- **x** vector of binomial random variables.
- **n** single value for no of binomial trials.
- **a** single value for shape parameter a.
- **b** single value for shape parameter b.

Details

Mixing Gamma distribution with Binomial distribution will create the the Grassia-II-Binomial distribution, only when \((1-p)=e^{-\lambda}\) of the Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{GrassiaIIBin}[x] = \left(\begin{array}{c} n \\ x \end{array}\right) \sum_{j=0}^{x} \binom{x}{j} (-1)^{x-j} (1 + b(n - j))^{-a}
\]

\[a, b > 0\]

\[x = 0, 1, 2, ..., n\]

\[n = 1, 2, 3, ...\]

The mean, variance and over dispersion are denoted as

\[E_{GrassiaIIBin}[x] = \left(\frac{b}{b+1}\right)^a\]

\[Var_{GrassiaIIBin}[x] = n^2\left[\left(\frac{b}{b+2}\right)^a - \left(\frac{b}{b+1}\right)^{2a}\right] + n\left(\frac{b}{b+1}\right)^a 1 - \left(\frac{b+1}{b+2}\right)^a\]

\[\text{overdispersion} = \frac{(\frac{b}{b+2})^l - (\frac{b}{b+1})^{2a}}{(\frac{b}{b+1})^a [1 - (\frac{b}{b+1})^a]}\]
dGrassiaIIBin

Value

The output of dGrassiaIIBin gives a list format consisting:

- **pdf** probability function values in vector form.
- **mean** mean of the Grassia II Binomial Distribution.
- **var** variance of the Grassia II Binomial Distribution.
- **over.dis.para** over dispersion value of the Grassia II Binomial Distribution.

References

Examples

```r
# plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,0.2)
plot(0,0,main="Grassia II binomial probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
  lines(0:10,dGrassiaIIBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)
  points(0:10,dGrassiaIIBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)
}
dGrassiaIIBin(0:10,10,4,.2)$pdf # extracting the pdf values
dGrassiaIIBin(0:10,10,4,.2)$mean # extracting the mean
dGrassiaIIBin(0:10,10,4,.2)$var # extracting the variance
dGrassiaIIBin(0:10,10,4,.2)$over.dis.para # extracting the over dispersion value

# plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable", ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:4)
{
  lines(0:10,pGrassiaIIBin(0:10,10,a[i],a[i]),col = col[i])
  points(0:10,pGrassiaIIBin(0:10,10,a[i],a[i]),col = col[i])
}
pGrassiaIIBin(0:10,10,4,.2) # acquiring the cumulative probability values
```
Kumaraswamy Distribution

Description
These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Kumaraswamy Distribution bounded between [0,1].

Usage
dKUM(p, a, b)

Arguments
- p: vector of probabilities.
- a: single value for shape parameter alpha representing as a.
- b: single value for shape parameter beta representing as b.

Details
The probability density function and cumulative density function of a unit bounded Kumaraswamy Distribution with random variable P are given by

\[g_P(p) = abp^{a-1}(1 - p^a)^{b-1} \]
\[: 0 \leq p \leq 1 \]
\[G_P(p) = 1 - (1 - p^a)^b \]
\[: 0 \leq p \leq 1 \]
\[a, b > 0 \]

The mean and the variance are denoted by

\[E[P] = bB(1 + \frac{1}{a}, b) \]
\[var[P] = bB(1 + \frac{2}{a}, b) - (bB(1 + \frac{1}{a}, b))^2 \]

The moments about zero is denoted as

\[E[P^r] = bB(1 + \frac{r}{a}, b) \]
\[r = 1, 2, 3, ... \]

Defined as \(B(a, b) \) is the beta function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
dKUM

Value

The output of `dKUM` gives a list format consisting of pdf probability density values in vector form.

- `mean`: mean of the Kumaraswamy distribution.
- `var`: variance of the Kumaraswamy distribution.

References

Available at: http://dx.doi.org/10.1016/0022-1694(80)90036-0.

Available at: http://dx.doi.org/10.1016/j.stamet.2008.04.001.

See Also

- [Kumaraswamy](#)

Examples

```r
# plotting the random variables and probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
    xlim = c(0,1),ylim = c(0,6))
for (i in 1:4)
{
    lines(seq(0,1,by=0.01),dKUM(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])
}
dKUM(seq(0,1,by=0.01),2,3)$pdf # extracting the probability values
dKUM(seq(0,1,by=0.01),2,3)$mean # extracting the mean
dKUM(seq(0,1,by=0.01),2,3)$var # extracting the variance

# plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",
    xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
    lines(seq(0,1,by=0.01),pKUM(seq(0,1,by=0.01),a[i],a[i]),col = col[i])
}
pKUM(seq(0,1,by=0.01),2,3) # acquiring the cumulative probability values

mazKUM(1.4,3,2) # acquiring the moment about zero values
mazKUM(2,2,3)-mazKUM(1,2,3)^2 # acquiring the variance for a=2,b=3
```
#only the integer value of moments is taken here because moments cannot be decimal
mazKUM(1.9,5.5,6)

Kumaraswamy Binomial Distribution

Description
These functions provide the ability for generating probability function values and cumulative probability function values for the Kumaraswamy Binomial Distribution.

Usage
\[
dKumBin(x,n,a,b,\text{it}=25000)
\]

Arguments
- \(x\): vector of binomial random variables
- \(n\): single value for no of binomial trial
- \(a\): single value for shape parameter alpha representing \(a\)
- \(b\): single value for shape parameter beta representing \(b\)
- \(\text{it}\): number of iterations to converge as a proper probability function replacing infinity

Details
Mixing Kumaraswamy distribution with Binomial distribution will create the Kumaraswamy Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{KumBin}(x) = ab \binom{n}{x} \sum_{j=0}^{\text{it}} (-1)^j \left(\begin{array}{c} b - 1 \\ j \end{array} \right) B\left(x + a + aj, n - x + 1\right)
\]

\[
a, b > 0 \\
x = 0, 1, 2, ..., n \\
n = 1, 2, 3, ...
\]

The mean, variance and over dispersion are denoted as

\[
E_{KumBin}[x] = nbB(1 + \frac{1}{a}, b)
\]
\[Var_{KumBin}[x] = n^2 b \left(1 + \frac{2}{a}, b \right) - b B \left(1 + \frac{1}{a}, b \right) + n b \left(1 + \frac{1}{a}, b \right) - B \left(1 + \frac{2}{a}, b \right) \]

\[overdispersion = \frac{\left(b B \left(1 + \frac{2}{a}, b \right) - b B \left(1 + \frac{1}{a}, b \right) \right)^2}{\left(b B \left(1 + \frac{1}{a}, b \right) - b B \left(1 + \frac{1}{a}, b \right) \right)^2} \]

Defined as \(B(a, b) \) is the beta function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of \(dKumBin \) gives a list format consisting

pdf probability function values in vector form.

mean mean of the Kumaraswamy Binomial Distribution.

var variance of the Kumaraswamy Binomial Distribution.

over.dis.para over dispersion value of the Kumaraswamy Distribution.

References

Examples

```r
## Not run:
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,.85)
plot(0,0,main="Kumaraswamy binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5){
  lines(0:10,dKumBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)
  points(0:10,dKumBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)
}
dKumBin(0:10,10,4,2)$pdf #extracting the pdf values
dKumBin(0:10,10,4,2)$mean #extracting the mean
dKumBin(0:10,10,4,2)$var #extracting the variance
dKumBin(0:10,10,4,2)$over.dis.para #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(5)
a <- c(1,2,5,10,.85)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5){
  lines(0:10,pKumBin(0:10,10,a[i],a[i]),col = col[i])
  points(0:10,pKumBin(0:10,10,a[i],a[i]),col = col[i])
```

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Lovinson Multiplicative Binomial Distribution.

Usage

dLMBin(x,n,p,phi)

Arguments

x vector of binomial random variables.
n single value for no of binomial trials.
p single value for probability of success.
phi single value for phi.

Details

The probability function and cumulative function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.

\[P_{LMBin}(x) = \binom{n}{x} p^x (1-p)^{n-x} \frac{f(p,\phi, n)}{f(p,\phi, n)} \]

here \(f(p,\phi, n) \) is

\[f(p,\phi, n) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \phi^k (n-k) \]

\[x = 0, 1, 2, 3, ... n \]
\[n = 1, 2, 3, ... \]
\[k = 0, 1, 2, ..., n \]
\[0 < p < 1 \]
\[0 < \phi \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of dLMBin gives a list format consisting

pdf probability function values in vector form.

mean mean of Lovinson Multiplicative Binomial Distribution.

var variance of Lovinson Multiplicative Binomial Distribution.

References

Examples

#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="Lovinson Multiplicative binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dLMBin(0:10,10,a[i],1+b[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dLMBin(0:10,10,a[i],1+b[i])$pdf,col = col[i],pch=16)
}
dLMBin(0:10,10,.58,10.022)$pdf #extracting the pdf values
dLMBin(0:10,10,.58,10.022)$mean #extracting the mean
dLMBin(0:10,10,.58,10.022)$var #extracting the variance

#plotting random variables and cumulative probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="Lovinson Multiplicative binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
 lines(0:10,pLMBin(0:10,10,a[i],1+b[i]),col = col[i],lwd=2.85)
 points(0:10,pLMBin(0:10,10,a[i],1+b[i]),col = col[i],pch=16)
}
pLMBin(0:10,10,.58,10.022) #acquiring the cumulative probability values
McDonald Generalized Beta Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the McDonald Generalized Beta Binomial Distribution.

Usage

dMcGBB(x, n, a, b, c)

Arguments

x vector of binomial random variables.
n single value for no of binomial trials.
a single value for shape parameter alpha representing as a.
b single value for shape parameter beta representing as b.
c single value for shape parameter gamma representing as c.

Details

Mixing Generalized Beta Type-1 Distribution with Binomial distribution the probability function value and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[P_{McGBB}(x) = \frac{1}{B(a, b)} \sum_{j=0}^{n-x} (-1)^j \binom{n-x}{j} B\left(\frac{x}{c} + a + \frac{j}{c}, b\right) \]

\[a, b, c > 0 \]

The mean, variance and over dispersion are denoted as

\[E_{McGBB}[x] = n \frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} \]

\[Var_{McGBB}[x] = n^2 \left(\frac{B(a + b, \frac{2}{c})}{B(a, \frac{2}{c})} - \left(\frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} \right)^2 \right) + n \left(\frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} - \frac{B(a + b, \frac{2}{c})}{B(a, \frac{2}{c})} \right) \]

\[\text{overdispersion} = \frac{\frac{B(a + b, \frac{2}{c})}{B(a, \frac{2}{c})} - \left(\frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} \right)^2}{\frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} - \left(\frac{B(a + b, \frac{2}{c})}{B(a, \frac{2}{c})} \right)^2} \]

\[x = 0, 1, 2, ...n \]

\[n = 1, 2, 3, ... \]
Value

The output of `dMcGBB` gives a list format consisting

- `pdf`: probability function values in vector form.
- `mean`: mean of McDonald Generalized Beta Binomial Distribution.
- `var`: variance of McDonald Generalized Beta Binomial Distribution.
- `over.dis.para`: over dispersion value of McDonald Generalized Beta Binomial Distribution.

References

Available at: http://www.tandfonline.com/doi/full/10.1080/03610918.2015.1088024.

Examples

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,0.6)
plot(0,0,main="Mcdonald generalized beta-binomial probability function graph",
    xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
    {lines(0:10,dMcGBB(0:10,10,a[i],2.5,a[i])$pdf,col = col[i],lwd=2.85)
     points(0:10,dMcGBB(0:10,10,a[i],2.5,a[i])$pdf,col = col[i],pch=16)
    }
dMcGBB(0:10,10,4,2,1)$pdf #extracting the pdf values
dMcGBB(0:10,10,4,2,1)$mean #extracting the mean
dMcGBB(0:10,10,4,2,1)$var #extracting the variance
dMcGBB(0:10,10,4,2,1)$over.dis.para #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative probability function graph",
    xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:4)
    {lines(0:10,pMcGBB(0:10,10,a[i],a[i],2),col = col[i])
     points(0:10,pMcGBB(0:10,10,a[i],a[i],2),col = col[i])
    }
```

dMultiBin

Multiplicative Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Multiplicative Binomial Distribution.

Usage

dMultiBin(x,n,p,theta)

Arguments

- x: vector of binomial random variables.
- n: single value for no of binomial trials.
- p: single value for probability of success.
- theta: single value for theta.

Details

The probability function and cumulative function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[P_{MultiBin}(x) = \binom{n}{x} p^x (1 - p)^{n-x} \frac{\theta^x(n-x)}{f(p, \theta, n)} \]

here \(f(p, \theta, n) \) is

\[f(p, \theta, n) = \sum_{k=0}^{n} \binom{n}{k} p^k (1 - p)^{n-k} (\theta)^k(n-k) \]

\[x = 0, 1, 2, 3, \ldots n \]
\[n = 1, 2, 3, \ldots \]
\[k = 0, 1, 2, \ldots, n \]
\[0 < p < 1 \]
\[0 < \theta \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
The output of `dMultiBin` gives a list format consisting pdf probability function values in vector form.

- mean: mean of Multiplicative Binomial Distribution.
- var: variance of Multiplicative Binomial Distribution.

References

Examples

```r
# plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="Multiplicative binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
  lines(0:10,dMultiBin(0:10,10,a[i],1+b[i])$pdf,col = col[i],lwd=2.85)
  points(0:10,dMultiBin(0:10,10,a[i],1+b[i])$pdf,col = col[i],pch=16)
}
dMultiBin(0:10,10,.58,10.022)$pdf # extracting the pdf values
dMultiBin(0:10,10,.58,10.022)$mean # extracting the mean
dMultiBin(0:10,10,.58,10.022)$var # extracting the variance

# plotting random variables and cumulative probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="Multiplicative binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
  lines(0:10,pMultiBin(0:10,10,a[i],1+b[i]),col = col[i],lwd=2.85)
  points(0:10,pMultiBin(0:10,10,a[i],1+b[i]),col = col[i],pch=16)
}
pMultiBin(0:10,10,.58,10.022) # acquiring the cumulative probability values
```
dTRI

Triangular Distribution Bounded Between [0,1]

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moments about zero values for the Triangular Distribution bounded between [0,1].

Usage

\[dTRI(p, mode)\]

Arguments

- \(p\) vector of probabilities.
- \(mode\) single value for mode.

Details

Setting \(min = 0\) and \(max = 1\) \(mode = c\) in the Triangular distribution a unit bounded Triangular distribution can be obtained. The probability density function and cumulative density function of a unit bounded Triangular distribution with random variable \(P\) are given by

\[
\begin{align*}
g_P(p) &= \frac{2p}{c} \\
&; 0 \leq p < c \\
g_P(p) &= \frac{2(1-p)}{(1-c)} \\
&; c \leq p \leq 1 \\
G_P(p) &= \frac{p^2}{c} \\
&; 0 \leq p < c \\
G_P(p) &= 1 - \frac{(1-p)^2}{(1-c)} \\
&; c \leq p \leq 1
\end{align*}
\]

The mean and the variance are denoted by

\[
E[P] = \frac{a + b + c}{3} = \frac{(1 + c)}{3}
\]

\[
var[P] = \frac{a^2 + b^2 + c^2 - ab - ac - bc}{18} = \frac{(1 + c^2 - c)}{18}
\]
Moments about zero is denoted as

\[E[P^r] = \frac{2r^2}{c(r+2)} + \frac{2(1-c^{r+1})}{(1-c)(r+1)} + \frac{2(c^{r+2}-1)}{(1-c)(r+2)} \]

\(r = 1, 2, 3, ... \)

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of dTRI gives a list format consisting

- pdf probability density values in vector form.
- mean mean of the unit bounded Triangular distribution.
- variance variance of the unit bounded Triangular distribution

References

Available at: http://dx.doi.org/10.1007/978-0-8176-4626-4_2.

See Also

triangle

Triangular

Examples

