Package ‘gcKrig’

October 14, 2021

Type Package
Title Analysis of Geostatistical Count Data using Gaussian Copulas
Version 1.1.7
Author Zifei Han
Maintainer Zifei Han <hanzifei1@gmail.com>
Description Provides a variety of functions to analyze and model geostatistical count data with Gaussian copulas, including
1) data simulation and visualization;
2) correlation structure assessment (here also known as the Normal To Anything);
3) calculate multivariate normal rectangle probabilities;
4) likelihood inference and parallel prediction at predictive locations.
License GPL (>= 2)
LazyData TRUE
Depends R (>= 3.2.5)
Imports Rcpp (>= 0.12.0)
LinkingTo Rcpp, RcppArmadillo
Suggests EQL, FNN, gcmr, lattice, latticeExtra, mvtnorm, Matrix, MASS, numDeriv, scatterplot3d, snowfall, sp
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-10-14 09:00:06 UTC

R topics documented:

AtlanticFish .. 2
beta.gc .. 3
binomial.gc .. 4
corr.gc .. 5
corrTG .. 6
AtlanticFish

Dataset of Mid-Atlantic Highlands Fish

Description

This dataset was studied by Johnson and Hoeting (2011) for analyzing pollution tolerance in Mid-Atlantic Highlands Fish. Pollution intolerant fish were sampled, and several stream characteristics were measured to assess water quality at 119 sites in the Mid-Atlantic region of the United States. All covariates of the data had been standardized to have mean 0 and variance 1.

Usage

data(AtlanticFish)
beta.gc

Format
A data frame with 119 observations and 12 variables.
LON Longitude of the location.
LAT Latitude of the location.
ABUND Fish abundance at given locations, the discrete response.
ORDER Strahler stream order, a natural covariate measuring stream size.
DISTOT Watershed classified as disturbed by human activity, a variable reflecting stream quality.
HAB An index of fish habitat quality at the stream site, a variable reflecting stream quality.
WSA Watershed area, a natural covariate.
ELEV Elevation.
RD Road density in the watershed, a variable reflecting stream quality.
DO Concentration of dissolved oxygen in the stream at the sampling site, a stream quality variable.
XFC Percent of areal fish cover at the sampling site, a stream quality variable.
PCT Percent of sand in streambed substrate, a stream quality variable.

References

Examples
```
data(AtlanticFish)
str(AtlanticFish)
```

beta.gc The Beta Marginal of Class marginal.gc

Description
The Beta marginal used for simulation and computing correlation in the trans-Gaussian random field in function simgc and corrTG of the package gcKrig. It cannot be used in function mlegc nor predgc to make model inferences.

Usage
```
beta.gc(shape1 = 1, shape2 = 1)
```

Arguments
shape1 non-negative scalar, the shape parameter of the Beta distribution.
shape2 non-negative scalar, another shape parameter of the Beta distribution.
Details

The Beta distribution with parameters \(\text{shape1} = a \) and \(\text{shape2} = b \) has density

\[
\frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^{a-1}(1 - x)^{b-1}
\]

for \(a > 0, b > 0 \) and \(0 \leq x \leq 1 \) where the boundary values at \(x = 0 \) or \(x = 1 \) are defined as by continuity (as limits).

Value

An object of class \texttt{marginal.gc} representing the marginal component.

Author(s)

Zifei Han \texttt{<hanzifei1@gmail.com>}

See Also

\texttt{marginal.gc, binomial.gc, gm.gc, gaussian.gc, negbin.gc, poisson.gc, weibull.gc, zip.gc}

Description

The binomial marginal parameterized in terms of its size and probability.

By default, this function is used for likelihood inference and spatial prediction in function \texttt{mlegc} and \texttt{predgc} of the package \texttt{gcKrig}. When all marginal parameters are given, the function is used for simulation and computing correlation in a trans-Gaussian random field in function \texttt{simgc} and \texttt{corrTG}.

Usage

\begin{verbatim}
binomial.gc(link = "logit", size = NULL, prob = NULL)
\end{verbatim}

Arguments

\begin{itemize}
 \item \textbf{link} \hspace{1cm} the model link function.
 \item \textbf{size} \hspace{1cm} number of trials (zero or more).
 \item \textbf{prob} \hspace{1cm} probability of success on each trial.
\end{itemize}

Value

An object of class \texttt{marginal.gc} representing the marginal component.
Spatial Correlation Functions for Simulation, Likelihood Inference and Spatial Prediction in Gaussian Copula Models with Geostatistical Count Data

Description

Class of isotropic correlation functions available in the gcKrig library.