```r
#plotting the random variables and probability values
col <- rainbow(4)
x <- seq(0.2,0.8,by=0.2)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,3))
for (i in 1:4)
{
  lines(seq(0,1,by=0.01),dTRI(seq(0,1,by=0.01),x[i])$pdf,col = col[i])
}
```
dTRI(seq(0,1,by=0.05),0.3)$pdf #extracting the pdf values
dTRI(seq(0,1,by=0.01),0.3)$mean #extracting the mean
dTRI(seq(0,1,by=0.01),0.3)$var #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(4)
x <- seq(0.2,0.8,by=0.2)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
 lines(seq(0,1,by=0.01),pTRI(seq(0,1,by=0.01),x[i]),col = col[i])
}
pTRI(seq(0,1,by=0.05),0.3) #acquiring the cumulative probability values
mazTRI(1.4,.3) #acquiring the moment about zero values
mazTRI(2,.3)-mazTRI(1,.3)^2 #variance for when is mode 0.3

#only the integer value of moments is taken here because moments cannot be decimal
mazTRI(1.9,0.5)

dTriBin

Triangular Binomial Distribution

Description
These functions provide the ability for generating probability function values and cumulative probability function values for the Triangular Binomial distribution.

Usage
dTriBin(x,n,mode)

Arguments
x vector of binomial random variables.
n single value for no of binomial trials.
mode single value for mode.

Details
Mixing unit bounded Triangular distribution with Binomial distribution will create Triangular Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
\[
P_{\text{Tri}Bin}(x) = 2\binom{n}{x}(c^{-1}B_c(x+2,n-x+1)+(1-c)^{-1}B(x+1,n-x+2)-(1-c)^{-1}B_c(x+1,n-x+2))
\]

\[0 < \text{mode} = c < 1\]
\[x = 0, 1, 2, ... n\]
\[n = 1, 2, 3...\]

The mean, variance and over dispersion are denoted as

\[
E_{\text{Tri}Bin}[x] = \frac{n(1+c)}{3}
\]

\[
\text{Var}_{\text{Tri}Bin}[x] = \frac{n(n+3)}{18} - \frac{n(n-3)c(1-c)}{18}
\]

\[\text{overdispersion} = \frac{(1-c+c^2)}{2(2+c-c^2)}\]

Defined as \(B_c(a,b) = \int_0^c t^{a-1}(1-t)^{b-1} \, dt\) is incomplete beta integrals and \(B(a,b)\) is the beta function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of \texttt{dTriBin} gives a list format consisting

pdf probability function values in vector form.

mean mean of the Triangular Binomial Distribution.

var variance of the Triangular Binomial Distribution.

over.dis.param over dispersion value of the Triangular Binomial Distribution.

References

Available at: \url{http://dx.doi.org/10.1007/978-0-8176-4626-4_2}.

Available at: \url{http://www.sciencedomain.org/abstract.php?id=699&id=6&aid=6427}.\]
Examples

#plotting the random variables and probability values
col <- rainbow(7)
x <- seq(0.1,0.7,by=0.1)
plot(0,0,main="Triangular binomial probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,10),ylim = c(0,.3))
for (i in 1:7)
{
 lines(0:10,dTriBin(0:10,10,x[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dTriBin(0:10,10,x[i])$pdf,col = col[i],pch=16)
}
dTriBin(0:10,10,.4)$pdf #extracting the pdf values
dTriBin(0:10,10,.4)$mean #extracting the mean
dTriBin(0:10,10,.4)$var #extracting the variance
dTriBin(0:10,10,.4)$over.dis.para #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(7)
x <- seq(0.1,0.7,by=0.1)
plot(0,0,main="Triangular binomial probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:7)
{
 lines(0:10,pTriBin(0:10,10,x[i]),col = col[i],lwd=2.85)
 points(0:10,pTriBin(0:10,10,x[i]),col = col[i],pch=16)
}
pTriBin(0:10,10,.4) #acquiring the cumulative probability values

dUNI

Uniform Distribution Bounded Between [0,1]

Description

These functions provide the ability for generating probability density values, cumulative probability
density values and moments about zero values for the Uniform Distribution bounded between [0,1].

Usage

dUNI(p)

Arguments

p vector of probabilities.
Details

Setting \(a = 0 \) and \(b = 1 \) in the Uniform Distribution a unit bounded Uniform Distribution can be obtained. The probability density function and cumulative density function of a unit bounded Uniform Distribution with random variable \(P \) are given by

\[
g_P(p) = 1
\]

\(0 \leq p \leq 1 \)

\[
G_P(p) = p
\]

\(0 \leq p \leq 1 \)

The mean and the variance are denoted as

\[
E[P] = \frac{1}{a + b} = 0.5
\]

\[
var[P] = \frac{(b - a)^2}{12} = 0.0833
\]

Moments about zero is denoted as

\[
E[P^r] = \frac{e^{rb} - e^{ra}}{r(b - a)} = \frac{e^r - 1}{r}
\]

\(r = 1, 2, 3, ... \)

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of \(d\text{UNI} \) gives a list format consisting

- pdf probability density values in vector form.
- mean mean of unit bounded uniform distribution.
- var variance of unit bounded uniform distribution.

References

See Also

Uniform

or

Examples

#plotting the random variables and probability values
plot(seq(0,1,by=0.01),dUNI(seq(0,1,by=0.01))$pdf,type = "l",main="Probability density graph", xlab="Random variable",ylab="Probability density values")

dUNI(seq(0,1,by=0.05))$pdf #extract the pdf values
dUNI(seq(0,1,by=0.01))$mean #extract the mean
dUNI(seq(0,1,by=0.01))$var #extract the variance

#plotting the random variables and cumulative probability values
plot(seq(0,1,by=0.01),pUNI(seq(0,1,by=0.01)),type = "l",main="Cumulative density graph", xlab="Random variable",ylab="Cumulative density values")
pUNI(seq(0,1,by=0.05)) #acquiring the cumulative probability values
mazUNI(c(1,2,3)) #acquiring the moment about zero values

#only the integer value of moments is taken here because moments cannot be decimal
mazUNI(1.9)

dUniBin

Uniform Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Uniform Binomial Distribution.

Usage

dUniBin(x,n)

Arguments

x vector of binomial random variables.

n single value for no of binomial trials.

Details

Mixing unit bounded uniform distribution with binomial distribution will create the Uniform Binomial Distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values

\[P_{UniBin}(x) = \frac{1}{n + 1} \]

\[n = 1, 2, \ldots \]

\[x = 0, 1, 2, \ldots n \]

The mean, variance and over dispersion are denoted as

\[E_{UniBin}[X] = \frac{n}{2} \]

\[Var_{UniBin}[X] = \frac{n(n + 2)}{12} \]

\[overdispersion = \frac{1}{3} \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `dUniBin` gives a list format consisting

- `pdf` probability function values in vector form.
- `mean` mean of the Uniform Binomial Distribution.
- `var` variance of the Uniform Binomial Distribution.
- `ove.dis.para` over dispersion value of Uniform Binomial Distribution.

References

Examples

```r
# plotting the binomial random variables and probability values
plot(0:10, dUniBin(0:10,10)$pdf, type="l", main="Uniform binomial probability function graph", xlab="Binomial random variable", ylab="Probability function values")
points(0:10, dUniBin(0:10,10)$pdf)

dUniBin(0:300,300)$pdf  # extracting the pdf values
dUniBin(0:10,10)$mean  # extracting the mean
dUniBin(0:10,10)$var  # extracting the variance
dUniBin(0:10,10)$over.dis.para  # extracting the over dispersion

# plotting the binomial random variables and cumulative probability values
plot(0:10, pUniBin(0:10,10), type="l", main="Cumulative probability function graph", xlab="Binomial random variable", ylab="Cumulative probability function values")
points(0:10, pUniBin(0:10,10))
```
In this investigation, families of the same size, two parents and three children, living in different circumstances of domestic overcrowding were visited at fortnightly intervals. The date of onset and the clinical nature of upper respiratory infectious experienced by each member of the family were charted on a time scale marked off in days. Family epidemics of acute coryza-or common colds-were thus available for analysis.

By inspection of the epidemic time charts, it was possible to identify new or primary introductions of illness into the household by the onset of a cold after a lapse of 10 days since the last such case in the same home. Two such cases occurring on the same or succeeding days were classified as multiple primaries. Thereafter, the links in the epidemic chain of spread were defined by an interval of one day or more between successive cases in the same family. These family epidemics could then be described thus 1-2-1, 1-1-1-0, 2-1-0, etc. It must be emphasized that although this method of classification is somewhat arbitrary, it was completed before the corresponding theoretical distributions were worked out and the interval chosen agrees with the distribution of presumptive incubation periods of the common cold seen in field surveys (e.g. Badger, Dingle, Feller, Hodges, Jordan, and Rammelkamp, 1953).

Extracted from
Examples

Epidemic_Cold$Cases
sum(Epidemic_Cold$Child)

Description

The functions will estimate the shape parameters using the maximum log likelihood method and moment generating function method for the Beta-Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

EstMGFBetaBin(x, freq)

Arguments

- x: vector of binomial random variables.
- freq: vector of frequencies.

Details

\[a, b > 0 \]
\[x = 0, 1, 2, ... \]
\[freq \geq 0 \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of EstMGFBetaBin will produce the class mgf format consisting
- a shape parameter of beta distribution representing for alpha
- b shape parameter of beta distribution representing for beta
- min Negative loglikelihood value
- AIC AIC value
- call the inputs for the function

Methods print, summary, coef and AIC can be used to extract specific outputs.
EstMLEAddBin

References

Available at: http://linkinghub.elsevier.com/retrieve/pii/0167947396900158.

See Also

mle2

Examples

No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies

estimating the parameters using maximum log likelihood value and assigning it
estimate <- EstMLEBetaBin(No.D.D,Obs.fre.1,a=0.1,b=0.1)

bbmle::coef(estimate) # extracting the parameters

estimating the parameters using moment generating function methods
results <- EstMGFBetaBin(No.D.D,Obs.fre.1)

extract the estimated parameters and summary
coef(results)
summary(results)
AIC(results) # show the AIC value

Description

The function will estimate the probability of success and alpha using the maximum log likelihood method for the Additive Binomial distribution when the binomial random variables and corresponding frequencies are given.
Usage

EstMLEAddBin(x, freq)

Arguments

x vector of binomial random variables.
freq vector of frequencies.

Details

freq \geq 0
x = 0, 1, 2,..

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of EstMLEAddBin will produce the class mlAB and ml with a list consisting
min Negative Log Likelihood value.
p estimated probability of success.
alpha estimated alpha parameter.
AIC AIC value.
call the inputs for the function.
Methods print, summary, coef and AIC can be used to extract specific outputs.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

Examples

No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

Not run:
#estimating the probability value and alpha value
results <- EstMLEAddBin(No.D.D,Obs.fre.1)
```r
# printing the summary of results
summary(results)

# extracting the estimated parameters
coef(results)

## End(Not run)
```

EstMLEBetaBin

Estimating the shape parameters \(a \) and \(b \) for Beta-Binomial Distribution

Description

The functions will estimate the shape parameters using the maximum log likelihood method and moment generating function method for the Beta-Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

```r
EstMLEBetaBin(x, freq, a, b, ...)
```

Arguments

- \(x \): vector of binomial random variables.
- \(freq \): vector of frequencies.
- \(a \): single value for shape parameter alpha representing as \(a \).
- \(b \): single value for shape parameter beta representing as \(b \).
- \(... \): mle2 function inputs except data and estimating parameter.

Details

\[
\begin{align*}
a, b &> 0 \\
x &= 0, 1, 2, ... \\
freq &\geq 0
\end{align*}
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

`EstMLEBetaBin` here is used as a wrapper for the `mle2` function of `bbmle` package therefore output is of class of `mle2`.
EstMLEBetaCorrBin

References

Available at: http://linkinghub.elsevier.com/retrieve/pii/0167947396900158.

See Also

mle2

Examples

No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

#estimating the parameters using maximum log likelihood value and assigning it
estimate <- EstMLEBetaBin(No.D.D,Obs.fre.1,a=0.1,b=0.1)

bbmle::coef(estimate) #extracting the parameters

#estimating the parameters using moment generating function methods
EstMGFBetaBin(No.D.D,Obs.fre.1)

EstMLEBetaCorrBin

Estimating the covariance, alpha and beta parameter values for Beta-Correlated Binomial Distribution

Description

The function will estimate the covariance, alpha and beta parameter values using the maximum log likelihood method for the Beta-Correlated Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

EstMLEBetaCorrBin(x,freq,cov,a,b,...)
Arguments

- **x** vector of binomial random variables.
- **freq** vector of frequencies.
- **cov** single value for covariance.
- **a** single value for alpha parameter.
- **b** single value for beta parameter.
- ... mle2 function inputs except data and estimating parameter.

Details

\[x = 0, 1, 2, ... \]

\[\text{freq} \geq 0 \]

\[-\infty < \text{cov} < +\infty \]

\[0 < a, b \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

EstMLEBetaCorrBin here is used as a wrapper for the mle2 function of *bbmle* package therefore output is of class of mle2.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

See Also

- mle2

Examples

```r
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEBetaCorrBin(x=No.D.D,freq=Obs.fre.1,cov=0.0050,a=10,b=10)

bbmle::coef(parameters) #extracting the parameters
```
EstMLECOMPBin

Estimating the probability of success and \(v \) parameter for COM Poisson Binomial Distribution

Description

The function will estimate the probability of success and \(v \) parameter using the maximum log likelihood method for the COM Poisson Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

```r
EstMLECOMPBin(x, freq, p, v, ...)
```

Arguments

- `x` : vector of binomial random variables.
- `freq` : vector of frequencies.
- `p` : single value for probability of success.
- `v` : single value for \(v \).
- `...` : `mle2` function inputs except data and estimating parameter.

Details

\[
x = 0, 1, 2, ...
\]

\[
freq \geq 0
\]

\[
0 < p < 1
\]

\[-\infty < v < +\infty\]

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

`EstMLECOMPBin` here is used as a wrapper for the `mle2` function of `bbmle` package therefore output is of class of `mle2`.

References

Available at: http://conteudo.icmc.usp.br/CMS/Arquivos/arquivos_enviados/BIBLIOTECA_113_NSE_90.pdf
Examples

EstMLECorrBin

No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47, 54, 43, 40, 40, 41, 39, 95) #assigning the corresponding frequencies

#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLECOMPBin(x=No.D.D,freq=Obs.fre.1,p=0.5,v=0.1)

bbmle::coef(parameters) #extracting the parameters

EstMLECorrBin

Estimating the probability of success and correlation for Correlated Binomial Distribution

Description

The function will estimate the probability of success and correlation using the maximum log likelihood method for the Correlated Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

EstMLECorrBin(x,freq,p,cov,...)

Arguments

x vector of binomial random variables.
freq vector of frequencies.
p single value for probability of success.
cov single value for covariance.
... mle2 function inputs except data and estimating parameter.

Details

\[x = 0, 1, 2, ... \]

\[freq \geq 0 \]

\[0 < p < 1 \]

\[-\infty < cov < +\infty \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
EstMLEGammaBin

Value

EstMLCorrBin here is used as a wrapper for the mle2 function of \texttt{bbmle} package therefore output is of class of mle2.

References

Available at: \url{http://www.tandfonline.com/doi/abs/10.1080/03610928508828990}.

See Also

\texttt{mle2}

Examples

```r
No.D.D <- 0:7
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)

#estimating the parameters using maximum log likelihood value and assigning it parameters <- EstMLCorrBin(x=No.D.D,freq=Obs.fre.1,p=0.5,cov=0.0050)

bbmle::coef(parameters) #extracting the parameters
```

EstMLEGammaBin

Estimating the shape parameters c and l for Gamma Binomial distribution

Description

The function will estimate the shape parameters using the maximum log likelihood method for the Gamma Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

\texttt{EstMLEGammaBin(x,freq,c,l,...)}
Arguments

- **x**: vector of binomial random variables.
- **freq**: vector of frequencies.
- **c**: single value for shape parameter c.
- **l**: single value for shape parameter l.
- \(\ldots \)**: mle2 function inputs except data and estimating parameter.

Details

\[
0 < c, l
\]
\[
x = 0, 1, 2, \ldots
\]
\[
freq \geq 0
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

EstMLEGammaBin here is used as a wrapper for the mle2 function of bbmle package therefore output is of class of mle2.

References

Examples

```r
No.D.D <- 0:7  # assigning the random variables
Obs.fre.1 <- c(47, 54, 43, 40, 40, 41, 39, 95)  # assigning the corresponding frequencies

# estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEGammaBin(x=No.D.D, freq=Obs.fre.1, c=0.1, l=0.1)

bbmle::coef(parameters)  # extracting the parameters
```
EstMLEGHGBB Estimating the shape parameters a,b and c for Gaussian Hypergeometric Generalized Beta Binomial Distribution

Description

The function will estimate the shape parameters using the maximum log likelihood method for the Gaussian Hypergeometric Generalized Beta Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

EstMLEGHGBB(x, freq, a, b, c, ...)

Arguments

x vector of binomial random variables.
freq vector of frequencies.
a single value for shape parameter alpha representing a.
b single value for shape parameter beta representing b.
c single value for shape parameter lambda representing c.
... mle2 function inputs except data and estimating parameter.

Details

\[0 < a, b, c \]
\[x = 0, 1, 2, ... \]
\[freq \geq 0 \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

EstMLEGHGBB here is used as a wrapper for the mle2 function of bbmle package therefore output is of class of mle2.

References

Available at: http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x

EstMLEGrassiaIIBin

Estimating the shape parameters a and b for Grassia II Binomial distribution

Description

The function will estimate the shape parameters using the maximum log likelihood method for the Grassia II Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

EstMLEGrassiaIIBin(x, freq, a, b, ...)

Arguments

- **x**: vector of binomial random variables.
- **freq**: vector of frequencies.
- **a**: single value for shape parameter a.
- **b**: single value for shape parameter b.
- **...**: mle2 function inputs except data and estimating parameter.

Details

$0 < a, b$

$x = 0, 1, 2, ...$

$freq \geq 0$

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

EstMLEGrassiaIIBin here is used as a wrapper for the mle2 function of `bbmle` package therefore output is of class of mle2.

References

Examples

```r
No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,40,41,39,95) # assigning the corresponding frequencies

# estimating the parameters using maximum log likelihood value and assigning it
params <- EstMLEGrassiaIIBin(x=No.D.D,freq=Obs.fre.1,a=0.1,b=0.1)

bbmle::coef(params) # extracting the parameters
```

EstMLEKumBin

Estimated the shape parameters a and b and iterations for Kumaraswamy Binomial Distribution

Description

The function will estimate the shape parameters using the maximum log likelihood method for the Kumaraswamy Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

```r
EstMLEKumBin(x, freq, a, b, it, ...)
```

Arguments

- `x` vector of binomial random variables.
- `freq` vector of frequencies.
- `a` single value for shape parameter alpha representing as a.
- `b` single value for shape parameter beta representing as b.
- `it` number of iterations to converge as a proper probability function replacing infinity.
- `...` mle2 function inputs except data and estimating parameter.
EstMLELMBin

Details

\[
0 < a, b \\
x = 0, 1, 2, ... \\
freq \geq 0 \\
it > 0
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

EstMLEKumBin here is used as a wrapper for the mle2 function of \texttt{bbmle} package therefore output is of class of mle2.

References

See Also

\texttt{mle2}

Examples

```r
No.D.D <- 0:7  #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)  #assigning the corresponding frequencies

## Not run:
#estimating the parameters using maximum log likelihood value and assigning it
parameters1 <- EstMLEKumBin(x=No.D.D,freq=Obs.fre.1,a=10.1,b=1.1,it=10000)
bbmle::coef(parameters1)  #extracting the parameters

## End(Not run)
```

\textbf{EstMLELMBin} \hspace{1cm} \textit{Estimating the probability of success and theta for Lovinson Multiplicative Binomial Distribution}

Description

The function will estimate the probability of success and phi parameter using the maximum log likelihood method for the Lovinson Multiplicative Binomial distribution when the binomial random variables and corresponding frequencies are given.
Usage

EstMLELMBin(x, freq, p, phi, ...)

Arguments

- **x**: vector of binomial random variables.
- **freq**: vector of frequencies.
- **p**: single value for probability of success.
- **phi**: single value for phi parameter.
- **...**: mle2 function inputs except data and estimating parameter.

Details

\[\text{freq} \geq 0 \]
\[x = 0, 1, 2, \ldots \]
\[0 < p < 1 \]
\[0 < \phi \]

Value

EstMLELMBin here is used as a wrapper for the mle2 function of **bbmle** package therefore output is of class of mle2.

References

See Also

mle2

Examples

```r
No.D.D <- 0:7  #assigning the random variables
Obs.fre.1 <- c(47, 54, 43, 40, 40, 41, 39, 95)  #assigning the corresponding frequencies

#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLELMBin(x=No.D.D, freq=Obs.fre.1, p=0.5, phi=15)

bbmle::coef(parameters)  #extracting the parameters
```
EstMLEMcGBB

Estimating the shape parameters a, b and c for McDonald Generalized Beta Binomial distribution

Description

The function will estimate the shape parameters using the maximum log likelihood method for the McDonald Generalized Beta Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

EstMLEMcGBB(x, freq, a, b, c, ...)

Arguments

- **x**: vector of binomial random variables.
- **freq**: vector of frequencies.
- **a**: single value for shape parameter alpha representing as a.
- **b**: single value for shape parameter beta representing as b.
- **c**: single value for shape parameter gamma representing as c.
- **...**: mle2 function inputs except data and estimating parameter.

Details

\[0 < a, b, c \]
\[x = 0, 1, 2, ... \]
\[freq \geq 0 \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

EstMLEMcGBB here is used as a wrapper for the mle2 function of \texttt{bbmle} package therefore output is of class of mle2.
References

Available at: http://www.tandfonline.com/doi/full/10.1080/03610918.2015.1088024.

See Also

mle2

Examples

```r
No.D.D <- 0:7          #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

## Not run:
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEMcGBB(x=No.D.D,freq=Obs.fre.1,a=0.1,b=0.1,c=0.2)

bbmle::coef(parameters)   #extracting the parameters

## End(Not run)
```

EstMLEMultiBin

Estimating the probability of success and theta for Multiplicative Binomial Distribution

Description

The function will estimate the probability of success and theta parameter using the maximum log likelihood method for the Multiplicative Binomial distribution when the binomial random variables and corresponding frequencies are given.

Usage

```r
EstMLEMultiBin(x,freq,p,theta,)
```
Arguments

- **x**: vector of binomial random variables.
- **freq**: vector of frequencies.
- **p**: single value for probability of success.
- **theta**: single value for theta parameter.
- ... mle2 function inputs except data and estimating parameter.

Details

\[\text{freq} \geq 0 \]
\[x = 0, 1, 2, \ldots \]
\[0 < p < 1 \]
\[0 < \theta \]

Value

EstMLEMultiBin here is used as a wrapper for the mle2 function of bbmle package therefore output is of class of mle2.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

See Also

- mle2

Examples

```r
No.D.D <- 0:7  # assigning the random variables
Obs.fre.1 <- c(47, 54, 43, 40, 40, 41, 39, 95)  # assigning the corresponding frequencies

# estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEMultiBin(x=No.D.D, freq=Obs.fre.1, p=0.5, theta=15)

bbmle::coef(parameters)  # extracting the parameters
```
EstMLETriBin

Estimating the mode value for Triangular Binomial Distribution

Description

The function will estimate the mode value using the maximum log likelihood method for the Triangular Binomial Distribution when the binomial random variables and corresponding frequencies are given.

Usage

EstMLETriBin(x, freq)

Arguments

x vector of binomial random variables.
freq vector of frequencies.

Details

\[0 < mode = c < 1\]

\[x = 0, 1, 2, ...\]

\[freq \geq 0\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of EstMLETriBin will produce the classes of ml and m1TB format consisting

\(\text{ml} \) Negative log likelihood value.

\(\text{mode} \) Estimated mode value.

\(\text{AIC} \) AIC value.

\(\text{call} \) the inputs for the function.

Methods print, summary, coef and AIC can be used to extract specific outputs.
References

Available at: http://dx.doi.org/10.1007/978-0-8176-4626-4_2.

Examples

No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies

Not run:
estimating the mode value and extracting the mode value
results <- EstMLETriBin(No.D.D,Obs.fre.1)

extract the mode value and summary
coef(results)
summary(results)

AIC(results) # show the AIC value

End(Not run)

Exam_data

Description

In an examination, there were 9 questions set on a particular topic. Each question is marked out of a total of 20 and in assessing the final class of a candidate, particular attention is paid to the total number of questions for which he has an "alpha", i.e., at least 15 out of 20, as well as his total number of marks. His number of alpha's is a rough indication of the "quality" of his exam performance. Thus, the distribution of alpha's over the candidates is of interest. There were 209 candidates attempting questions from this section of 9 questions and a total of 326 alpha's was awarded. So we treat 9 as the "litter size", and the dichotomous response is whether or not he got an alpha on the question.

Usage

Exam_data
fitAddBin

Format

A data frame with 2 columns and 10 rows

- No.of.alpha No of Alphas
- fre Observed frequencies

Source

Extracted from

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990

Examples

```r
Exam_data$No.of.alpha  #extracting the binomial random variables
sum(Exam_data$fre)     #summing all the frequencies
```

fitAddBin

Fitting the Additive Binomial Distribution when binomial random variable, frequency, probability of success and alpha are given

Description

The function will fit the Additive Binomial distribution when random variables, corresponding frequencies, probability of success and alpha are given. It will provide the expected frequencies, chi-squared test statistics value, p value, and degree of freedom value so that it can be seen if this distribution fits the data.

Usage

```r
fitAddBin(x,obs.freq,p,alpha)
```

Arguments

- `x` vector of binomial random variables.
- `obs.freq` vector of frequencies.
- `p` single value for probability of success.
- `alpha` single value for alpha.

Details

- `obs.freq` ≥ 0
- `x = 0, 1, 2,...`
- `0 < p < 1`
- `−1 < alpha < 1`
Value

The output of `fitAddBin` gives the class format `fitAB` and `fit` consisting a list of:
- `bin.ran.var`: binomial random variables.
- `obs.freq`: corresponding observed frequencies.
- `exp.freq`: corresponding expected frequencies.
- `statistic`: chi-squared test statistics.
- `df`: degree of freedom.
- `p.value`: probability value by chi-squared test statistic.
- `fitAB`: fitted probability values of `dAddBin`.
- `NegLL`: Negative Log Likelihood value.
- `p`: estimated probability value.
- `alpha`: estimated alpha parameter value.
- `AIC`: AIC value.
- `call`: the inputs of the function.

Methods `summary`, `print`, `AIC`, `residuals` and `fitted` can be used to extract specific outputs.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

Examples

```r
No.D.D <- 0:7  # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)  # assigning the corresponding frequencies

## Not run:
# assigning the estimated probability value
paddbin <- EstMLEAddBin(No.D.D,Obs.fre.1)$p

# assigning the estimated alpha value
alphaaddbin <- EstMLEAddBin(No.D.D,Obs.fre.1)$alpha

# fitting when the random variables, frequencies, probability and alpha are given
results <- fitAddBin(No.D.D,Obs.fre.1,paddbin,alphaaddbin)
results

# extracting the AIC value
```
fitBetaBin

Fitting the Beta-Binomial Distribution when binomial random variable, frequency and shape parameters \(a \) and \(b \) are given

Description

The function will fit the Beta-Binomial distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.

Usage

fitBetaBin(x, obs.freq, a, b)

Arguments

- **x**: vector of binomial random variables.
- **obs.freq**: vector of frequencies.
- **a**: single value for shape parameter alpha representing as \(a \).
- **b**: single value for shape parameter beta representing as \(b \).

Details

\[
0 < a, b
\]

\[
x = 0, 1, 2, ..., n
\]

\[
obs.freq \geq 0
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of fitBetaBin gives the class format fitBB and fit consisting a list
bin.ran.var binomial random variables.
obs.freq corresponding observed frequencies.
exp.freq corresponding expected frequencies.
statistic chi-squared test statistics.
df degree of freedom.
p.value probability value by chi-squared test statistic.
fitBB fitted values of dBetaBin.
NegLL Negative Log Likelihood value.
a estimated value for alpha parameter as a.
b estimated value for alpha parameter as b.
AIC AIC value.
over.dis.param over dispersion value.
call the inputs of the function.
Methods summary, print, AIC, residuals and fitted can be used to extract specific outputs.

References

Available at: http://linkinghub.elsevier.com/retrieve/pii/0167947396900158.

See Also

mle2

Examples

No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

#estimating the parameters using maximum log likelihood value and assigning it parameters <- EstMLEBetaBin(No.D.D,Obs.fre.1,0.1,0.1,0.1)
bbmle::coef(parameters) #extracting the parameters a and b
aBetaBin <- bbmle::coef(parameters)[1] #assigning the parameter a
bBetaBin <- bbmle::coef(parameters)[2] #assigning the parameter b

#fitting when the random variable, frequencies, shape parameter values are given.
fitBetaBin(No.D.D,Obs.fre.1,aBetaBin,bBetaBin)

#estimating the parameters using moment generating function methods
results <- EstMGFBetaBin(No.D.D,Obs.fre.1)
results

aBetaBin1 <- results$a #assigning the estimated a
bBetaBin1 <- results$b #assigning the estimated b

#fitting when the random variable, frequencies, shape parameter values are given.
BB <- fitBetaBin(No.D.D,Obs.fre.1,aBetaBin1,bBetaBin1)

#extracting the expected frequencies
fitted(BB)

#extracting the residuals
residuals(BB)

fitBetaCorrBin

Fitting the Beta-Correlated Binomial Distribution when binomial random variable, frequency, covariance, alpha and beta parameters are given

Description

The function will fit the Beta-Correlated Binomial Distribution when random variables, corresponding frequencies, covariance, alpha and beta parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, and degree of freedom so that it can be seen if this distribution fits the data.

Usage

`fitBetaCorrBin(x,obs.freq,cov,a,b)`

Arguments

- `x` vector of binomial random variables.
- `obs.freq` vector of frequencies.
- `cov` single value for covariance.
- `a` single value for alpha parameter.
- `b` single value for beta parameter.
Details

\[\text{obs.freq} \geq 0 \]

\[x = 0, 1, 2, \ldots \]

\[-\infty < \text{cov} < +\infty \]

\[0 < a, b \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `fitBetaCorrBin` gives the class format `fitBCB` and `fit` consisting a list `bin.ran.var` binomial random variables. `obs.freq` corresponding observed frequencies. `exp.freq` corresponding expected frequencies. `statistic` chi-squared test statistics. `df` degree of freedom. `p.value` probability value by chi-squared test statistic `corr` Correlation value. `fitBCB` fitted probability values of `dBetaCorrBin`. `NegLL` Negative Log Likelihood value. `a` estimated shape parameter value a. `b` estimated shape parameter value b. `cov` estimated covariance value. `AIC` AIC value. `call` the inputs of the function. Methods `summary`, `print`, `AIC`, `residuals` and `fitted` can be used to extract specific outputs.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990 .
fitBin

Examples

```r
No.D.D <- 0:7  # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)  # assigning the corresponding frequencies

# estimating the parameters using maximum log likelihood value and assigning it
parameters <- ESTMLEBetaCorrBin(x=No.D.D,freq=Obs.fre.1,cov=0.0050,a=10,b=10)

covBetaCorrBin <- bbmle::coef(parameters)[1]
aBetaCorrBin <- bbmle::coef(parameters)[2]
bBetaCorrBin <- bbmle::coef(parameters)[3]

# fitting when the random variable, frequencies, covariance, a and b are given
results <- fitBetaCorrBin(No.D.D,Obs.fre.1,covBetaCorrBin,aBetaCorrBin,bBetaCorrBin)
results

# extract AIC value
AIC(results)

# extract fitted values
fitted(results)
```

Description

The function will fit the Binomial distribution when random variables, corresponding frequencies and probability value are given. It will provide the expected frequencies, chi-squared test statistics value, p value and degree of freedom so that it can be seen if this distribution fits the data.

Usage

```r
fitBin(x,obs.freq,p=0)
```

Arguments

- `x`: vector of binomial random variables.
- `obs.freq`: vector of frequencies.
- `p`: single value for probability.

Details

\[x = 0, 1, 2, \ldots \]

\[0 \leq p \leq 1 \]
\[\text{obs.freq} \geq 0 \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `fitBin` gives the class format `fitB` and `fit` consisting a list
- `bin.ran.var` binomial random variables.
- `obs.freq` corresponding observed frequencies.
- `exp.freq` corresponding expected frequencies.
- `statistic` chi-squared test statistics value.
- `df` degree of freedom.
- `p.value` probability value by chi-squared test statistic.
- `fitB` fitted probability values of `dbinom`.
- `phat` estimated probability value.
- `call` the inputs of the function.

Examples

```r
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

#fitting when the random variable,frequencies are given.
fitBin(No.D.D,Obs.fre.1)
```

fitCOMPBin

Fitting the COM Poisson Binomial Distribution when binomial random variable, frequency, probability of success and v parameter are given

Description

The function will fit the COM Poisson Binomial Distribution when random variables, corresponding frequencies, probability of success and v parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value, and degree of freedom so that it can be seen if this distribution fits the data.

Usage

```r
fitCOMPBin(x,obs.freq,p,v)
```
Arguments

- **x**: vector of binomial random variables.
- **obs.freq**: vector of frequencies.
- **p**: single value for probability of success.
- **v**: single value for v.

Details

\[\text{obs.freq} \geq 0 \]
\[x = 0, 1, 2, \ldots \]
\[0 < p < 1 \]
\[-\infty < v < +\infty \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `fitCOMPBin` gives the class format `fitCPB` and `fit` consisting a list
- **bin.ran.var**: binomial random variables.
- **obs.freq**: corresponding observed frequencies.
- **exp.freq**: corresponding expected frequencies.
- **statistic**: chi-squared test statistics.
- **df**: degree of freedom.
- **p.value**: probability value by chi-squared test statistic.
- **fitCPB**: fitted probability values of `dCOMPBin`.
- **NegLL**: Negative Log Likelihood value.
- **p**: estimated probability value.
- **v**: estimated v parameter value.
- **AIC**: AIC value.
- **call**: the inputs of the function.

Methods `summary`, `print`, `AIC`, `residuals` and `fitted` can be used to extract specific outputs.

References

Available at: http://conteudo.icmc.usp.br/CMS/Arquivos/arquivos_enviados/BIBLIOTECA_113_NSE_90.pdf
Examples

```r
No.D.D <- 0:7  # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)  # assigning the corresponding frequencies

# estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLECOMPBin(x=No.D.D,freq=Obs.fre.1,p=0.5,v=0.050)

pCOMPBin <- bbmle::coef(parameters)[1]
vCOMPBin <- bbmle::coef(parameters)[2]

# fitting when the random variable, frequencies, probability and v parameter are given
results <- fitCOMPBin(No.D.D,Obs.fre.1,pCOMPBin,vCOMPBin)
results

# extracting the AIC value
AIC(results)

# extract fitted values
fitted(results)
```

fitCorrBin

Fitting the Correlated Binomial Distribution when binomial random variable, frequency, probability of success and covariance are given

Description

The function will fit the Correlated Binomial Distribution when random variables, corresponding frequencies, probability of success and covariance are given. It will provide the expected frequencies, chi-squared test statistics value, p value, and degree of freedom so that it can be seen if this distribution fits the data.

Usage

`fitCorrBin(x, obs.freq, p, cov)`

Arguments

- `x` vector of binomial random variables.
- `obs.freq` vector of frequencies.
- `p` single value for probability of success.
- `cov` single value for covariance.
Details

\[\text{obs.freq} \geq 0 \]

\[x = 0, 1, 2, \ldots \]

\[0 < p < 1 \]

\[-\infty < \text{cov} < +\infty \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `fitCorrBin` gives the class format `fitCB` and `fit` consisting a list

- `bin.ran.var`: binomial random variables.
- `obs.freq`: corresponding observed frequencies.
- `exp.freq`: corresponding expected frequencies.
- `statistic`: chi-squared test statistics.
- `df`: degree of freedom.
- `p.value`: probability value by chi-squared test statistic.
- `corr`: Correlation value.
- `fitCB`: fitted probability values of `dCorrBin`.
- `NegLL`: Negative Log Likelihood value.
- `AIC`: AIC value.

`call` the inputs of the function.

Methods `summary`, `print`, `AIC`, `residuals` and `fitted` can be used to extract specific outputs.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

Examples

```r
No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies

# estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLECorrBin(x=No.D.D,freq=Obs.fre.1,p=0.5,cov=0.0050)

cPCorrBin <- bkmle::coef(parameters)[1]
covCorrBin <- bkmle::coef(parameters)[2]

# fitting when the random variable, frequencies, probability and covariance are given
results <- fitCorrBin(No.D.D,Obs.fre.1,cPCorrBin,covCorrBin)

# extracting the AIC value
AIC(results)

# extract fitted values
fitted(results)
```

fitGammaBin

Fitting the Gamma Binomial distribution when binomial random variable, frequency and shape parameters are given

Description

The function will fit the Gamma Binomial Distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.

Usage

```r
fitGammaBin(x, obs.freq, c, l)
```

Arguments

- `x` vector of binomial random variables.
- `obs.freq` vector of frequencies.
- `c` single value for shape parameter c.
- `l` single value for shape parameter l.
Details

\[0 < c, l \]
\[x = 0, 1, 2, \ldots \]
\[\text{obs.freq} \geq 0 \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `fitGammaBin` gives the class format `fitGaB` and `fit` consisting a list:
- `bin.ran.var` binomial random variables.
- `obs.freq` corresponding observed frequencies.
- `exp.freq` corresponding expected frequencies.
- `statistic` chi-squared test statistics.
- `df` degree of freedom.
- `p.value` probability value by chi-squared test statistic.
- `fitMB` fitted values of `dGammaBin`.
- `NegLL` Negative Log Likelihood value.
- `c` estimated value for shape parameter \(c \).
- `l` estimated value for shape parameter \(l \).
- `AIC` AIC value.
- `over.dis.para` over dispersion value.
- `call` the inputs of the function.

Methods `summary`, `print`, `AIC`, `residuals` and `fitted` can be used to extract specific outputs.

References

Examples

```r
No.D.D <- 0:7  # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)  # assigning the corresponding frequencies

# estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEGammaBin(x=No.D.D,freq=Obs.fre.1,c=0.1,l=0.1)

cGBin <- bbmle::coef(parameters)[1]  # assigning the estimated c
lGBin <- bbmle::coef(parameters)[2]  # assigning the estimated l
```
#fitting when the random variable, frequencies, shape parameter values are given.
results <- fitGammaBin(No.D.D,Obs.fre.1,cGBin,lGBin)

#extracting the expected frequencies
fitted(results)

#extracting the residuals
residuals(results)

fitGHGBB

Fitting the Gaussian Hypergeometric Generalized Beta Binomial Distribution when binomial random variable, frequency and shape parameters a, b and c are given

Description

The function will fit the Gaussian Hypergeometric Generalized Beta Binomial Distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.

Usage

```r
fitGHGBB(x, obs.freq, a, b, c)
```

Arguments

- **x**: vector of binomial random variables.
- **obs.freq**: vector of frequencies.
- **a**: single value for shape parameter alpha representing a.
- **b**: single value for shape parameter beta representing b.
- **c**: single value for shape parameter lambda representing c.

Details

\[
0 < a, b, c \\
\]
\[
x = 0, 1, 2, ... \\
\]
\[
obs.freq \geq 0
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of `fitGHGBB` gives the class format `fitGB` and `fit` consisting a list

- `bin.ran.var` binomial random variables.
- `obs.freq` corresponding observed frequencies.
- `exp.freq` corresponding expected frequencies.
- `statistic` chi-squared test statistics.
- `df` degree of freedom.
- `p.value` probability value by chi-squared test statistic.
- `fitGB` fitted values of `dGHGBB`.
- `NegLL` Negative Loglikelihood value.
- `a` estimated value for alpha parameter as `a`.
- `b` estimated value for beta parameter as `b`.
- `c` estimated value for gamma parameter as `c`.
- `AIC` AIC value.
- `over.dis.para` over dispersion value.
- `call` the inputs of the function.

Methods `summary`, `print`, `AIC`, `residuals` and `fitted` can be used to extract specific outputs.

References

Available at: http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x

See Also

- `hypergeo_powerseries`
- `mle2`

Examples

```r
No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies

# estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEGHGBB(No.D.D,Obs.fre.1,0.1,20,1.3)

bbmle::coef(parameters) # extracting the parameters
aGHGBB <- bbmle::coef(parameters)[1] # assigning the estimated a
```
fitGrassiaIIBin

Fitting the Grassia II Binomial distribution when binomial random variable, frequency and shape parameters are given

Description

The function will fit the Grassia II Binomial Distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.

Usage

fitGrassiaIIBin(x, obs.freq, a, b)

Arguments

x
 vector of binomial random variables.

obs.freq
 vector of frequencies.

a
 single value for shape parameter a.

b
 single value for shape parameter b.

Details

\[0 < a, b \]
\[x = 0, 1, 2, ... \]
\[obs.freq \geq 0 \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of `fitGrassiaIIBin` gives the class format `fitGrIIB` and `fit` consisting a list `bin.ran.var` binomial random variables.

- `obs.freq` corresponding observed frequencies.
- `exp.freq` corresponding expected frequencies.
- `statistic` chi-squared test statistics.
- `df` degree of freedom.
- `p.value` probability value by chi-squared test statistic.
- `fitGrIIB` fitted values of `dGrassiaIIBin`.
- `NegLL` Negative Log Likelihood value.
- `a` estimated value for shape parameter a.
- `b` estimated value for shape parameter b.
- `AIC` AIC value.
- `over.dis.para` over dispersion value.
- `call` the inputs of the function.

Methods `summary`, `print`, `AIC`, `residuals` and `fitted` can be used to extract specific outputs.

References

Examples