Details

By default, range parameter is not provided, so this function is used for likelihood inference and spatial prediction with function `mlegc` and `predgc`. Users need to specify if the correlation model includes a nugget effect `nugget = TRUE` or not `nugget = FALSE`. For Matern and powered exponential correlation functions, the shape parameter kappa is also required from users.

When both range and nugget parameters are given, the function is used to specify the correlation structure in simulation with function `simgc` in package gcKrig.

Value

At the moment, the following three correlation functions are implemented:

- `matern.gc` the Matern correlation function.
- `powerexp.gc` the powered exponential correlation function.
- `spherical.gc` the spherical correlation function.

Author(s)

Zifei Han <hanzifei1@gmail.com>

References

See Also

matern.gc, powerexp.gc, spherical.gc

corrTG

Compute the Correlation in Transformed Gaussian Random Fields

Description

This function implements two general methods for computing the correlation function in a transformed Gaussian random field.

Usage

corrTG(marg1, marg2, corrGauss = 0.5, method = "integral", nrep = 1000)

Arguments

marg1

an object of class marginal.gc specifying the first marginal distribution.

marg2

an object of class marginal.gc specifying the second marginal distribution.

corrGauss

the correlation in the Gaussian random field. Should be a scalar between 0 and 1.

method

the computation method of calculating correlation in the transformed Gaussian random field. Can be either "integral" or "mc". If use "integral" then a series expansion based on the Hermite Polynomials will be used to approximate the correlation, see De Oliveira (2013). If use "mc" then the Monte Carlo method will be used.

nrep

the Monte Carlo size in computing the correlation. Only need to be specified if method = "mc".

Value

A scalar between 0 and 1, denoting the correlation of the transformed Gaussian random field.

Author(s)

Zifei Han <hanzifei1@gmail.com>

References

FHUBdiscrete

Examples

```r
## Not run:
corrTG(marg1 = poisson.gc(lambda = 10), marg2 = binomial.gc(size = 1, prob = 0.1),
corrGauss = 0.5, method = "integral")
set.seed(12345)
corrTG(marg1 = poisson.gc(lambda = 10), marg2 = binomial.gc(size = 1, prob = 0.1),
corrGauss = 0.5, nrep = 100000, method = "mc")
## End(Not run)
```

FHUBdiscrete
Compute the Frechet Hoeffding Upper Bound for Given Discrete Marginal Distributions

Description

This function implemented the method of computing the Frechet Hoeffding upper bound for discrete marginals described in Nelsen (1987), which can only be applied to discrete marginals. Four commonly used marginal distributions were implemented. The distribution "nb" (negative binomial) and "zip" (zero-inflated Poisson) are parameterized in terms of the mean and overdispersion, see Han and De Oliveira (2016).

Usage

```r
FHUBdiscrete(marg1, marg2, mu1, mu2, od1 = 0, od2 = 0, binomial.size1 = 1,
binomial.size2 = 1)
```

Arguments

- **marg1**: name of the first discrete marginal distribution. Should be one of the "poisson", "zip", "nb" or "binomial".
- **marg2**: name of the second discrete marginal distribution. Should be one of the "poisson", "zip", "nb" or "binomial".
- **mu1**: mean of the first marginal distribution. If binomial then it is \(n_1 p_1 \).
- **mu2**: mean of the second marginal distribution. If binomial then it is \(n_2 p_2 \).
- **od1**: the overdispersion parameter of the first marginal. Only used when marginal distribution is either "zip" or "nb".
- **od2**: the overdispersion parameter of the second marginal. Only used when marginal distribution is either "zip" or "nb".
- **binomial.size1**: the size parameter (number of trials) when marg1 = "binomial".
- **binomial.size2**: the size parameter (number of trials) when marg2 = "binomial".

Value

A scalar denoting the Frechet Hoeffding upper bound of the two specified marginal.
The Gaussian Marginal of Class `marginal.gc`

Description

The Gaussian marginal used for simulation and computing correlation in the trans-Gaussian random field in function `simgc` and `corrTG` of the package `gcKrig`. It cannot be used in function `mlegc` nor `predgc` to make model inferences.