```r
No.D.D <- 0:7  #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)  #assigning the corresponding frequencies

#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEGrassiaIIBin(x=No.D.D,freq=Obs.fre.1,a=0.1,b=0.1)

aGIIBin <- bbmle::coef(parameters)[1]  #assigning the estimated a
bGIIBin <- bbmle::coef(parameters)[2]  #assigning the estimated b

#fitting when the random variable,frequencies,shape parameter values are given.
results <- fitGrassiaIIBin(No.D.D,Obs.fre.1,aGIIBin,bGIIBin)
results

#extracting the expected frequencies
fitted(results)

#extracting the residuals
residuals(results)
```
fitKumBin

Fitting the Kumaraswamy Binomial Distribution when binomial random variable, frequency and shape parameters \(a \) and \(b \), iterations parameter \(it \) are given

Description

The function will fit the Kumaraswamy Binomial distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.

Usage

```r
fitKumBin(x, obs.freq, a, b, it)
```

Arguments

- `x` vector of binomial random variables.
- `obs.freq` vector of frequencies.
- `a` single value for shape parameter alpha representing \(a \).
- `b` single value for shape parameter beta representing \(b \).
- `it` number of iterations to converge as a proper probability function replacing infinity.

Details

\[
0 < a, b \\
x = 0, 1, 2, \ldots, n \\
obs.freq \geq 0 \\
it > 0
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `fitKumBin` gives the class format `fitKB` and `fit` consisting a list

- `bin.ran.var` binomial random variables.
- `obs.freq` corresponding observed frequencies.
- `exp.freq` corresponding expected frequencies.
- `statistic` chi-squared test statistics.
fitKumBin

df degree of freedom.
p.value probability value by chi-squared test statistic.
fitKB fitted values of dKumBin.
NegLL Negative Log Likelihood value.
a estimated value for alpha parameter as a.
b estimated value for beta parameter as b.
it estimated it value for iterations.
AIC AIC value.
over.dis.param over dispersion value.
call the inputs of the function.
Methods summary, print, AIC, residuals and fitted can be used to extract specific outputs.

References

See Also

mle2

Examples

No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

Not run:
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEKumBin(x=No.D.D,freq=Obs.fre.1,a=10.1,b=1.1,it=10000)

bbmle::coef(parameters) #extracting the parameters
aKumBin <- bbmle::coef(parameters)[1] #assigning the estimated a
bKumBin <- bbmle::coef(parameters)[2] #assigning the estimated b
itKumBin <- bbmle::coef(parameters)[3] #assigning the estimated iterations

#fitting when the random variable,frequencies,shape parameter values are given.
results <- fitKumBin(No.D.D,Obs.fre.1,aKumBin,bKumBin,itKumBin*100)
results

#extracting the expected frequencies
fitted(results)

#extracting the residuals
residuals(results)

End(Not run)
fitLMBin Fitting the Lovinson Multiplicative Binomial Distribution when binomial random variable, frequency, probability of success and theta parameter are given

Description

The function will fit the Lovinson Multiplicative Binomial distribution when random variables, corresponding frequencies, probability of success and phi parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value and degree of freedom value so that it can be seen if this distribution fits the data.

Usage

fitLMBin(x, obs.freq, p, phi)

Arguments

x vector of binomial random variables.
obs.freq vector of frequencies.
p single value for probability of success.
phi single value for phi parameter.

Details

\[
\text{obs.freq} \geq 0 \\
x = 0, 1, 2, \ldots \\
0 < p < 1 \\
0 < \phi
\]

Value

The output of fitLMBin gives the class format fitLMB and fit consisting a list bin.ran.var binomial random variables.
obs.freq corresponding observed frequencies.
exp.freq corresponding expected frequencies.
statistic chi-squared test statistics.
df degree of freedom.
p.value probability value by chi-squared test statistic.
fitLMB fitted probability values of dLMBin.
NegLL Negative Log Likelihood value.
p estimated probability value.
phi estimated phi parameter value.
AIC AIC value.
call the inputs of the function.
Methods summary, print, AIC, residuals and fitted can be used to extract specific outputs.

References

See Also
mle2

Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,40,40,41,39,95) #assigning the corresponding frequencies

#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLELMBin(x=No.D.D,freq=Obs.fre.1,p=0.1,phi=.3)

pLMBin=bbmle::coef(parameters)[1] #assigning the estimated probability value
phiLMBin <- bbmle::coef(parameters)[2] #assigning the estimated phi value

#fitting when the random variable,frequencies,probability and phi are given
results <- fitLMBin(No.D.D,Obs.fre.1,pLMBin,phiLMBin)
results

#extracting the AIC value
AIC(results)

#extract fitted values
fitted(results)
fitMcGBB

Usage

fitMcGBB(x, obs.freq, a, b, c)

Arguments

x vector of binomial random variables.
obs.freq vector of frequencies.
a single value for shape parameter alpha representing a.
b single value for shape parameter beta representing b.
c single value for shape parameter gamma representing c.

Details

0 < a, b, c

x = 0, 1, 2, ...

obs.freq ≥ 0

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of fitMcGBB gives the class format fitMB and fit consisting a list
bin.ran.var binomial random variables.
obs.freq corresponding observed frequencies.
exp.freq corresponding expected frequencies.
statistic chi-squared test statistics.
df degree of freedom.
p.value probability value by chi-squared test statistic.
fitMB fitted values of dMcGBB.
NegLL Negative Log Likelihood value.
a estimated value for alpha parameter as a.
b estimated value for beta parameter as b.
c estimated value for gamma parameter as c.
AIC AIC value.
over.dis.para over dispersion value.
call the inputs of the function.

Methods summary, print, AIC, residuals and fitted can be used to extract specific outputs.
fitMultiBin

References

See Also

mle2

Examples

```r
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

## Not run:
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEMcGBB(x=No.D.D,freq=Obs.fre.1,a=0.1,b=0.1,c=3.2)

aMcGBB <- bbmle::coef(parameters)[1] #assigning the estimated a
bMcGBB <- bbmle::coef(parameters)[2] #assigning the estimated b
cMcGBB <- bbmle::coef(parameters)[3] #assigning the estimated c

#fitting when the random variable,frequencies,shape parameter values are given.
results <- fitMcGBB(No.D.D,Obs.fre.1,aMcGBB,bMcGBB,cMcGBB)
results

#extracting the expected frequencies
fitted(results)

#extracting the residuals
residuals(results)

## End(Not run)
```

fitMultiBin

Fitting the Multiplicative Binomial Distribution when binomial random variable, frequency, probability of success and theta parameter are given
Description

The function will fit the Multiplicative Binomial distribution when random variables, corresponding frequencies, probability of success and theta parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value and degree of freedom value so that it can be seen if this distribution fits the data.

Usage

fitMultiBin(x, obs.freq, p, theta)

Arguments

- x: vector of binomial random variables.
- obs.freq: vector of frequencies.
- p: single value for probability of success.
- theta: single value for theta parameter.

Details

\[\text{obs.freq} \geq 0 \]
\[x = 0, 1, 2, \ldots \]
\[0 < p < 1 \]
\[0 < \theta \]

Value

The output of fitMultiBin gives the class format fitMuB and fit consisting a list
- bin.ran.var: binomial random variables.
- obs.freq: corresponding observed frequencies.
- exp.freq: corresponding expected frequencies.
- statistic: chi-squared test statistics.
- df: degree of freedom.
- p.value: probability value by chi-squared test statistic.
- fitMuB: fitted probability values of dMultiBin.
- NegLL: Negative Log Likelihood value.
- p: estimated probability value.
- theta: estimated theta parameter value.
- AIC: AIC value.
- call: the inputs of the function.

Methods summary, print, AIC, residuals and fitted can be used to extract specific outputs.
fitTriBin

Fitting the Triangular Binomial Distribution when binomial random variable, frequency and mode value are given

Description

The function will fit the Triangular Binomial distribution when random variables, corresponding frequencies and mode parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.

References

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

See Also

mle2

Examples

No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEMultiBin(x=No.D.D,freq=Obs.fre.1,p=0.1,theta=.3)

pMultiBin <- bbmle::coef(parameters)[1] #assigning the estimated probability value
thetaMultiBin <- bbmle::coef(parameters)[2] #assigning the estimated theta value

#fitting when the random variable,frequencies,probability and theta are given
results <- fitMultiBin(No.D.D,Obs.fre.1,pMultiBin,thetaMultiBin)
results

#extracting the AIC value
AIC(results)

#extract fitted values
fitted(results)
Usage

fitTriBin(x, obs.freq, mode)

Arguments

x vector of binomial random variables.
obs.freq vector of frequencies.
mode single value for mode.

Details

\[0 < \text{mode} = c < 1 \]
\[x = 0, 1, 2, ... \]
\[0 < \text{mode} < 1 \]
\[\text{obs.freq} \geq 0 \]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of fitTriBin gives the class format fitTB and fit consisting a list
bin.ran.var binomial random variables.
obs.freq corresponding observed frequencies.
exp.freq corresponding expected frequencies.
statistic chi-squared test statistics value.
df degree of freedom.
p.value probability value by chi-squared test statistic.
fitTB fitted probability values of dTriBin.
NegLL Negative Log Likelihood value.
mode estimated mode value.
AIC AIC value.
over.dis.para over dispersion value.
call the inputs of the function.
Methods summary, print, AIC, residuals and fitted can be used to extract specific outputs.
References

Available at: http://dx.doi.org/10.1007/978-0-8176-4626-4_2.

Examples

```r
No.D.D <- 0:7  #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)  #assigning the corresponding frequencies

modeTriBin <- EstMLETriBin(No.D.D,Obs.fre.1)$mode  #assigning the extracted the mode value

#fitting when the random variable,frequencies,mode value are given.
results <- fitTriBin(No.D.D,Obs.fre.1,modeTriBin)
results

#extract AIC value
AIC(results)

#extract fitted values
fitted(results)
```

<table>
<thead>
<tr>
<th>Male_Children</th>
<th>Male children data</th>
</tr>
</thead>
</table>

Description

The number of male children among the first 12 children of family size 13 in 6115 families taken from the hospital records in the nineteenth century Saxony (Sokal & Rohlf(1994), Lindsey (1995), p. 59). The thirteenth child is ignored to assuage the effect of families non-randomly stopping when a desired gender is reached.

Usage

Male_Children

Format

A data frame with 2 columns and 13 rows.

No_of_Males No of Male children among first 12 children of family size 13
freq Observed frequencies for corresponding male children
Source

Extracted from
Available at: http://conteudo.icmc.usp.br/CMS/Arquivos/arquivos_enviados/BIBLIOTECA_113_NSE_90.pdf

Examples

\begin{verbatim}
Male_Children$No_of_Males # extracting the binomial random variables
sum(Male_Children$freq) # summing all the frequencies
\end{verbatim}

\begin{verbatim}
mazBETA Beta Distribution
\end{verbatim}

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Beta Distribution bounded between [0,1].

Usage

mazBETA(r, a, b)

Arguments

\begin{verbatim}
r vector of moments.
a single value for shape parameter alpha representing as a.
b single value for shape parameter beta representing as b.
\end{verbatim}

Details

The probability density function and cumulative density function of a unit bounded beta distribution with random variable \(P \) are given by

\[
g_P(p) = \frac{p^{a-1}(1-p)^{b-1}}{B(a,b)} \quad : 0 \leq p \leq 1
\]

\[
G_P(p) = \frac{B_p(a,b)}{B(a,b)} \quad : 0 \leq p \leq 1
\]

\[a, b > 0 \]
The mean and the variance are denoted by

\[E[P] = \frac{a}{a + b} \]

\[\text{var}[P] = \frac{ab}{(a + b)^2(a + b + 1)} \]

The moments about zero is denoted as

\[E[P^r] = \prod_{i=0}^{r-1} \left(\frac{a + i}{a + b + i} \right) \]

for \(r = 1, 2, 3, \ldots \)

Defined as \(B_p(a, b) = \int_0^p t^{a-1}(1 - t)^{b-1} \, dt \) is incomplete beta integrals and \(B(a, b) \) is the beta function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `mazBETA` gives the moments about zero in vector form.

References

Available at: http://linkinghub.elsevier.com/retrieve/pii/0167947396900158.

See Also

Beta

or

Examples

```r
#plotting the random variables and probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
    xlim = c(0,1),ylim = c(0,4))
for (i in 1:4)
{
    lines(seq(0,1,by=0.01),dBETA(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])
}
dBETA(seq(0,1,by=0.01),2,3)$pdf #extracting the pdf values
```
mazGAMMA

Gamma Distribution

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for Gamma Distribution bounded between [0,1].

Usage

mazGAMMA(r, c, l)

Arguments

- `r` vector of moments.
- `c` single value for shape parameter c.
- `l` single value for shape parameter l.

Details

The probability density function and cumulative density function of a unit bounded Gamma distribution with random variable P are given by

\[g_P(p) = \frac{c^p}{\gamma(l)} [\ln(1/p)]^{l-1} \]

\[G_P(p) = \frac{I_g(l, c\ln(1/p))}{\gamma(l)} \]

\[0 \leq p \leq 1 \]
The mean the variance are denoted by

\[
E[P] = \left(\frac{c}{c+1} \right)^l
\]

\[
\text{var}[P] = \left(\frac{c}{c+2} \right)^l - \left(\frac{c}{c+1} \right)^{2l}
\]

The moments about zero is denoted as

\[
E[P^r] = \left(\frac{c}{c+r} \right)^l
\]

\(r = 1, 2, 3, \ldots\)

Defined as \(\gamma(l)\) is the gamma function. Defined as \(Ig(l, cln(1/p)) = \int_0^{cln(1/p)} t^{l-1}e^{-t}dt\) is the

Lower incomplete gamma function.

NOTE : If input parameters are not in given domain conditions necessary error messages will be

provided to go further.

Value

The output of mazGAMMA gives the moments about zero in vector form.

References

no. 3, 176–200.

See Also

GammaDist

Examples

#plotting the random variables and probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,4))
for (i in 1:4)
{
 lines(seq(0,1,by=0.01),dGAMMA(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])
}
dGAMMA(seq(0,1,by=0.01),5,6)$pdf #extracting the pdf values
dGAMMA(seq(0,1,by=0.01),5,6)$mean #extracting the mean
dGAMMA(seq(0,1,by=0.01),5,6)$var #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",
xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
 lines(seq(0,1,by=0.01),pGAMMA(seq(0,1,by=0.01),a[i],a[i]),col = col[i])
}
pGAMMA(seq(0,1,by=0.01),5,6) #acquiring the cumulative probability values
mazGAMMA(1.4,5,6) #acquiring the moment about zero values
mazGAMMA(2,5,6)-mazGAMMA(1,5,6)^2 #acquiring the variance for a=5,b=6

#only the integer value of moments is taken here because moments cannot be decimal
mazGAMMA(1.9,5.5,6)

mazGBeta1

Generalized Beta Type-1 Distribution

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Generalized Beta Type-1 Distribution bounded between [0,1].

Usage

mazGBeta1(r,a,b,c)

Arguments

r vector of moments
a single value for shape parameter alpha representing as a.
b single value for shape parameter beta representing as b.
c single value for shape parameter gamma representing as c.

Details

The probability density function and cumulative density function of a unit bounded Generalized Beta Type-1 Distribution with random variable P are given by

\[g_P(p) = \frac{c}{B(a,b)} p^{ac-1} (1 - p^c)^{b-1} \]

; \(0 \leq p \leq 1 \)

\[G_P(p) = \frac{p^{ac}}{a B(a,b)} 2F1(a,1-b;p^c;a+1) \]
\[0 \leq p \leq 1 \quad a, b, c > 0 \]

The mean and the variance are denoted by

\[E[P] = \frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} \]

\[\text{var}[P] = \frac{B(a + b, \frac{2}{c})}{B(a, \frac{2}{c})} - \left(\frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} \right)^2 \]

The moments about zero is denoted as

\[E[P^r] = \frac{B(a + b, \frac{r}{c})}{B(a, \frac{r}{c})} \]

\(r = 1, 2, 3, \ldots \)

Defined as \(B(a, b) \) is Beta function. Defined as \(2F1(a, b; c; d) \) is Gaussian Hypergeometric function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output \texttt{mazGBeta1} gives the moments about zero in vector form.

References

Examples

```r
# plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.1, 0.2, 0.3, 1.5, 2.15)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,10))
for (i in 1:5)
{
  lines(seq(0,1,by=0.001),dGBeta1(seq(0,1,by=0.001),a[i],1,b[i]+a[i])$pdf,col = col[i])
```
mazGHGBeta

Description
These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Gaussian Hypergeometric Generalized Beta distribution bounded between [0,1].

Usage
mazGHGBeta(r,n,a,b,c)

Arguments
- r: vector of moments.
- n: single value for no of binomial trials.
- a: single value for shape parameter alpha representing as a.
- b: single value for shape parameter beta representing as b.
- c: single value for shape parameter lambda representing as c.

Details
The probability density function and cumulative density function of a unit bounded Gaussian Hypergeometric Generalized Beta Distribution with random variable P are given by

\[
g_P(p) = \frac{1}{B(a,b)} \frac{2F1(-n,a;-b-n+1;1)}{2F1(-n,a;-b-n+1;c)} p^{a-1}(1-p)^{b-1} \frac{e^{b+n}}{(c+(1-c)p)^{a+b+n}}
\]

; 0 ≤ p ≤ 1

\[
G_P(p) = \int_0^p \frac{1}{B(a,b)} \frac{2F1(-n,a;-b-n+1;1)}{2F1(-n,a;-b-n+1;c)} t^{a-1}(1-t)^{b-1} \frac{e^{b+n}}{(c+(1-c)t)^{a+b+n}} dt
\]
\[0 \leq p \leq 1\]
a, b, c > 0
\[n = 1, 2, 3, ...\]

The mean and the variance are denoted by

\[E[P] = \int_0^1 \frac{p}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1}(1-p)^{b-1} \frac{c^{b+n}}{(c + (1-c)p)^{a+b+n}} dp\]

\[\text{var}[P] = \int_0^1 \frac{p^2}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1}(1-p)^{b-1} \frac{c^{b+n}}{(c + (1-c)p)^{a+b+n}} dp - (E[p])^2\]

The moments about zero is denoted as

\[E[P^r] = \int_0^1 \frac{p^r}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1}(1-p)^{b-1} \frac{c^{b+n}}{(c + (1-c)p)^{a+b+n}} dp\]

\[r = 1, 2, 3, ...\]

Defined as \(B(a, b)\) as the beta function. Defined as \(2F1(a, b; c; d)\) as the Gaussian Hypergeometric function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `mazGHGBeta` give the moments about zero in vector form.

References

Available at: http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x

See Also

`hypergeo_powerseries`

Examples

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(.1,.2,.3,1.5,2.15)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,10))
for (i in 1:5){
lines(seq(0,1,by=0.001),dGHGBeta(seq(0,1,by=0.001),7,1+a[i],0.3,1+a[i])$pdf,col = col[i])
```
mazKUM

Kumaraswamy Distribution

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Kumaraswamy Distribution bounded between [0,1].

Usage

mazKUM(r,a,b)

Arguments

r

vector of moments.

a

single value for shape parameter alpha representing as a.

b

single value for shape parameter beta representing as b.
Details

The probability density function and cumulative density function of a unit bounded Kumaraswamy Distribution with random variable \(P \) are given by

\[
g_P(p) = abp^{a-1}(1 - p^a)^{b-1}
\]

\[; 0 \leq p \leq 1\]

\[
G_P(p) = 1 - (1 - p^a)^b
\]

\[; 0 \leq p \leq 1\]

\(a, b > 0\)

The mean and the variance are denoted by

\[
E[P] = bB(1 + \frac{1}{a}, b)
\]

\[
var[P] = bB(1 + \frac{2}{a}, b) - (bB(1 + \frac{1}{a}, b))^2
\]

The moments about zero is denoted as

\[
E[P^r] = bB(1 + \frac{r}{a}, b)
\]

\(r = 1, 2, 3, ... \)

Defined as \(B(a, b) \) is the beta function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of mazKUM gives the moments about zero in vector form.

References

Available at: http://dx.doi.org/10.1016/0022-1694(80)90036-0.

Available at: http://dx.doi.org/10.1016/j.stamet.2008.04.001.

See Also

Kumaraswamy
Examples

plotting the random variables and probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,6))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),dKUM(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])
}
dKUM(seq(0,1,by=0.01),2,3)$pdf # extracting the probability values
dKUM(seq(0,1,by=0.01),2,3)$mean # extracting the mean
dKUM(seq(0,1,by=0.01),2,3)$var # extracting the variance

plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),pKUM(seq(0,1,by=0.01),a[i],a[i]),col = col[i])
}
pKUM(seq(0,1,by=0.01),2,3) # acquiring the cumulative probability values
mazKUM(1.4,3,2) # acquiring the moment about zero values
mazKUM(2,2,3)-mazKUM(1,2,3)^2 # acquiring the variance for a=2,b=3

only the integer value of moments is taken here because moments cannot be decimal
mazKUM(1.9,5.5,6)

mazTRI

Triangular Distribution Bounded Between [0,1]

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moments about zero values for the Triangular Distribution bounded between [0,1].

Usage

mazTRI(r,mode)

Arguments

r vector of moments.
mode single value for mode.
Details

Setting $min = 0$ and $max = 1$ $mode = c$ in the Triangular distribution a unit bounded Triangular distribution can be obtained. The probability density function and cumulative density function of a unit bounded Triangular distribution with random variable P are given by

\[
g_P(p) = \begin{cases} \frac{2p}{c} & ; \quad 0 \leq p < c \\ \frac{2(1-p)}{(1-c)} & ; \quad c \leq p \leq 1 \end{cases}
\]

\[
G_P(p) = \begin{cases} \frac{p^2}{c} & ; \quad 0 \leq p < c \\ 1 - \frac{(1-p)^2}{(1-c)} & ; \quad c \leq p \leq 1 \end{cases}
\]

The mean and the variance are denoted by

\[
E[P] = \frac{(a + b + c)}{3} = \frac{(1 + c)}{3}
\]

\[
var[P] = \frac{a^2 + b^2 + c^2 - ab - ac - bc}{18} = \frac{(1 + c^2 - c)}{18}
\]

Moments about zero is denoted as

\[
E[P^r] = 2\frac{c^{r+2}}{c(r+2)} + \frac{2(1 - c^{r+1})}{(1 - c)(r + 1)} + \frac{2(c^{r+2} - 1)}{(1 - c)(r + 2)}
\]

$r = 1, 2, 3, ...$

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of mazTRI give the moments about zero in vector form.

References

See Also

triangle

———

Triangular

Examples

#plotting the random variables and probability values
col <- rainbow(4)
x <- seq(0.2,0.8,by=0.2)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,3))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),dTRI(seq(0,1,by=0.01),x[i])$pdf,col = col[i])
}
dTRI(seq(0,1,by=0.05),0.3)$pdf #extracting the pdf values
dTRI(seq(0,1,by=0.01),0.3)$mean #extracting the mean
dTRI(seq(0,1,by=0.01),0.3)$var #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(4)
x <- seq(0.2,0.8,by=0.2)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),pTRI(seq(0,1,by=0.01),x[i]),col = col[i])
}
pTRI(seq(0,1,by=0.01),0.3) #acquiring the cumulative probability values
mazTRI(1.4,3) #acquiring the moment about zero values
mazTRI(2,.3)-mazTRI(1,.3)^2 #variance for when is mode 0.3

#only the integer value of moments is taken here because moments cannot be decimal
mazTRI(1.9,0.5)
Description

These functions provide the ability for generating probability density values, cumulative probability density values and moments about zero values for the Uniform Distribution bounded between \([0,1]\).

Usage

```mazUNI(r)```

Arguments

- \(r\) vector of moments

Details

Setting \(a = 0\) and \(b = 1\) in the Uniform Distribution a unit bounded Uniform Distribution can be obtained. The probability density function and cumulative density function of a unit bounded Uniform Distribution with random variable \(P\) are given by

\[
g_P(p) = 1 \quad 0 \leq p \leq 1
\]

\[
G_P(p) = p \quad 0 \leq p \leq 1
\]

The mean and the variance are denoted as

\[
E[P] = \frac{1}{a + b} = 0.5
\]

\[
\text{var}[P] = \frac{(b - a)^2}{12} = 0.0833
\]

Moments about zero is denoted as

\[
E[P^r] = \frac{e^{rb} - e^{ra}}{r(b - a)} = \frac{e^r - 1}{r}
\]

\(r = 1, 2, 3, \ldots\)

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `mazUNI` gives the moments about zero in vector form.
References


See Also

Uniform

or


Examples

#plotting the random variables and probability values
plot(seq(0,1,by=0.01),dUNI(seq(0,1,by=0.01))$pdf,type = "l",main="Probability density graph",
    xlab="Random variable",ylab="Probability density values")

dUNI(seq(0,1,by=0.05))$pdf #extract the pdf values
dUNI(seq(0,1,by=0.01))$mean #extract the mean
dUNI(seq(0,1,by=0.01))$var #extract the variance

#plotting the random variables and cumulative probability values
plot(seq(0,1,by=0.01),pUNI(seq(0,1,by=0.01)),type = "l",main="Cumulative density graph",
    xlab="Random variable",ylab="Cumulative density values")
pUNI(seq(0,1,by=0.05)) #acquiring the cumulative probability values

mazUNI(c(1,2,3)) #acquiring the moment about zero values

#only the integer value of moments is taken here because moments cannot be decimal
mazUNI(1.9)

---

NegLLAddBin

Negative Log Likelihood value of Additive Binomial distribution

Description

This function will calculate the negative log likelihood value when the vector of binomial random variable and vector of corresponding frequencies are given with the input parameters.

Usage

NegLLAddBin(x,freq,p,alpha)
NegLLAddBin

Arguments

x vector of binomial random variables.

freq vector of frequencies.

p single value for probability of success.

alpha single value for alpha parameter.

Details

\[ freq \geq 0 \]

\[ x = 0, 1, 2, \ldots \]

\[ 0 < p < 1 \]

\[ -1 < \alpha < 1 \]

Value

The output of NegLLAddBin will produce a single numeric value.

References


Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.


Examples

No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

NegLLAddBin(No.D.D,Obs.fre.1,.5,.03) #acquiring the negative log likelihood value
NegLLBetaBin

Negative Log Likelihood value of Beta-Binomial Distribution

Description

This function will calculate the Negative Log Likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the shape parameters a and b.

Usage

NegLLBetaBin(x,freq,a,b)

Arguments

- **x**: vector of binomial random variables.
- **freq**: vector of frequencies.
- **a**: single value for shape parameter alpha representing as a.
- **b**: single value for shape parameter beta representing as b.

Details

\[
0 < a, b \\
freq \geq 0 \\
x = 0, 1, 2, ...
\]

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of NegLLBetaBin will produce a single numeric value.

References

Examples

No.D.D <- 0:7  # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)  # assigning the corresponding frequencies

NegLLBetaBin(x=No.D.D,freq=Obs.fre.1,a=.3,b=.4)  # acquiring the negative log likelihood value

---

NegLLBetaCorrBin

Negative Log Likelihood value of Beta-Correlated Binomial distribution

Description

This function will calculate the negative log likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the input parameters.

Usage

NegLLBetaCorrBin(x,freq,cov,a,b)

Arguments

- **x**: vector of binomial random variables.
- **freq**: vector of frequencies.
- **cov**: single value for covariance.
- **a**: single value for alpha parameter.
- **b**: single value for beta parameter.

Details

\[
freq \geq 0 \\
x = 0, 1, 2, \ldots \\
-\infty < cov < +\infty \\
0 < a, b
\]

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of NegLLBetaCorrBin will produce a single numeric value.
References


Examples

No.D.D <- 0:7  #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95)  #assigning the corresponding frequencies

NegLLBetaCorrBin(No.D.D,Obs.fre.1,0.001,9.03,10)  #acquiring the negative log likelihood value

Description

This function will calculate the negative log likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the input parameters.

Usage

NegLLCOMPBin(x,freq,p,v)

Arguments

x vector of binomial random variables.
freq vector of frequencies.
p single value for probability of success.
v single value for v.

Details

freq ≥ 0
x = 0, 1, 2, ...
0 < p < 1
−∞ < v < +∞

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of NegLLCOMPBin will produce a single numeric value.
NegLLCorrBin

References


Available at: http://conteudo.icmc.usp.br/CMS/Arquivos/arquivos_enviados/BIBLIOTECA_113_NSE_90.pdf

Examples

```r
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
NegLLCOMPBin(No.D.D,Obs.fre.1,.5,.03) #acquiring the negative log likelihood value
```

Description

This function will calculate the negative log likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the input parameters.

Usage

```r
NegLLCorrBin(x,freq,p,cov)
```

Arguments

- `x`: vector of binomial random variables.
- `freq`: vector of frequencies.
- `p`: single value for probability of success.
- `cov`: single value for covariance.

Details

\[
freq \geq 0
\]

\[
x = 0, 1, 2, ...
\]

\[
0 < p < 1
\]

\[-\infty < cov < +\infty\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of NegLLCorrBin will produce a single numeric value.

References


Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.


Examples

No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
NegLLCorrBin(No.D.D,Obs.fre.1,.5,.03) #acquiring the negative log likelihood value

NegLLGammaBin

Negative Log Likelihood value of Gamma Binomial Distribution

Description

This function will calculate the Negative Log Likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the shape parameters l and c.

Usage

NegLLGammaBin(x,freq,c,l)

Arguments

x vector of binomial random variables.
freq vector of frequencies.
c single value for shape parameter c.
l single value for shape parameter l.
Details

\[ 0 < l, c \]
\[ freq \geq 0 \]
\[ x = 0, 1, 2, \ldots \]

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of `NegLLGammaBin` will produce a single numeric value.

References


Examples

```R
No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies
NegLLGammaBin(No.D.D,Obs.fre.1,.3,.4) # acquiring the negative log likelihood value
```

---

**NegLLGHGBB**  
*Negative Log Likelihood value of Gaussian Hypergeometric Generalized Beta Binomial Distribution*

Description

This function will calculate the negative log likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the shape parameters a,b and c.

Usage

`NegLLGHGBB(x,freq,a,b,c)`

Arguments

- `x`: vector of binomial random variables.
- `freq`: vector of frequencies.
- `a`: single value for shape parameter alpha representing a.
- `b`: single value for shape parameter beta representing b.
- `c`: single value for shape parameter lambda representing c.
NegLLGrassiaIIBin

Details

\[ 0 < a, b, c \]
\[ freq \geq 0 \]
\[ x = 0, 1, 2, \ldots \]

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of NegLLGHGBB will produce a single numeric value.

References


Available at: [http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x](http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x)


See Also

[hypergeo_powerseries](#)

Examples

```r
No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies
NegLLGHGBB(No.D.D,Obs.fre.1,.2,.3,1) # acquiring the negative log likelihood value
```

---

NegLLGrassiaIIBin *Negative Log Likelihood value of Grassia II Binomial Distribution*

Description

This function will calculate the Negative Log Likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the shape parameters l and c.

Usage

NegLLGrassiaIIBin(x,freq,a,b)
NegLLKumBin

Arguments

- `x` vector of binomial random variables.
- `freq` vector of frequencies.
- `a` single value for shape parameter a.
- `b` single value for shape parameter b.

Details

\[
0 < a, b \\
freq \geq 0 \\
x = 0, 1, 2, ...
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of NegLLGrassiaIIBin will produce a single numeric value.

References


Examples

```r
No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies
NegLLGrassiaIIBin(No.D.D,Obs.fre.1,.3,.4) # acquiring the negative log likelihood value
```

NegLLKumBin

Negative Log Likelihood value of Kumaraswamy Binomial Distribution

Description

This function will calculate the Negative Log Likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the shape parameters a and b and iterations it.

Usage

```r
NegLLKumBin(x,freq,a,b,it=25000)
```
**Arguments**

- **x**: vector of binomial random variables.
- **freq**: vector of frequencies.
- **a**: single value for shape parameter alpha representing as a.
- **b**: single value for shape parameter beta representing as b.
- **it**: number of iterations to converge as a proper probability function replacing infinity.

**Details**

\[
0 < a, b \\
x = 0, 1, 2, ... \\
f_{\text{freq}} \geq 0 \\
it > 0
\]

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of `NegLLKumBin` will produce a single numeric value.

**References**


**Examples**

```r
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

Not run:
NegLLKumBin(No.D.D,Obs.fre.1,1.3,4.4) #acquiring the negative log likelihood value

End(Not run)
```
NegLLLMBin

Description

This function will calculate the negative log likelihood value when the vector of binomial random variable and vector of corresponding frequencies are given with the input parameters.

Usage

NegLLLMBin(x, freq, p, phi)

Arguments

- `x` vector of binomial random variables.
- `freq` vector of frequencies.
- `p` single value for probability of success.
- `phi` single value for phi parameter.

Details

\[ \text{freq} \geq 0 \]
\[ x = 0, 1, 2, \ldots \]
\[ 0 < p < 1 \]
\[ 0 < \phi \]

Value

The output of NegLLLMBin will produce a single numeric value.

References


Examples

```R
No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies
NegLLLMBin(No.D.D,Obs.fre.1,.5,3) # acquiring the negative log likelihood value
```
NegLLMcGBB

*Negative Log Likelihood value of McDonald Generalized Beta Binomial Distribution*

**Description**

This function will calculate the negative log likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the shape parameters a, b and c.

**Usage**

\[
\text{NegLLMcGBB}(x, \text{freq}, a, b, c)
\]

**Arguments**

- **x**: vector of binomial random variables.
- **freq**: vector of frequencies.
- **a**: single value for shape parameter alpha representing as a.
- **b**: single value for shape parameter beta representing as b.
- **c**: single value for shape parameter gamma representing as c.

**Details**

\[
0 < a, b, c \\
\text{freq} \geq 0 \\
x = 0, 1, 2, ...
\]

**Value**

The output of NegLLMcGBB will produce a single numeric value.

**References**


Examples

```r
No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies
NegLLMcGBB(No.D.D,Obs.fre.1,.2,.3,1) # acquiring the negative log likelihood value
```

**Description**

This function will calculate the negative log likelihood value when the vector of binomial random variable and vector of corresponding frequencies are given with the input parameters.

**Usage**

```r
NegLLMultiBin(x,freq,p,theta)
```

**Arguments**

- `x` vector of binomial random variables.
- `freq` vector of frequencies.
- `p` single value for probability of success.
- `theta` single value for theta parameter.

**Details**

\[ freq \geq 0 \]
\[ x = 0,1,2,... \]
\[ 0 < p < 1 \]
\[ 0 < \theta \]

**Value**

The output of `NegLLMultiBin` will produce a single numeric value.

**References**


Available at: [http://www.tandfonline.com/doi/abs/10.1080/03610928508828990](http://www.tandfonline.com/doi/abs/10.1080/03610928508828990).
Examples

```r
No.D.D <- 0:7 # assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) # assigning the corresponding frequencies

NegLLMultiBin(No.D.D,Obs.fre.1,.5,3) # acquiring the negative log likelihood value
```

---

**NegLLTriBin**  
*Negative Log Likelihood value of Triangular Binomial Distribution*

**Description**

This function will calculate the Negative Log Likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the mode value.

**Usage**

```r
NegLLTriBin(x,freq,mode)
```

**Arguments**

- `x`  
  vector of binomial random variables.

- `freq`  
  vector of frequencies.

- `mode`  
  single value for mode.

**Details**

\[ 0 < mode = c < 1 \]

\[ x = 0, 1, 2, \ldots \]

\[ freq \geq 0 \]

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of `NegLLTriBin` will produce a single numeric value.
References


Available at: http://dx.doi.org/10.1007/978-0-8176-4626-4_2.


Examples

```r
No.D.D <- 0:7 #assigning the Random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

NegLLTriBin(No.D.D,Obs.fre.1,.023) #acquiring the Negative log likelihood value
```

Description

After fitting the distribution using this function we can extract the overdispersion value. This function works for fitTriBin, fitBetaBin, fitKumBin, fitGHGBB and fitMcGBB for Binomial Mixture Distributions. Similarly, Alternate Binomial Distributions also support this function for fitAdBin, fitBetaCorrBin, fitCOMPBin, fitCorrBin and fitMultiBin.

Usage

```r
Overdispersion(object)
```

Arguments

- `object`: An object from one of the classes of fitTB, fitBB, fitKB, fitGB, fitMB.

Details

**Note**: Only objects from classes of above mentioned classes can be used.

Value

The output of `Overdispersion` gives a single value which is the overdispersion.
Examples
No.D.D=0:7 #assigning the random variables
Obs.fre.1=c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies

#estimating mode value for given data
results<-EstMLETriBin(No.D.D,Obs.fre.1)
results
mode<-results$mode

#fitting the Triangular Bionomial distribution for estimated parameters
TriBin<-fitTriBin(No.D.D,Obs.fre.1,mode)
TriBin

#extracting the overdispersion
Overdispersion(TriBin)

---

pAddBin

Additive Binomial Distribution

Description
These functions provide the ability for generating probability function values and cumulative probability function values for the Additive Binomial Distribution.

Usage
pAddBin(x,n,p,alpha)

Arguments
x vector of binomial random variables.
n single value for no of binomial trials.
p single value for probability of success.
alpha single value for alpha parameter.

Details
The probability function and cumulative function can be constructed and are denoted below
The cumulative probability function is the summation of probability function values.

\[
P_{AddBin}(x) = \binom{n}{x} p^x (1-p)^{n-x} \left( \frac{alpha}{2} \left( \frac{x(x-1)}{p} + \frac{(n-x)(n-x-1)}{1-p} - \frac{alphan(n-1)}{2} \right) + 1 \right)
\]

\[x = 0, 1, 2, 3, ... n\]
\[ n = 1, 2, 3, ... \]
\[ 0 < p < 1 \]
\[ -1 < \alpha < 1 \]

The alpha is in between
\[
\frac{-2}{n(n-1)} \min \left( \frac{p}{1-p}, \frac{1-p}{p} \right) \leq \alpha \leq \left( \frac{n + (2p - 1)^2}{4p(1-p)} \right)^{-1}
\]

The mean and the variance are denoted as
\[
E_{Addbin}[x] = np
\]
\[
Var_{Addbin}[x] = np(1-p)(1+(n-1)\alpha)
\]

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of `pAddBin` gives cumulative probability values in vector form.

**References**


Available at: [http://www.tandfonline.com/doi/abs/10.1080/03610928508828990](http://www.tandfonline.com/doi/abs/10.1080/03610928508828990).


**Examples**

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58, 0.59, 0.6, 0.61, 0.62)
b <- c(0.022, 0.023, 0.024, 0.025, 0.026)
plot(0,0,main="Additive binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dAddBin(0:10,10,a[i],b[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dAddBin(0:10,10,a[i],b[i])$pdf,col = col[i],pch=16)
}
dAddBin(0:10,10,0.58,0.022)$pdf #extracting the probability values
dAddBin(0:10,10,0.58,0.022)$mean #extracting the mean
```
#extracting the variance

#plotting the random variables and cumulative probability values

col <- rainbow(5)
a <- c(0.58, 0.59, 0.6, 0.61, 0.62)
b <- c(0.022, 0.023, 0.024, 0.025, 0.026)
plot(0,0,main="Additive binomial probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
  lines(0:10,pAddBin(0:10,10,a[i],b[i]),col = col[i],lwd=2.85)
  points(0:10,pAddBin(0:10,10,a[i],b[i]),col = col[i],pch=16)
}
pAddBin(0:10,10,0.58,0.022) #acquiring the cumulative probability values

---

**pBETA**

*Beta Distribution*

**Description**

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Beta Distribution bounded between $[0,1]$.