Usage

```r
gaussian.gc(mean = 0, sd = 1)
```

Arguments

- `mean` the mean of the Gaussian distribution, a scalar.
- `sd` a positive scalar, the standard deviation of the Gaussian distribution.
The Gamma Marginal of Class marginal.gc

Description
The Gamma marginal used for simulation and computing correlation in the trans-Gaussian random field in functions simgc and corrTG of the package gcKrig. It cannot be used in functions mlegec nor predgc to make model inferences.

Usage
gm.gc(shape = 1, rate = 1)

Arguments
shape a non-negative scalar, shape parameter of the Gamma distribution.
rate a non-negative scalar, rate parameter of the Gamma distribution.

Details
The Gamma distribution with parameters shape = a and rate = r has density
\[
r^a \frac{e^{-rx}}{\Gamma(a)} x^{a-1}
\]
for x ≥ 0, a > 0 and s > 0.

Value
An object of class marginal.gc representing the marginal component.

Author(s)
Zifei Han <hanzifei1@gmail.com>

See Also
marginal.gc, beta.gc, binomial.gc, gm.gc, negbin.gc, poisson.gc, weibull.gc, zip.gc
Description

The data is aggregated from the dataset lansing in library spatstat, which came from an investigation of a 924 ft x 924 ft (19.6 acres) plot in Lansing Woods, Clinton County, Michigan USA by D.J. Gerrard. The original point process data described the locations of 2,251 trees and their botanical classification (into maples, hickories, black oaks, red oaks, white oaks and miscellaneous trees). The original plot size has been rescaled to the unit square and the number of different types of trees has been counted within squares of length 1/16.

Usage

data(LansingTrees)

Format

A data frame with 256 observations and 8 variables.

Easting Cartesian x-coordinate of the locations.
Northing Cartesian y-coordinate of the locations.
maple Number of maples in the area.
hickory Number of hickories in the area.
blackoak Number of black oaks in the area.
redoak Number of red oaks in the area.
whiteoak Number of white oaks in the area.
misc Number of miscellaneous trees in the area.

References

Examples

data(LansingTrees)
str(LansingTrees)
Marginals for Data Simulation, Correlation Assessment, Likelihood Inference and Spatial Prediction in Gaussian Copula Models for Geo-statistical Data

Description

Class of marginals available in gcKrig library for geostatistical data simulation, correlation structure assessment (both continuous and discrete marginals) and model inferences (discrete marginals only). In former cases parameters of the marginals are given by users, otherwise parameters are estimated from the data (except when doing prediction with function predgc, users can choose to either input known estimates or estimate the parameters with input data).

Details

The package gcKrig does not include inference and prediction functionalities for continuous marginals. For inference with continuous marginals, see Masarotto and Varin (2012).

By default, when the marginals are discrete, they are used for estimation with function mlegc and prediction with function predgc. They can be used in function simgc and corrTG as well for the purpose of data simulation and correlation computation in a transformed Gaussian random field (Han and De Oliveira, 2016), if parameter values are specified.

For continuous marginals, they are used for simulation with function simgc and correlation computation with corrTG only, so parameters should always be specified.

Value

At the moment, the following marginals are implemented:

- beta.gc beta marginals.
- binomial.gc binomial marginals.
- gm.gc gamma marginals.
- gaussian.gc Gaussian marginals.
- negbin.gc negative binomial marginals.
- poisson.gc Poisson marginals.
- weibull.gc Weibull marginals.
- zip.gc zero-inflated Poisson marginals.

Author(s)

Zifei Han <hanzifei1@gmail.com>

References

matern.gc

See Also

beta.gc, binomial.gc, gm.gc, gaussian.gc, negbin.gc, poisson.gc, weibull.gc, zip.gc

Description

The Matern correlation function in spatial statistics.

By default, range parameter is not available, so this function is used for likelihood inference and spatial prediction in function `mlegc` and `predgc`. Users need to specify the shape parameter `kappa` and if the correlation model includes a nugget effect `nugget = TRUE` or not `nugget = FALSE`.

When both range and nugget parameters are given, the function is used for simulation with function `simgc` in package gcKrig.