**Usage**

```r
pBETA(p,a,b)
```

**Arguments**

- `p` vector of probabilities.
- `a` single value for shape parameter alpha representing as $a$.
- `b` single value for shape parameter beta representing as $b$.

**Details**

The probability density function and cumulative density function of a unit bounded beta distribution with random variable $P$ are given by

$$g_P(p) = \frac{p^{a-1}(1-p)^{b-1}}{B(a,b)}$$

$0 \leq p \leq 1$

$$G_P(p) = \frac{B_P(a,b)}{B(a,b)}$$

$0 \leq p \leq 1$

$a, b > 0$
The mean and the variance are denoted by

\[ E[P] = \frac{a}{a + b} \]
\[ \text{var}[P] = \frac{ab}{(a + b)^2(a + b + 1)} \]

The moments about zero is denoted as

\[ E[P^r] = \prod_{i=0}^{r-1} \left( \frac{a + i}{a + b + i} \right) \]

\( r = 1, 2, 3, ... \)

Defined as \( B_p(a, b) = \int_0^p t^{a-1}(1 - t)^{b-1} \, dt \) is incomplete beta integrals and \( B(a, b) \) is the beta function.

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of `pBETA` gives the cumulative density values in vector form.

**References**


Available at: [http://linkinghub.elsevier.com/retrieve/pii/0167947396900158](http://linkinghub.elsevier.com/retrieve/pii/0167947396900158).

**See Also**

`Beta`

or


**Examples**

```r
plotting the random variables and probability values
col <- rainbow(4)
a <- c(1, 2, 5, 10)
plot(0, 0, main="Probability density graph", xlab="Random variable", ylab="Probability density values",
xlim = c(0, 1), ylim = c(0, 4))
for (i in 1:4){
 lines(seq(0, 1, by=0.01), dBETA(seq(0, 1, by=0.01), a[i], a[i])$pdf, col = col[i])
}
dBETA(seq(0, 1, by=0.01), 2, 3)$pdf # extracting the pdf values
```
#plotting the random variables and cumulative probability values

```r
col <- rainbow(4)
a <- c(1, 2, 5, 10)
plot(0, 0, main = "Cumulative density graph", xlab = "Random variable", ylab = "Cumulative density values",
 xlim = c(0, 1), ylim = c(0, 1))
for (i in 1:4)
{
 lines(seq(0, 1, by = 0.01), pBetaBin(seq(0, 1, by = 0.01), a[i], a[i]), col = col[i])
}
```

```r
pBetaBin(seq(0, 1, by = 0.01), 2, 3) #acquiring the cumulative probability values
mazBETA(1.4, 3, 2) #acquiring the moment about zero values
mazBETA(2, 3, 2) - mazBETA(1, 3, 2)^2 #acquiring the variance for a=3, b=2
```

#only the integer value of moments is taken here because moments cannot be decimal
mazBETA(1.9, 5.5, 6)

---

**pBetaBin**  
*Beta-Binomial Distribution*

### Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Beta-Binomial Distribution.

### Usage

```r
pBetaBin(x, n, a, b)
```

### Arguments

- **x**: vector of binomial random variables.
- **n**: single value for no of binomial trials.
- **a**: single value for shape parameter alpha representing as `a`.
- **b**: single value for shape parameter beta representing as `b`.

### Details

Mixing Beta distribution with Binomial distribution will create the Beta-Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below. The cumulative probability function is the summation of probability function values.

\[
P_{BetaBin}(x) = \binom{n}{x} \frac{B(a + x, n + b - x)}{B(a, b)}
\]
\[ \begin{align*}
  a, b &> 0 \\
  x &= 0, 1, 2, 3, \ldots n \\
  n &= 1, 2, 3, \ldots
\end{align*} \]

The mean, variance and over dispersion are denoted as

\[ E_{BetaBin}[x] = \frac{n a}{a + b} \]

\[ Var_{BetaBin}[x] = \frac{(nab)(a + b + n)}{(a + b)^2 (a + b + 1)} \]

\[ \text{overdispersion} = \frac{1}{a + b + 1} \]

Defined as \( B(a,b) \) is the beta function.

**Value**

The output of pBetaBin gives cumulative probability values in vector form.

**References**


Available at: [http://linkinghub.elsevier.com/retrieve/pii/0167947396900158](http://linkinghub.elsevier.com/retrieve/pii/0167947396900158).


**Examples**

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,0.2)
plot(0,0,main="Beta-binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)
}
dBetaBin(0:10,10,1)$pdf #extracting the pdf values
dBetaBin(0:10,10,1)$mean #extracting the mean
```
pBetaCorrBin

Beta-Correlated Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Beta-Correlated Binomial Distribution.

Usage

pBetaCorrBin(x,n,cov,a,b)

Arguments

x vector of binomial random variables.

n single value for no of binomial trials.

cov single value for covariance.

a single value for alpha parameter

b single value for beta parameter.

Details

The probability function and cumulative function can be constructed and are denoted below

The cumulative probability function is the summation of probability function values.

$$P_{BetaCorrBin}(x) = \binom{n}{x} \frac{B(a+b+n-x)}{B(a+b)} \left[ 1 + \frac{cov}{2} \left( \frac{(x-1)\prod_{k=1}^{x-1}(a+b+n-k)}{\prod_{k=1}^{x}(x+a-k)\prod_{k=1}^{x}(n-x+b-k)} \right) - \frac{(2x(n-1)\prod_{k=1}^{x-1}(a+b+n-k))}{(x+a-1)\prod_{k=1}^{x}(n-x+b-k) + \left( n(n-1)\prod_{k=1}^{x}(a+b+n-k) \right)} \right]$$
The Correlation is in between

\[-\frac{2}{n(n-1)} \min\left( \frac{p}{1-p}, \frac{1-p}{p} \right) \leq \text{correlation} \leq \frac{2p(1-p)}{(n-1)p(1-p) + 0.25 - fo}\]

where \(fo = \min(x - (n-1)p - 0.5)^2\)

The mean and the variance are denoted as

\[E_{\text{BetaCorrBin}}[x] = np\]
\[\text{Var}_{\text{BetaCorrBin}}[x] = np(1-p)(n\Theta + 1)(1 + \Theta)^{-1} + n(n-1)\text{cov}\]
\[\text{Corr}_{\text{BetaCorrBin}}[x] = \frac{\text{cov}}{p(1-p)}\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of pBetaCorrBin gives cumulative probability values in vector form.

References


Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.
Examples

```r
plotting the random variables and probability values
col <- rainbow(5)
a <- c(9.0,10,11,12,13)
b <- c(8.0,8.1,8.2,8.3,8.4)
plot(0,0,main="Beta-Correlated binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dBetaCorrBin(0:10,10,0.001,a[i],b[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dBetaCorrBin(0:10,10,0.001,a[i],b[i])$pdf,col = col[i],pch=16)
}
dBetaCorrBin(0:10,10,0.001,10,13)$pdf # extracting the pdf values
dBetaCorrBin(0:10,10,0.001,10,13)$mean # extracting the mean
dBetaCorrBin(0:10,10,0.001,10,13)$var # extracting the variance
dBetaCorrBin(0:10,10,0.001,10,13)$corr # extracting the correlation
dBetaCorrBin(0:10,10,0.001,10,13)$mincorr # extracting the minimum correlation value
dBetaCorrBin(0:10,10,0.001,10,13)$maxcorr # extracting the maximum correlation value

plotting the random variables and cumulative probability values
col <- rainbow(5)
a <- c(9.0,10,11,12,13)
b <- c(8.0,8.1,8.2,8.3,8.4)
plot(0,0,main="Beta-Correlated binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
 lines(0:10,pBetaCorrBin(0:10,10,0.001,a[i],b[i]),col = col[i],lwd=2.85)
 points(0:10,pBetaCorrBin(0:10,10,0.001,a[i],b[i]),col = col[i],pch=16)
}
pBetaCorrBin(0:10,10,0.001,10,13) # acquiring the cumulative probability values
```

---

**pCOMPBin**

**COM Poisson Binomial Distribution**

**Description**

These functions provide the ability for generating probability function values and cumulative probability function values for the COM Poisson Binomial Distribution.

**Usage**

```r
pCOMPBin(x,n,p,v)
```
\textit{pCOMPBin}

**Arguments**

- \(x\) vector of binomial random variables.
- \(n\) single value for no of binomial trials.
- \(p\) single value for probability of success.
- \(v\) single value for \(v\).

**Details**

The probability function and cumulative function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{COMPBin}(x) = \sum_{j=0}^{n} \binom{n}{j} p^x (1-p)^{n-x} j
\]

\(x = 0, 1, 2, 3, \ldots n\)

\(n = 1, 2, 3, \ldots\)

\(0 < p < 1\)

\(-\infty < v < +\infty\)

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of \(pCOMPBin\) gives cumulative probability values in vector form.

**References**

Extracted from


Available at: http://conteudo.icmc.usp.br/CMS/Arquivos/arquivos_enviados/BIBLIOTECA_113_NSE_90.pdf

**Examples**

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="COM Poisson Binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
lines(0:10,dCOMPBin(0:10,10,a[i],b[i])$pdf,col = col[i],lwd=2.85)
```
points(0:10,dCOMPBin(0:10,10,a[i],b[i])$pdf,col = col[i],pch=16) 
}
dCOMPBin(0:10,10,0.58,0.022)$pdf  #extracting the pdf values
dCOMPBin(0:10,10,0.58,0.022)$mean  #extracting the mean
dCOMPBin(0:10,10,0.58,0.022)$var  #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="COM Poisson Binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
  lines(0:10,pCOMPBin(0:10,10,a[i],b[i]),col = col[i],lwd=2.85)
  points(0:10,pCOMPBin(0:10,10,a[i],b[i]),col = col[i],pch=16)
}
pCOMPBin(0:10,10,0.58,0.022)  #acquiring the cumulative probability values

---

pCorrBin  

Correlated Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Correlated Binomial Distribution.

Usage

pCorrBin(x,n,p,cov)

Arguments

x  
vector of binomial random variables.

n  
single value for no of binomial trials.

p  
single value for probability of success.

cov  
single value for covariance.

Details

The probability function and cumulative function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.

\[
P_{CorrBin}(x) = \binom{n}{x} p^x (1 - p)^{n-x} \left( 1 + \frac{cov}{2p^2(1-p)^2} (x(np) - x + x(2p - 1) - np^2) \right)
\]
The Correlation is in between
\[
-2 \frac{n(n-1)}{\min(p,1-p) \cdot p} \leq \text{cov} \leq 2p(1-p) \frac{(n-1)p(1-p) + 0.25 - fo}{n(n-1)}
\]

where \(fo = \min(x - (n-1)p - 0.5)^2\)

The mean and the variance are denoted as
\[
E_{\text{CorrBin}}[x] = np
\]
\[
\text{Var}_{\text{CorrBin}}[x] = n(p(1-p) + (n-1)\text{cov})
\]
\[
\text{Corr}_{\text{CorrBin}}[x] = \frac{\text{cov}}{p(1-p)}
\]

**Value**

The output of \(p\text{CorrBin}\) gives cumulative probability values in vector form.

**References**


Available at: [http://www.tandfonline.com/doi/abs/10.1080/03610928508828990](http://www.tandfonline.com/doi/abs/10.1080/03610928508828990).


**See Also**

CBprob

**Examples**

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58, 0.59, 0.6, 0.61, 0.62)
b <- c(0.022, 0.023, 0.024, 0.025, 0.026)
plot(0,0,main="Correlated binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
lines(0:10,dCorrBin(0:10,10,a[i],b[i])$pdf,col = col[i],lwd=2.85)
points(0:10,dCorrBin(0:10,10,a[i],b[i])$pdf,col = col[i],pch=16)
}
```
These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for Gamma Distribution bounded between [0,1].

**Usage**

```r
pGAMMA(p, c, l)
```

**Arguments**

- **p**: vector of probabilities.
- **c**: single value for shape parameter c.
- **l**: single value for shape parameter l.

**Details**

The probability density function and cumulative density function of a unit bounded Gamma distribution with random variable $P$ are given by

$$ g_P(p) = \frac{c^c p^{c-1}}{\Gamma(c)} [\ln(1/p)]^{l-1} $$
\[ G_p(p) = \frac{Ig(l, cln(1/p))}{\gamma(l)} \]

\[ : 0 \leq p \leq 1 \]

\[ l, c > 0 \]

The mean the variance are denoted by

\[ E[P] = \left( \frac{c}{c+1} \right)^l \]

\[ \text{var}[P] = \left( \frac{c}{c+2} \right)^l - \left( \frac{c}{c+1} \right)^{2l} \]

The moments about zero is denoted as

\[ E[P^r] = \left( \frac{c}{c+r} \right)^l \]

\[ r = 1, 2, 3, \ldots \]

Defined as \( \gamma(l) \) is the gamma function. Defined as \( Ig(l, cln(1/p)) = \int_0^{cln(1/p)} t^{l-1} e^{-t} dt \) is the Lower incomplete gamma function.

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of \texttt{pGAMMA} gives the cumulative density values in vector form.

**References**


**See Also**

\texttt{GammaDist}

**Examples**

```r
plotting the random variables and probability values
col <- rainbow(4)
a <- c(1, 2, 5, 10)
plot(0, 0, main="Probability density graph", xlab="Random variable", ylab="Probability density values", xlim = c(0, 1), ylim = c(0, 4))
for (i in 1:4)
{
 lines(seq(0, 1, by=0.01), dGAMMA(seq(0, 1, by=0.01), a[i], a[i])$pdf, col = col[i])
}
dGAMMA(seq(0, 1, by=0.01), 5, 6)$pdf # extracting the pdf values
dGAMMA(seq(0, 1, by=0.01), 5, 6)$mean # extracting the mean
```
dGAMMA(seq(0,1,by=0.01),5,6)$var  #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
  lines(seq(0,1,by=0.01),pGAMMA(seq(0,1,by=0.01),a[i],a[i]),col = col[i])
}
pGAMMA(seq(0,1,by=0.01),5,6)  #acquiring the cumulative probability values
mazGAMMA(1.4,5,6)  #acquiring the moment about zero values
mazGAMMA(2,5,6)-mazGAMMA(1,5,6)^2  #acquiring the variance for a=5,b=6

#only the integer value of moments is taken here because moments cannot be decimal
mazGAMMA(1.9,5.5,6)

---

**pGammaBin**  
*Gamma Binomial Distribution*

**Description**

These functions provide the ability for generating probability function values and cumulative probability function values for the Gamma Binomial Distribution.

**Usage**

`pGammaBin(x, n, c, l)`

**Arguments**

- `x`  
  vector of binomial random variables.
- `n`  
  single value for no of binomial trials.
- `c`  
  single value for shape parameter c.
- `l`  
  single value for shape parameter l.

**Details**

Mixing Gamma distribution with Binomial distribution will create the Gamma Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{\text{GammaBin}}[x] = \binom{n}{x} \sum_{j=0}^{n-x} \binom{n-x}{j} (-1)^j \left( \frac{c}{c+x+j} \right)^j
\]
The mean, variance and over dispersion are denoted as

\[ E_{\text{GammaBin}}[x] = \left( \frac{c}{c+1} \right)^l \]

\[ \text{Var}_{\text{GammaBin}}[x] = n^2 \left[ \left( \frac{c}{c+1} \right)^l - \left( \frac{c}{c+1} \right)^{2l} \right] + n \left( \frac{c}{c+1} \right)^l (1-\left( \frac{c}{c+1} \right)^l) \]

\[ \text{overdispersion} = \frac{\left( \frac{c}{c+1} \right)^l - \left( \frac{c}{c+1} \right)^{2l}}{\left( \frac{c}{c+1} \right)^l [1 - \left( \frac{c}{c+1} \right)^l]} \]

Value

The output of pGammaBin gives cumulative probability values in vector form.

References


Examples

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,0.2)
plot(0,0,main="Gamma-binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)
}
dGammaBin(0:10,10,4,.2)$pdf #extracting the pdf values
dGammaBin(0:10,10,4,.2)$mean #extracting the mean
dGammaBin(0:10,10,4,.2)$var #extracting the variance
dGammaBin(0:10,10,4,.2)$over.dis.para #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:4)
{
 lines(0:10,pGammaBin(0:10,10,a[i],a[i]),col = col[i])
 points(0:10,pGammaBin(0:10,10,a[i],a[i]),col = col[i])
```
pGBeta1

Generalized Beta Type-1 Distribution

Description
These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Generalized Beta Type-1 Distribution bounded between $[0,1]$.

Usage
pGBeta1(p,a,b,c)

Arguments

- **p**: vector of probabilities.
- **a**: single value for shape parameter alpha representing as a.
- **b**: single value for shape parameter beta representing as b.
- **c**: single value for shape parameter gamma representing as c.