Usage

```r
matern.gc(range = NULL, kappa = 0.5, nugget = TRUE)
```

Arguments

- **range**
 - a non-negative scalar of the range parameter in Matern correlation function.

- **kappa**
 - a non-negative scalar of the shape parameter in the Matern correlation function. The default `kappa = 0.5` corresponds to an exponential correlation model.

- **nugget**
 - the nugget effect of the correlation function. If specified, it must be a scalar between 0 and 1.
Details

The Matern correlation function with a nugget τ^2 is of the form:

$$\rho(h) = \frac{1 - \tau^2}{2^{\kappa-1}\Gamma(\kappa)} \left(\frac{h}{\phi} \right)^\kappa K_\kappa \left(\frac{h}{\phi} \right)$$

when $h > 0$ and $\rho(h) = 1$ when $h = 0$. Here ϕ is range parameter, κ is the shape parameter and τ^2 is the nugget parameter. $K_\kappa(\cdot)$ denotes the modified Bessel function of the third kind of order κ.

Value

An object of class `corr.gc` representing the correlation component.

Author(s)

Zifei Han <hanzifei1@gmail.com>

References

See Also

`powerexp.gc`, `spherical.gc`

Description

Computes the maximum likelihood estimates. Two methods are implemented. If `method = 'GHK'` then the maximum simulated likelihood estimates are computed, if `method = 'GQT'` then the maximum surrogate likelihood estimates are computed.

Usage

```r
mlegc(y, x = NULL, locs, marginal, corr, effort = 1, longlat = FALSE,
       distscale = 1, method = "GHK", corrpar0 = NULL, ghkoptions = list(nrep
       = c(100, 1000), reorder = FALSE, seed = 12345))
```
Arguments

- **y**: a non-negative integer vector of response with its length equals to the number of sampling locations.
- **x**: a numeric matrix or data frame of covariates, with its number of rows equals to the number of sampling locations. If no covariates then \(x = \text{NULL} \).
- **locs**: a numeric matrix or data frame of \(n \)-D points with row denoting points. The first column is \(x \) or longitude, the second column is \(y \) or latitude. The number of locations is equal to the number of rows.
- **marginal**: an object of class `marginal.gc` specifying the marginal distribution.
- **corr**: an object of class `corr.gc` specifying the correlation function.
- **effort**: the sampling effort. For binomial marginal it is the size parameter (number of trials). See details.
- **longlat**: if FALSE, use Euclidean distance, if TRUE use great circle distance. The default is FALSE.
- **distscale**: a numeric scaling factor for computing distance. If original distance is in kilometers, then \(\text{distscale} = 1000 \) will convert it to meters.
- **method**: two methods are implemented. If \(\text{method} = 'GHK' \) then the maximum simulated likelihood estimates are computed, if \(\text{method} = 'GQT' \) then the maximum surrogate likelihood estimates are computed.
- **corrpar0**: the starting value of correlation parameter in the optimization procedure. If \(\text{corrpar0} = \text{NULL} \) then initial range is set to be half of the median distance in distance matrix and initial nugget (if \(\text{nugget} = \text{TRUE} \)) is 0.2.
- **ghkoptions**: a list of three elements that only need to be specified if \(\text{method} = 'GHK' \).

Details

This program implemented one simulated likelihood method via sequential importance sampling (see Masarotto and Varin 2012), which is same as the method implemented in package `gcmr` (Masarotto and Varin 2016) except an antithetic variable is used. It also implemented one surrogate likelihood method via distributional transform (see Kazianka and Pilz 2010), which is generally faster.

The argument `effort` is the sampling effort (known). It can be used to consider the heterogeneity of the measurement time or area at different locations. The default is 1 for all locations. See Han and De Oliveira (2016) for more details.
Value

A list of class "mlegc" with the following elements:

- **MLE**: the maximum likelihood estimate.
- **x**: the design matrix.
- **nug**: 1 if nugget = TRUE, 0 if nugget = FALSE.
- **nreg**: number of regression parameters.
- **log.lik**: the value of the maximum log-likelihood.
- **AIC**: the Akaike information criterion.
- **AICc**: the AICc information criterion; essentially AIC with a greater penalty for extra parameters.
- **BIC**: the Bayesian information criterion.
- **kmarg**: number of marginal parameters.
- **par.df**: number of parameters.
- **N**: number of observations.
- **D**: the distance matrix.
- **optlb**: lower bound in optimization.
- **optub**: upper bound in optimization.
- **hessian**: the hessian matrix evaluated at the final estimates.
- **args**: arguments passed in function evaluation.

Author(s)

Zifei Han <hanzifei1@gmail.com>

References

See Also

gcmr
Examples

Not run:
Fit a Simulated Dataset with 100 locations
grid <- seq(0.05, 0.95, by = 0.1)
xloc <- expand.grid(x = grid, y = grid)[,1]
yloc <- expand.grid(x = grid, y = grid)[,2]

set.seed(123)
simData1 <- simgc(locs = cbind(xloc, yloc), sim.n = 1,
marginal = negbin.gc(mu = exp(1+xloc), od = 1),
corr = matern.gc(range = 0.4, kappa = 0.5, nugget = 0))
simFit1 <- mlegc(y = simData1$data, x = xloc, locs = cbind(xloc, yloc),
marginal = negbin.gc(link = "log"),
corr = matern.gc(kappa = 0.5, nugget = FALSE), method = "GHK")
simFit2 <- mlegc(y = simData1$data, x = xloc, locs = cbind(xloc, yloc),
marginal = negbin.gc(link = "log"),
corr = matern.gc(kappa = 0.5, nugget = FALSE), method = "GQT")
#summary(simFit1);summary(simFit2)
#plot(simFit1);plot(simFit2)

Time consuming examples
Fit a real dataset with 70 sampling locations.
data(Weed95)
weedobs <- Weed95[Weed95$dummy==1,]
weedpred <- Weed95[Weed95$dummy==0,]
Weedfit1 <- mlegc(y = weedobs$weedcount, x = weedobs[,4:5], locs = weedobs[,1:2],
marginal = poisson.gc(link = "log"),
corr = matern.gc(kappa = 0.5, nugget = TRUE),
method = "GHK")
summary(Weedfit1)
plot(Weedfit1)

Fit a real dataset with 256 locations
data(LansingTrees)
Treefit1 <- mlegc(y = LansingTrees[,3], x = LansingTrees[,4], locs = LansingTrees[,1:2],
marginal = negbin.gc(link = "log"),
corr = matern.gc(kappa = 0.5, nugget = FALSE), method = "GHK")
summary(Treefit1)
plot(Treefit1)

Try to use GQT method
Treefit2 <- mlegc(y = LansingTrees[,3], x = LansingTrees[,4],
locs = LansingTrees[,1:2], marginal = poisson.gc(link = "log"),
corr = matern.gc(kappa = 0.5, nugget = TRUE), method = "GQT")
summary(Treefit2)
plot(Treefit2)
Fit a real dataset with randomized locations

```r
data(AtlanticFish)
Fitfish <- mlegc(y = AtlanticFish[,3], x = AtlanticFish[,4:6], locs = AtlanticFish[,1:2],
                longlat = TRUE, marginal = negbin.gc(link="log"),
                corr = matern.gc(kappa = 0.5, nugget = TRUE), method = "GHK")
summary(Fitfish)
```

Fit a real dataset with binomial counts; see Masarotto and Varin (2016).

```r
library(gcmr)
data(malaria)
malariax <- data.frame(netuse = malaria$netuse,
                        green = malaria$green/100,
                        phc = malaria$phc)
Fitmalaria <- mlegc(y = malaria$cases, x = malariax, locs = malaria[,1:2],
                    marginal = binomial.gc(link="logit"), corrpar0 = 1.5,
                    corr = matern.gc(kappa = 0.5, nugget = FALSE),
                    distscale = 0.001, effort = malaria$size, method = "GHK")
summary(Fitmalaria)
```

Fit a real spatial binary dataset with 333 locations using probit link

```r
data(OilWell)
Oilest1 <- mlegc(y = OilWell[,3], x = NULL, locs = OilWell[,1:2],
                marginal = binomial.gc(link = "probit"),
                corr = matern.gc(nugget = TRUE), method = "GHK")
summary(Oilest1)
plot(Oilest1, col = 2)
```

End(Not run)

Description

Computes the multivariate normal rectangle probability for arbitrary limits and covariance matrices using (reordered) sequential importance sampling.