Details
The probability density function and cumulative density function of a unit bounded Generalized Beta Type-1 Distribution with random variable $P$ are given by

\[
g_P(p) = \frac{c}{B(a,b)} p^{a-1} (1 - p^c)^{b-1}
\]

for $0 \leq p \leq 1$

\[
G_P(p) = \frac{p^{ac}}{aB(a,b)} 2F1(a,1-b;p^c; a+1)
\]

for $0 \leq p \leq 1$

\[a, b, c > 0\]

The mean and the variance are denoted by

\[
E[P] = \frac{B(a+b, \frac{1}{c})}{B(a, \frac{1}{c})}
\]

\[
var[P] = \frac{B(a+b, \frac{2}{c})}{B(a, \frac{2}{c})} - \left( \frac{B(a+b, \frac{1}{c})}{B(a, \frac{1}{c})} \right)^2
\]
The moments about zero is denoted as
\[ E[P^r] = \frac{B(a + b, r)}{B(a, r)} \]
\[ r = 1, 2, 3, \ldots \]

Defined as \( B(a, b) \) is Beta function. Defined as \( 2F1(a, b; c; d) \) is Gaussian Hypergeometric function.

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output `pGBeta1` gives the cumulative density values in vector form.

**References**


**Examples**

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(.1,.2,.3,1.5,2.15)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values", xlim = c(0,1),ylim = c(0,10))
for (i in 1:5)
{
 lines(seq(0,1,by=0.001),dGBeta1(seq(0,1,by=0.001),a[i],1,2*a[i])$pdf,col = col[i])
}
dGBeta1(seq(0,1,by=0.01),2,3,1)$pdf #extracting the pdf values
dGBeta1(seq(0,1,by=0.01),2,3,1)$mean #extracting the mean
dGBeta1(seq(0,1,by=0.01),2,3,1)$var #extracting the variance

pGBeta1(0.04,2,3,4) #acquiring the cdf values for a=2,b=3,c=4
mazGBeta1(1.4,3,2,2) #acquiring the moment about zero values
mazGBeta1(2,3,2,2)-mazGBeta1(1,3,2,2)*2 #acquiring the variance for a=3,b=2,c=2

#only the integer value of moments is taken here because moments cannot be decimal
mazGBeta1(3.2,3,2,2)
```
Gaussian Hypergeometric Generalized Beta Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Gaussian Hypergeometric Generalized Beta Binomial distribution.

Usage

\[ p_{GHGBB}(x, n, a, b, c) \]

Arguments

- \( x \) vector of binomial random variables.
- \( n \) single value for no of binomial trials.
- \( a \) single value for shape parameter alpha value representing a.
- \( b \) single value for shape parameter beta value representing b.
- \( c \) single value for shape parameter lambda value representing c.

Details

Mixing Gaussian Hypergeometric Generalized Beta distribution with Binomial distribution will create the Gaussian Hypergeometric Generalized Beta Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{GHGBB}(x) = \frac{1}{2F1(-n, a; -b - n + 1; c)} \binom{n}{x} B(x + a, n - x + b) B(a, b + n) (c^x)
\]

\( a, b, c > 0 \)
\( x = 0, 1, 2, ..., n \)
\( n = 1, 2, 3, ... \)

The mean, variance and over dispersion are denoted as

\[
E_{GHGBB}[x] = nE_{GHGBeta}
\]

\[
Var_{GHGBB}[x] = nE_{GHGBeta}(1 - E_{GHGBeta}) + n(n - 1)Var_{GHGBeta}
\]

\[
overdispersion = \frac{\text{var}_{GHGBeta}}{E_{GHGBeta}(1 - E_{GHGBeta})}
\]

Defined as \( B(a, b) \) is the beta function. Defined as \( 2F1(a, b; c; d) \) is the Gaussian Hypergeometric function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of pGHGB gives cumulative probability function values in vector form.

References


Available at: http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x


See Also

hypergeo_powerseries

Examples

# Plotting the random variables and probability values
col <- rainbow(6)
a <- c(.1,.2,.3,1.5,2.1,3)
plot(0,0,main="GHGBB probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,7),ylim = c(0,0.9))
for (i in 1:6) {
  lines(0:7,dGHGBB(0:7,7,1+a[i],0.3,1+a[i])$pdf,col = col[i],lwd=2.85)
  points(0:7,dGHGBB(0:7,7,1+a[i],0.3,1+a[i])$pdf,col = col[i],pch=16)
}
dGHGBB(0:7,7,1.3,0.3,1.3)$pdf  # Extracting the pdf values
dGHGBB(0:7,7,1.3,0.3,1.3)$mean  # Extracting the mean
dGHGBB(0:7,7,1.3,0.3,1.3)$var  # Extracting the variance
dGHGBB(0:7,7,1.3,0.3,1.3)$over.dis.par  # Extracting the over dispersion value

# Plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable", ylab="Cumulative probability function values",xlim = c(0,7),ylim = c(0,1))
for (i in 1:4) {
  lines(0:7,pGHGBB(0:7,7,1+a[i],0.3,1+a[i]),col = col[i])
  points(0:7,pGHGBB(0:7,7,1+a[i],0.3,1+a[i]),col = col[i])
}
pGHGBB(0:7,7,1.3,0.3,1.3)  # Acquiring the cumulative probability values
Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Gaussian Hypergeometric Generalized Beta distribution bounded between $[0,1]$.

Usage

\[ \text{pGHGBeta}(p, n, a, b, c) \]

Arguments

- \( p \) vector of probabilities.
- \( n \) single value for no of binomial trials.
- \( a \) single value for shape parameter alpha representing as \( \alpha \).
- \( b \) single value for shape parameter beta representing as \( \beta \).
- \( c \) single value for shape parameter lambda representing as \( \lambda \).

Details

The probability density function and cumulative density function of a unit bounded Gaussian Hypergeometric Generalized Beta Distribution with random variable \( P \) are given by

\[
g_P(p) = \frac{1}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1} (1 - p)^{b-1} \frac{e^{b+n}}{(c + (1 - c)p)^{a+b+n}}
\]

\[ ; 0 \leq p \leq 1 \]

\[
G_P(p) = \int_0^p \frac{1}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} t^{a-1} (1 - t)^{b-1} \frac{e^{b+n}}{(c + (1 - c)t)^{a+b+n}} dt
\]

\[ ; 0 \leq p \leq 1 \]

\( a, b, c > 0 \)

\( n = 1, 2, 3, ... \)

The mean and the variance are denoted by

\[
E[P] = \int_0^1 \frac{p}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1} (1 - p)^{b-1} \frac{e^{b+n}}{(c + (1 - c)p)^{a+b+n}} dp
\]

\[
\text{var}[P] = \int_0^1 \frac{p^2}{B(a, b)} \frac{2F1(-n, a; -b - n + 1; 1)}{2F1(-n, a; -b - n + 1; c)} p^{a-1} (1 - p)^{b-1} \frac{e^{b+n}}{(c + (1 - c)p)^{a+b+n}} dp - (E[p])^2
\]
The moments about zero is denoted as

\[ E[P^r] = \int_0^1 p^r \frac{2F1(-n, a; -b - n + 1; 1)}{B(a, b) 2F1(-n, a; -b - n + 1; c)} p^{a-1}(1 - p)^{b-1} \frac{c^{b+n}}{(c + (1-c)p)^{a+b+n}} dp \]

\( r = 1, 2, 3, \ldots \)

Defined as \( B(a, b) \) as the beta function. Defined as \( 2F1(a, b; c) \) as the Gaussian Hypergeometric function.

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of \( pGHGBeta \) gives the cumulative density values in vector form.

**References**


Available at: [http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x](http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x)


**See Also**

hypergeo_powerseries

**Examples**

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(.1,.2,.3,1.5,2.15)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,10))
for (i in 1:5)
{
 lines(seq(0,1,by=0.001),dGHGBeta(seq(0,1,by=0.001),7,1+a[i],0.3,1+a[i])$pdf,col = col[i])
}
dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$pdf #extracting the pdf values
dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$mean #extracting the mean
dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$var #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(6)
a <- c(.1,.2,.3,1.5,2.1,3)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",
xlim = c(0,1),ylim = c(0,1))
for (i in 1:6)
```

#注释：如果输入参数不在指定的域条件下，将提供必要的错误消息。

**值**

pGHGBeta函数的输出为累积密度值的向量形式。

**参考文献**


可用于此：[http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x](http://dx.doi.org/10.1111/j.1467-9876.2007.00564.x)


**更多信息**

hypergeo_powerseries

**示例**

```r
#绘制随机变量和概率值
col <- rainbow(5)
a <- c(.1,.2,.3,1.5,2.15)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,10))
for (i in 1:5)
{
 lines(seq(0,1,by=0.001),dGHGBeta(seq(0,1,by=0.001),7,1+a[i],0.3,1+a[i])$pdf,col = col[i])
}
dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$pdf #提取pdf值
dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$mean #提取均值
dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$var #提取方差

#绘制随机变量和累积概率值
col <- rainbow(6)
a <- c(.1,.2,.3,1.5,2.1,3)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",
xlim = c(0,1),ylim = c(0,1))
for (i in 1:6)
```
\{ 
  lines(seq(0.01,1,by=0.001),pGHGBeta(seq(0.01,1,by=0.001),7,1+a[i],0.3,1+a[i]),col=col[i]) 
\}

pGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)  #acquiring the cumulative probability values
mazGHGBeta(1.4,7,1.6312,0.3913,0.6659)  #acquiring the moment about zero values

#acquiring the variance for \( a=1.6312, b=0.3913, c=0.6659 \)
mazGHGBeta(2,7,1.6312,0.3913,0.6659) - mazGHGBeta(1,7,1.6312,0.3913,0.6659)^2

#only the integer value of moments is taken here because moments cannot be decimal
mazGHGBeta(1.9,15,5,6,1)

\[ 
\text{pGrassiaIIBin} 
\]

\[ \text{Grassia-II-Binomial Distribution} \]

**Description**

These functions provide the ability for generating probability function values and cumulative probability function values for the Grassia-II-Binomial Distribution.

**Usage**

\[ \text{pGrassiaIIBin}(x,n,a,b) \]

**Arguments**

- \( x \): vector of binomial random variables.
- \( n \): single value for no of binomial trials.
- \( a \): single value for shape parameter \( a \).
- \( b \): single value for shape parameter \( b \).

**Details**

Mixing Gamma distribution with Binomial distribution will create the Grassia-II-Binomial distribution, only when \((1-p) = e^{-\lambda}\) of the Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{\text{GrassiaIIBin}}[x] = \binom{n}{x} \sum_{j=0}^{x} \left( \frac{x}{j} \right) (-1)^{x-j}(1 + b(n - j))^{-a}
\]

\[ a, b > 0 \]
\[ x = 0, 1, 2, ..., n \]
\[ n = 1, 2, 3, ... \]
The mean, variance and over dispersion are denoted as

\[ E_{\text{GrassiaIIBin}}[x] = \left( \frac{b}{b+1} \right)^a \]

\[ \text{Var}_{\text{GrassiaIIBin}}[x] = n^2 \left( \left( \frac{b}{b+1} \right)^a - \left( \frac{b}{b+1} \right)^{2a} \right) + n \left( \left( \frac{b}{b+1} \right)^a - \left( \frac{b+1}{b+2} \right)^a \right) \]

\[ \text{overdispersion} = \frac{ \left( \frac{b}{b+2} \right)^a - \left( \frac{b}{b+1} \right)^{2a} }{ \left( \frac{b}{b+1} \right)^a \left[ 1 - \left( \frac{b}{b+1} \right)^a \right] } \]

**Value**

The output of \( p\text{GrassiaIIBin} \) gives cumulative probability values in vector form.

**References**


**Examples**

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.3,0.4,0.5,0.6,0.8)
plot(0,0,main="Grassia II binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dGrassiaIIBin(0:10,10,2*a[i],a[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dGrassiaIIBin(0:10,10,2*a[i],a[i])$pdf,col = col[i],pch=16)
}
dGrassiaIIBin(0:10,10,4,.2)$pdf #extracting the pdf values
dGrassiaIIBin(0:10,10,4,.2)$mean #extracting the mean
dGrassiaIIBin(0:10,10,4,.2)$var #extracting the variance
dGrassiaIIBin(0:10,10,4,.2)$over.dis.para #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(0.3,0.4,0.5,0.6)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:4)
{
 lines(0:10,pGrassiaIIBin(0:10,10,2*a[i],a[i]),col = col[i])
 points(0:10,pGrassiaIIBin(0:10,10,2*a[i],a[i]),col = col[i])
}
pGrassiaIIBin(0:10,10,4,.2) #acquiring the cumulative probability values
```
Kumaraswamy Distribution

Description
These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Kumaraswamy Distribution bounded between [0,1].

Usage
pKUM(p, a, b)

Arguments
p vector of probabilities.
a single value for shape parameter alpha representing as a.
b single value for shape parameter beta representing as b.

Details
The probability density function and cumulative density function of a unit bounded Kumaraswamy Distribution with random variable P are given by

\[ g_P(p) = abp^{a-1}(1 - p)^{b-1} \]
\[ : 0 \leq p \leq 1 \]
\[ G_P(p) = 1 - (1 - p^a)^b \]
\[ : 0 \leq p \leq 1 \]
\[ a, b > 0 \]

The mean and the variance are denoted by

\[ E[P] = bB(1 + \frac{1}{a}, b) \]
\[ var[P] = bB(1 + \frac{2}{a}, b) - (bB(1 + \frac{1}{a}, b))^2 \]

The moments about zero is denoted as

\[ E[P^r] = bB(1 + \frac{r}{a}, b) \]
\[ r = 1, 2, 3, ... \]

Defined as \( B(a, b) \) is the beta function.

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of pKUM gives the cumulative density values in vector form.

References

Available at: http://dx.doi.org/10.1016/0022-1694(80)90036-0.

Available at: http://dx.doi.org/10.1016/j.stamet.2008.04.001.

See Also

Kumaraswamy

Examples

#plotting the random variables and probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,6))
for (i in 1:4)
{
  lines(seq(0,1,by=0.01),dKUM(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])
}
dKUM(seq(0,1,by=0.01),2,3)$pdf  #extracting the probability values
dKUM(seq(0,1,by=0.01),2,3)$mean  #extracting the mean
dKUM(seq(0,1,by=0.01),2,3)$var  #extracting the variance

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",
xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
  lines(seq(0,1,by=0.01),pKUM(seq(0,1,by=0.01),a[i],a[i]),col = col[i])
}
pKUM(seq(0,1,by=0.01),2,3)  #acquiring the cumulative probability values
mazKUM(1.4,3,2)  #acquiring the moment about zero values
mazKUM(2,2,3)-mazKUM(1,2,3)^2  #acquiring the variance for a=2,b=3

#only the integer value of moments is taken here because moments cannot be decimal
mazKUM(1.9,5.5,6)
Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Kumaraswamy Binomial Distribution.

Usage

`pKumBin(x, n, a, b, it=25000)`

Arguments

- `x`: vector of binomial random variables.
- `n`: single value for no of binomial trial.
- `a`: single value for shape parameter alpha representing a.
- `b`: single value for shape parameter beta representing b.
- `it`: number of iterations to converge as a proper probability function replacing infinity.

Details

Mixing Kumaraswamy distribution with Binomial distribution will create the Kumaraswamy Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[ P_{KumBin}(x) = ab \sum_{j=0}^{it} (-1)^j \binom{b-1}{j} B(x + a + aj, n - x + 1) \]

\[ a, b > 0 \]
\[ x = 0, 1, 2, \ldots n \]
\[ n = 1, 2, 3, \ldots \]
\[ it > 0 \]

The mean, variance and over dispersion are denoted as

\[ E_{KumBin}[x] = nbB\left(1 + \frac{1}{a}, b\right) \]

\[ Var_{KumBin}[x] = (n^2)B\left(1 + \frac{2}{a}, b\right) - bB\left(1 + \frac{1}{a}, b\right)^2 + nb\left(B\left(1 + \frac{1}{a}, b\right) - B\left(1 + \frac{2}{a}, b\right)\right) \]

\[ \text{overdispersion} = \frac{B\left(1 + \frac{2}{a}, b\right) - bB\left(1 + \frac{1}{a}, b\right)^2}{bB\left(1 + \frac{1}{a}, b\right) - bB\left(1 + \frac{2}{a}, b\right)^2} \]
Defined as $B(a, b)$ is the beta function.

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of pKumBin gives cumulative probability values in vector form.

**References**


**Examples**

```r
Not run:
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,.85)
plot(0,0,main="Kumaraswamy binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dKumBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dKumBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)
}
dKumBin(0:10,10,4,2)$pdf #extracting the pdf values
dKumBin(0:10,10,4,2)$mean #extracting the mean
dKumBin(0:10,10,4,2)$var #extracting the variance
dKumBin(0:10,10,4,2)$over.dis.para #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(5)
a <- c(1,2,5,10,.85)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
 lines(0:10,pKumBin(0:10,10,a[i],a[i]),col = col[i])
 points(0:10,pKumBin(0:10,10,a[i],a[i]),col = col[i])
}
pKumBin(0:10,10,4,2) #acquiring the cumulative probability values

End(Not run)
```
Description

Cochran(1936) provided a data that comprise the number of tomato spotted wilt virus (TSWV) infected tomato plants in the field trials in Australia. The field map was divided into 160 'quadrats'. 9 tomato plants in each quadrat, then the numbers of TSWV infected tomato plants were counted in each quadrat. Number of infected plants out of 9 plants per quadrat can be treated as a binomial variable. the collection of all such responses from all 160 quadrats would form "binomial outcome data" below provided is a data set similar to Cochran plant disease incidence data. Marcus R(1984). orange trees infected with citrus tristeza virus (CTV) in an orchard in central Israel. We divided the field map into 84 "quadrats" of 4 rows x 3 columns and counted the total number (1981 + 1982) of infected trees out of a maximum of n = 12 in each quadrat

Usage

Plant_DiseaseData

Format

A data frame with 2 columns and 10 rows

Dis.plant  Diseased Plants
fre    Observed frequencies

Source

Extracted from


Examples

Plant_DiseaseData$Dis.plant  # extracting the binomial random variables
sum(Plant_DiseaseData$fre)  # summing all the frequencies
Lovinson Multiplicative Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Lovinson Multiplicative Binomial Distribution.

Usage

\[ pLMBin(x, n, p, \phi) \]

Arguments

- **x**: vector of binomial random variables.
- **n**: single value for no of binomial trials.
- **p**: single value for probability of success.
- **phi**: single value for \( \phi \).

Details

The probability function and cumulative function can be constructed and are denoted below:

The cumulative probability function is the summation of probability function values.

\[
P_{LMBin}(x) = \sum_{x=0}^{n} \binom{n}{x} p^x (1-p)^{n-x} \frac{\phi^x (n-x)}{f(p, \phi, n)}
\]

Here \( f(p, \phi, n) \) is

\[
f(p, \phi, n) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \phi^k (n-k)
\]

- \( x = 0, 1, 2, 3, \ldots n \)
- \( n = 1, 2, 3, \ldots \)
- \( k = 0, 1, 2, \ldots, n \)
- \( 0 < p < 1 \)
- \( 0 < \phi \)

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of `pLMBin` gives cumulative probability values in vector form.

References


Examples

```r
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="Lovinson Multiplicative binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
 lines(0:10,dLMBin(0:10,10,a[i],1+b[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dLMBin(0:10,10,a[i],1+b[i])$pdf,col = col[i],pch=16)
}
dLMBin(0:10,10,.58,10.022)$pdf #extracting the pdf values
dLMBin(0:10,10,.58,10.022)$mean #extracting the mean
dLMBin(0:10,10,.58,10.022)$var #extracting the variance