Usage

```r
mvnintGHK(mean, sigma, lower, upper, nrep = 5000, log = TRUE,
           reorder = TRUE)
```
Arguments

- **mean**: the numeric vector of mean of length \(n \).
- **sigma**: the covariance matrix of dimension \(n \).
- **lower**: the numeric vector of lower limits of length \(n \).
- **upper**: the numeric vector of upper limits of length \(n \).
- **nrep**: a positive integer of Monte Carlo size.
- **log**: if TRUE then return the log of the probability. If FALSE return the probability.
- **reorder**: if TRUE then variable reordering algorithm is applied. If FALSE then original ordering is used.

Details

This program implemented the Geweke-Hajivassiliou-Keane simulator of computing the multivariate normal rectangle probability. For more details see Keane (1994). Also a variable reordering algorithm in Gibson, etal (1994) was implemented.

Note that both \(-\text{Inf}\) and \(\text{Inf}\) may be specified in lower and upper.

Value

A list of the following two components:

- **value**: the value of the integral. If \(\log = \text{TRUE}\) then output the log of the integral.
- **error**: the Monte Carlo standard deviation.

Author(s)

Zifei Han <hanzifei1@gmail.com>

References

See Also

`pmvnorm`

Examples

```r
mvnintGHK(mean = rep(0, 51), sigma = diag(0.2, 51) + matrix(0.8, 51, 51), lower = rep(-2, 51), upper = rep(2, 51), nrep = 10000)
```
Description

The negative binomial marginal parameterized in terms of its mean and overdispersion.

By default, this function is used for likelihood inference and spatial prediction in functions `mlegc` and `predgc` of the package `gcKrig`. When all marginal parameters are given, the function is used for simulation and computing correlation in a trans-Gaussian random field in functions `simgc` and `corrTG`.

Usage

```r
negbin.gc(link = "log", mu = NULL, od = NULL)
```

Arguments

- `link`: the model link function.
- `mu`: a non-negative scalar of the mean parameter.
- `od`: a non-negative scalar of the overdispersion parameter.

Details

The negative binomial distribution with parameters $\mu = a$ and $od = 1/b$ has density

$$
\frac{\Gamma(y + b)}{\Gamma(b) y!} \left(\frac{b}{b + a} \right)^b \left(1 - \frac{b}{b + a}\right)^y
$$

which is called NB2 by Cameron and Trivedi (2013). Under this parameterization, $\text{var}(Y) = \mu + od * \mu^2$, where μ is the mean parameter and od is the overdispersion parameter. For more details see Han and De Oliveira (2016).

Value

An object of class `marginal.gc` representing the marginal component.

Author(s)

Zifei Han <hanzifei1@gmail.com>

References

OilWell

Location of Successful and Dry Wells

Description

A dataset recording locations of successful and unsuccessful drilling oil wells in the northwest shelf of Delaware basin in New Mexico, a region that is densely drilled but has some sparsely drilled areas. The original dataset was transformed to a central area of about 65 square kilometers, see Hohn (1999), Chapter 6.

Usage

data(OilWell)

Format

A data frame with 333 observations and 3 variables.

- **Easting** Cartesian x-coordinate of the locations.
- **Northing** Cartesian y-coordinate of the locations.
- **Success** A binary variable indicating the success of the drill at given locations. 1 for successful drilling oil wells and 0 for unsuccess.

References

Examples

data(OilWell)
str(OilWell)

See Also

marginal.gc, beta.gc, binomial.gc, gm.gc, gaussian.gc, poisson.gc, weibull.gc, zip.gc
plot.mlegc

Plot Geostatistical Data and Fitted Mean

Description

Four plots can be generated: the 2-D level plot or 3-D scatterplot with the number of counts or fitted values.