#plotting random variables and cumulative probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="Lovinson Multiplicative binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
 lines(0:10,pLMBin(0:10,10,a[i],1+b[i]),col = col[i],lwd=2.85)
 points(0:10,pLMBin(0:10,10,a[i],1+b[i]),col = col[i],pch=16)
}
pLMBin(0:10,10,.58,10.022) #acquiring the cumulative probability values
```

---

**pMcGBB**

*McDonald Generalized Beta Binomial Distribution*
**Description**

These functions provide the ability for generating probability function values and cumulative probability function values for the McDonald Generalized Beta Binomial Distribution.

**Usage**

\[ pMcGBB(x, n, a, b, c) \]

**Arguments**

- \( x \): vector of binomial random variables.
- \( n \): single value for no of binomial trials.
- \( a \): single value for shape parameter alpha representing as a.
- \( b \): single value for shape parameter beta representing as b.
- \( c \): single value for shape parameter gamma representing as c.

**Details**

Mixing Generalized Beta Type-1 Distribution with Binomial distribution the probability function value and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{McGBB}(x) = \binom{n}{x} \frac{1}{B(a, b)} \sum_{j=0}^{n-x} (-1)^j \binom{n-x}{j} B\left(\frac{x}{c} + a + \frac{j}{c}, b\right)
\]

\[ a, b, c > 0 \]

The mean, variance and over dispersion are denoted as

\[
E_{McGBB}[x] = n \frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})}
\]

\[
Var_{McGBB}[x] = n^2 \left( \frac{B(a + b, \frac{2}{c})}{B(a, \frac{2}{c})} - \left( \frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} \right)^2 \right) + n \left( \frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} - \frac{B(a + b, \frac{2}{c})}{B(a, \frac{2}{c})} \right)
\]

\[
overdispersion = \frac{\frac{B(a + b, \frac{2}{c})}{B(a, \frac{2}{c})} - \left( \frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} \right)^2}{\frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} - \left( \frac{B(a + b, \frac{1}{c})}{B(a, \frac{1}{c})} \right)^2}
\]

\[ x = 0, 1, 2, \ldots n \]

\[ n = 1, 2, 3, \ldots \]

**Value**

The output of \( pMcGBB \) gives cumulative probability function values in vector form.
References

Available at: http://www.tandfonline.com/doi/full/10.1080/03610918.2015.1088024.

Examples

#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2.5,10,0.6)
plot(0,0,main="Mcdonald generalized beta-binomial probability function graph", xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
lines(0:10,dMcGBB(0:10,10,a[i],2.5,a[i])$pdf,col = col[i],lwd=2.85)
points(0:10,dMcGBB(0:10,10,a[i],2.5,a[i])$pdf,col = col[i],pch=16)
}
dMcGBB(0:10,10,4,2,1)$pdf #extracting the pdf values
dMcGBB(0:10,10,4,2,1)$mean #extracting the mean
dMcGBB(0:10,10,4,2,1)$var #extracting the variance
dMcGBB(0:10,10,4,2,1)$over.dis.para #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2.5,10)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable", ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:4)
{
lines(0:10,pMcGBB(0:10,10,a[i],a[i],2),col = col[i])
points(0:10,pMcGBB(0:10,10,a[i],a[i],2),col = col[i])
}
pMcGBB(0:10,10,4,2,1) #acquiring the cumulative probability values
Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Multiplicative Binomial Distribution.

Usage

\( pMultBin(x, n, p, \theta) \)

Arguments

- \( x \): vector of binomial random variables.
- \( n \): single value for no of binomial trials.
- \( p \): single value for probability of success.
- \( \theta \): single value for \( \theta \).

Details

The probability function and cumulative function can be constructed and are denoted below. The cumulative probability function is the summation of probability function values.

\[
P_{\text{MultiBin}}(x) = \binom{n}{x} p^x (1-p)^{n-x} \frac{\theta^x (n-x)}{f(p, \theta, n)}
\]

Here \( f(p, \theta, n) \) is

\[
f(p, \theta, n) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \theta^k (n-k)
\]

\[
x = 0, 1, 2, 3, ... n \\
\theta = 0, 1, 2, 3, ...
\]

\[
n = 1, 2, 3, ...
\]

\[
k = 0, 1, 2, ..., n
\]

\[
0 < p < 1 \\
0 < \theta
\]

NOTE: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Value

The output of \( pMultBin \) gives cumulative probability values in vector form.
References


Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.

Examples

#plotting the random variables and probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="Multiplicative binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
  lines(0:10,dMultiBin(0:10,10,a[i],1+b[i])$pdf,col = col[i],lwd=2.85)
  points(0:10,dMultiBin(0:10,10,a[i],1+b[i])$pdf,col = col[i],pch=16)
}
dMultiBin(0:10,10,.58,10.022)$pdf #extracting the pdf values
dMultiBin(0:10,10,.58,10.022)$mean #extracting the mean
dMultiBin(0:10,10,.58,10.022)$var #extracting the variance

#plotting random variables and cumulative probability values
col <- rainbow(5)
a <- c(0.58,0.59,0.6,0.61,0.62)
b <- c(0.022,0.023,0.024,0.025,0.026)
plot(0,0,main="Multiplicative binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:5)
{
  lines(0:10,pMultiBin(0:10,10,a[i],1+b[i]),col = col[i],lwd=2.85)
  points(0:10,pMultiBin(0:10,10,a[i],1+b[i]),col = col[i],pch=16)
}
pMultiBin(0:10,10,.58,10.022) #acquiring the cumulative probability values
Description
These functions provide the ability for generating probability density values, cumulative probability
density values and moments about zero values for the Triangular Distribution bounded between
[0,1].

Usage
\( pTRI(p, mode) \)

Arguments
\( p \) vector of probabilities.
\( mode \) single value for mode.

Details
Setting \( \text{min} = 0 \) and \( \text{max} = 1 \) \( \text{mode} = c \) in the Triangular distribution a unit bounded Triangular
distribution can be obtained. The probability density function and cumulative density function of a
unit bounded Triangular distribution with random variable \( P \) are given by
\[
g_P(p) = \begin{cases} 
\frac{2p}{c} & ; 0 \leq p < c \\
\frac{2(1 - p)}{(1 - c)} & ; c \leq p \leq 1 
\end{cases}
\]
\[
G_P(p) = \begin{cases} 
\frac{p^2}{c} & ; 0 \leq p < c \\
1 - \frac{(1 - p)^2}{(1 - c)} & ; c \leq p \leq 1 
\end{cases}
\]

0 \leq \text{mode} = c \leq 1

The mean and the variance are denoted by
\[
E[P] = \frac{(a + b + c)}{3} = \frac{(1 + c)}{3}
\]
\[
\text{var}[P] = \frac{a^2 + b^2 + c^2 - ab - ac - bc}{18} = \frac{(1 + c^2 - c)}{18}
\]

Moments about zero is denoted as
\[
E[P^r] = \frac{2c^{r+2}}{c(r + 2)} + \frac{2(1 - c^{r+1})}{(1 - c)(r + 1)} + \frac{2(c^{r+2} - 1)}{(1 - c)(r + 2)}
\]
r = 1, 2, 3, ...

NOTE : If input parameters are not in given domain conditions necessary error messages will be
provided to go further.
Value

The output of pTRI gives the cumulative density values in vector form.

References


See Also

triangle

Triangular

Examples

# plotting the random variables and probability values
col <- rainbow(4)
x <- seq(0.2,0.8,by=0.2)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,3))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),dTRI(seq(0,1,by=0.01),x[i])$pdf,col = col[i])
}
dTRI(seq(0,1,by=0.05),0.3)$pdf  # extracting the pdf values
dTRI(seq(0,1,by=0.01),0.3)$mean  # extracting the mean
dTRI(seq(0,1,by=0.01),0.3)$var   # extracting the variance

# plotting the random variables and cumulative probability values
col <- rainbow(4)
x <- seq(0.2,0.8,by=0.2)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),pTRI(seq(0,1,by=0.01),x[i]),col = col[i])
}
pTriBin

Triangular Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Triangular Binomial distribution.

Usage

pTriBin(x,n,mode)

Arguments

x vector of binomial random variables
n single value for no of binomial trials
mode single value for mode

Details

Mixing unit bounded Triangular distribution with Binomial distribution will create Triangular Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[ P_{TriBin}(x) = 2 \binom{n}{x} (c^{-1}B_c(x+2,n-x+1)+(1-c)^{-1}B(x+1,n-x+2)-(1-c)^{-1}B_c(x+1,n-x+2)) \]

where

- \( 0 < \text{mode} = c < 1 \)
- \( x = 0, 1, 2, ... n \)
- \( n = 1, 2, 3, ... \)

The mean, variance and over dispersion are denoted as

\[ E_{TriBin}[x] = \frac{n(1 + c)}{3} \]

\[ Var_{TriBin}[x] = \frac{n(n + 3)}{18} - \frac{n(n - 3)c(1 - c)}{18} \]
\[ \text{overdispersion} = \frac{(1 - c + c^2)}{2(2 + c - c^2)} \]

Defined as \( B_c(a, b) = \int_0^c t^{a-1}(1 - t)^{b-1} dt \) is incomplete beta integrals and \( B(a, b) \) is the beta function.

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of \( p\text{TriBin} \) gives cumulative probability function values in vector form.

**References**


Available at: [http://dx.doi.org/10.1007/978-0-8176-4626-4_2](http://dx.doi.org/10.1007/978-0-8176-4626-4_2).


**Examples**

```r
#plotting the random variables and probability values
col <- rainbow(7)
x <- seq(0.1,0.7,by=0.1)
plot(0,0,main="Triangular binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,.3))
for (i in 1:7)
 {lines(0:10,dTriBin(0:10,10,x[i])$pdf,col = col[i],lwd=2.85)
 points(0:10,dTriBin(0:10,10,x[i])$pdf,col = col[i],pch=16)
 }
dTriBin(0:10,10,.4)$pdf #extracting the pdf values
dTriBin(0:10,10,.4)$mean #extracting the mean
dTriBin(0:10,10,.4)$var #extracting the variance
dTriBin(0:10,10,.4)$over.dis.para #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(7)
x <- seq(0.1,0.7,by=0.1)
plot(0,0,main="Triangular binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:7)
 {lines(0:10,pTriBin(0:10,10,x[i]),col = col[i],lwd=2.85)
```
```
points(0:10,pTriBin(0:10,10,x[i]),col = col[i],pch=16)
}
pTriBin(0:10,10,.4) #acquiring the cumulative probability values
```

---

**Uniform Distribution Bounded Between [0,1]**

**Description**
These functions provide the ability for generating probability density values, cumulative probability density values and moments about zero values for the Uniform Distribution bounded between [0,1].

**Usage**

```r
pUNI(p)
```

**Arguments**

- `p` vector of probabilities.

**Details**

Setting \( a = 0 \) and \( b = 1 \) in the Uniform Distribution a unit bounded Uniform Distribution can be obtained. The probability density function and cumulative density function of a unit bounded Uniform Distribution with random variable \( P \) are given by

\[
g_P(p) = 1 \\
0 \leq p \leq 1 \\
G_P(p) = p \\
0 \leq p \leq 1
\]

The mean and the variance are denoted as

\[
E[P] = \frac{1}{a + b} = 0.5 \\
var[P] = \frac{(b - a)^2}{12} = 0.0833
\]

Moments about zero is denoted as

\[
E[P^r] = \frac{e^{rb} - e^{ra}}{r(b - a)} = \frac{e^r - 1}{r}
\]

\( r = 1, 2, 3, ... \)

**NOTE**: If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value

The output of pUNI gives the cumulative density values in vector form.

References


See Also

Uniform

or


Examples

#plotting the random variables and probability values
plot(seq(0,1,by=0.01),dUNI(seq(0,1,by=0.01))$pdf,type = "l",main="Probability density graph", xlab="Random variable",ylab="Probability density values")

dUNI(seq(0,1,by=0.05))$pdf    #extract the pdf values
dUNI(seq(0,1,by=0.01))$mean   #extract the mean
dUNI(seq(0,1,by=0.01))$var    #extract the variance

#plotting the random variables and cumulative probability values
plot(seq(0,1,by=0.01),pUNI(seq(0,1,by=0.01)),type = "l",main="Cumulative density graph", xlab="Random variable",ylab="Cumulative density values")
pUNI(seq(0,1,by=0.05))        #acquiring the cumulative probability values

mazUNI(c(1,2,3))           #acquiring the moment about zero values

#only the integer value of moments is taken here because moments cannot be decimal
mazUNI(1.9)
**Usage**

\texttt{pUniBin(x,n)}

**Arguments**

- \texttt{x} vector of binomial random variables.
- \texttt{n} single value for no of binomial trials.

**Details**

Mixing unit bounded uniform distribution with binomial distribution will create the Uniform Binomial Distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

\[
P_{\text{UniBin}}(x) = \frac{1}{n+1}
\]

\[
  n = 1, 2, ...\]

\[
x = 0, 1, 2, ...n
\]

The mean, variance and over dispersion are denoted as

\[
E_{\text{UniBin}}[X] = \frac{n}{2}
\]

\[
Var_{\text{UniBin}}[X] = \frac{n(n + 2)}{12}
\]

\[
\text{overdispersion} = \frac{1}{3}
\]

**NOTE** : If input parameters are not in given domain conditions necessary error messages will be provided to go further.

**Value**

The output of \texttt{pUniBin} gives cumulative probability function values in vector form.

**References**


Examples

#plotting the binomial random variables and probability values
plot(0:10,dUniBin(0:10,10)$pdf,type="l",main="Uniform binomial probability function graph",
  xlab=" Binomial random variable",ylab="Probability function values")
points(0:10,dUniBin(0:10,10)$pdf)

dUniBin(0:300,300)$pdf #extracting the pdf values
dUniBin(0:10,10)$mean #extracting the mean
dUniBin(0:10,10)$var #extracting the variance
dUniBin(0:10,10)$over.dis.para #extracting the over dispersion

#plotting the binomial random variables and cumulative probability values
plot(0:10,pUniBin(0:10,10),type="l",main="Cumulative probability function graph",
  xlab=" Binomial random variable",ylab="Cumulative probability function values")
points(0:10,pUniBin(0:10,10))
pUniBin(0:15,15) #acquiring the cumulative probability values

Terror_data_ARG

Description

Jenkins and Johnson (1975) compiled a chronology of incidents of international terrorism from 1/1968 through 04/1974. During this period 507 incidents are recorded in the world, where 64 incidents occurred in the United States and 65 ones in Argentina.

Usage

Terror_data_ARG

Format

A data frame with 2 columns and 9 rows

<table>
<thead>
<tr>
<th>Incidents</th>
<th>No of Incidents Occurred</th>
</tr>
</thead>
<tbody>
<tr>
<td>fre</td>
<td>Observed frequencies</td>
</tr>
</tbody>
</table>

Source

Extracted from


Examples

Terror_data_ARG$Incidents #extracting the binomial random variables
sum(Terror_data_ARG$fre) #summing all the frequencies
Jenkins and Johnson (1975) compiled a chronology of incidents of international terrorism from 1/1968 through 04/1974. During this period 507 incidents are recorded in the world, where 64 incidents occurred in the United States and 65 ones in Argentina.

**Usage**

`Terror_data_USA`  

**Format**

A data frame with 2 columns and 9 rows  

In incidents No of Incidents Occurred  

fre Observed frequencies

**Source**

Extracted from  

**Examples**

`Terror_data_USA$Incidents`  #extracting the binomial random variables  
`sum(Terror_data_USA$fre)`  #summing all the frequencies
Index

*Topic datasets
Alcohol_data, 4
Chromosome_data, 5
Course_data, 6
Epidemic_Cold, 50
Exam_data, 70
Male_Children, 97
Plant_DiseaseData, 156
Terror_data_ARG, 170
Terror_data_USA, 171

Alcohol_data, 4

Beta, 10, 99, 131
BODextract, 5

CBprob, 18, 139
Chromosome_data, 5
Course_data, 6

dAddBin, 7
dBETA, 9
dBetaBin, 11
dBetaCorrBin, 13
dCOMPBin, 15
dCorrBin, 17
dGAMMA, 19
dGammaBin, 21
dGBeta1, 23
dGHGBB, 25
dGHGBeta, 27
dGrassiaIIBin, 30
dKUM, 32
dKumBin, 34
dlMBin, 36
dMcGBB, 38
dMultiBin, 40
dTRI, 42
dTriBin, 44
dUNI, 46
dUniBin, 48

Epidemic_Cold, 50
EstMGFBetaBin, 51
EstMLEAddBin, 52
EstMLEBetaBin, 54
EstMLEBetaCorrBin, 55
EstMLECOMPBin, 57
EstMLECorrBin, 58
EstMLEGammaBin, 59
EstMLEHGGBB, 61
EstMLEGrassiaIIBin, 62
EstMLEKumBin, 63
EstMLELMBin, 64
EstMLEMcGBB, 66
EstMLEMultiBin, 67
EstMLETriBin, 69
Exam_data, 70

fitAddBin, 71
fitBetaBin, 73
fitBetaCorrBin, 75
fitBin, 77
fitCOMPBin, 78
fitCorrBin, 80
fitGammaBin, 82
fitGHGBB, 84
fitGrassiaIIBin, 86
fitKumBin, 88
fitLMBin, 90
fitMcGBB, 91
fitMultiBin, 93
fitTriBin, 95

GammaDist, 20, 101, 141

hypergeo_powerseries, 26, 29, 62, 85, 105, 120, 147, 149

Kumaraswamy, 33, 107, 153
INDEX

Male_Children, 97
mazBETA, 98
mazGAMMA, 100
mazGBeta1, 102
mazGHGBeta, 104
mazKUM, 106
mazTRI, 108
mazUNI, 111
mle2, 52, 55, 56, 59, 62, 64, 65, 67, 68, 74, 85, 89, 91, 93, 95
NegLLAddBin, 112
NegLLBetaBin, 114
NegLLBetaCorrBin, 115
NegLLCOMPBin, 116
NegLLCorrBin, 117
NegLLGammaBin, 118
NegLLGHGBB, 119
NegLLGrassiaIIBin, 120
NegLLKumBin, 121
NegLLLMBin, 123
NegLLMcGBB, 124
NegLLMultiBin, 125
NegLLTriBin, 126
Overdispersion, 127
pAddBin, 128
pBETA, 130
pBetaBin, 132
pBetaCorrBin, 134
pCOMPBin, 136
pCorrBin, 138
pGAMMA, 140
pGammaBin, 142
pGBeta1, 144
pGHGBB, 146
pGHGBeta, 148
pGrassiaIIBin, 150
pKUM, 152
pKumBin, 154
Plant_DiseaseData, 156
pLMBin, 157
pMcGBB, 158
pMultiBin, 160
pTRI, 162
pTriBin, 165
pUNI, 167
pUniBin, 168

Terror_data_ARG, 170
Terror_data_USA, 171
triangle, 43, 110, 164
Triangular, 43, 110, 164
Uniform, 47, 112, 168

triangle, 43, 110, 164
Triangular, 43, 110, 164
Uniform, 47, 112, 168