Usage

```r
## S3 method for class 'mlegc'
plot(x, plotdata = "Observed", plottype = "2D", xlab = "xloc", ylab = "yloc",
     xlim = NULL, ylim = NULL, pch = 20, textcex = 0.8, plotcex = 1,
     angle = 60, col = 4, col.regions = gray(90:0/100),...)
```

Arguments

- `x`: an object of class `mlegc` inherited from function `mlegc`.
- `plotdata`: the data to be plotted. Can be either "Observed" if the original counts are used or "Fitted" if the fitted mean at different locations are used.
- `plottype`: the type of the plot. Can be either "2D" for 2-D level plot or "3D" for 3-D scatterplot.
- `xlab, ylab`: a title for the x and y axis.
- `xlim, ylim`: numeric vectors of length 2, giving the x and y coordinates ranges. if they equal to NULL then they will be adjusted from the data.
- `pch`: plotting character, i.e., the symbol to use in the 3-D scatter plot.
- `textcex`: a numerical value giving the amount by which plotting text should be magnified relative to the default.
- `plotcex`: a numerical value giving the amount by which plotting symbols should be magnified relative to the default.
- `angle`: angle between x and y axis.
- `col`: color of the text.
- `col.regions`: color vector to be used reflecting magnitude of the dataset at different locations. The general idea is that this should be a color vector of gradually varying color.
- `...`: further arguments passed to plot and panel settings.

Author(s)

Zifei Han <hanzifei1@gmail.com>

See Also

`plot.simgc, plot.predgc`
plot.predgc

Plot Geostatistical Data at Sampling and Prediction Locations

Description

Five plots can be generated. A level plot with the number of counts at both observed and prediction locations; a level plot with predicted means (intensity); a level plot with the predicted counts; a level plot with estimated variances of the prediction; a 3-D scatter plot with both observed and predicted counts.

Usage

```r
## S3 method for class 'predgc'
plot(x, plottype = "2D", xlab = "xloc", ylab = "yloc", xlim = NULL,
     ylim = NULL, pch = 20, textcex = 0.6, plotcex = 1, angle = 60,
     col = c(2, 4), col.regions = gray(90:0/100), ...)
```

Arguments

- `x`: an object of class `predgc` inherited from function `predgc`.
- `plottype`: can be one of the following: "2D", "Predicted Counts", "Predicted Mean", "Predicted Variance" or "3D". Default is "2D" which generates a 2-D contour plot with both observed and predicted counts. With arguments "Predicted Counts", "Predicted Mean" and "Predicted Variance", a 2-D level plot will be generated with the corresponding data. When "3D" is used, a 3-D scatter plot will be displayed with observed and predicted counts.
- `xlab`, `ylab`: a title for the x and y axis.
- `xlim`, `ylim`: numeric vectors of length 2, giving the x and y coordinates ranges. if they equal to `NULL` then they will be adjusted from the data.
- `pch`: plotting character, i.e., symbol to use in the 3-D scatter plot.
- `textcex`: a numerical value giving the amount by which plotting text should be magnified relative to the default.
- `plotcex`: a numerical value giving the amount by which plotting symbols should be magnified relative to the default.
- `angle`: angle between x and y axis.
- `col`: a numeric vector of length 2 indicating color of the plot at sampling and prediction locations.
- `col.regions`: color vector to be used reflecting magnitude of the dataset at different locations. The general idea is that this should be a color vector of gradually varying color.
- `...`: further arguments passed to plot and panel settings.

Author(s)

Zifei Han <hanzifei1@gmail.com>
plot.simgc

See Also

plot.simgc, plot.mlegc, mlegc, predgc

plot.simgc Plot Geostatistical Data Simulated From Gaussian Copula

Description

Three plots will be generated. A level plot with the number of counts at given locations; a level plot
with point referenced locations and varying colors and a 3-D scatter plot.

Usage

```r
## S3 method for class 'simgc'
plot(x, index = 1, plottype = "Text", xlab = "xloc", ylab = "yloc",
    xlim = NULL, ylim = NULL, pch = 20, textcex = 0.8, plotcex = 1,
    angle = 60, col = 4, col.regions = gray(90:0/100), ...)
```

Arguments

- `x`: an object of class `simgc`, typically generated from function `simgc`.
- `index`: the index of the simulated data, need to be specified since `simgc` can simulate
 multiple datasets simultaneously.
- `plottype`: the type of the printed plot, can be "Text", "Dot", or "3D". When `plottype` =
 "Text", a 2-D plot is generated with exact counts at observed locations. When
 `plottype` = "Dot", a 2-D dot plot is generated and when `plottype` = "3D" a 3-D
 scatter plot is printed.
- `xlab`, `ylab`: a title for the x and y axis.
- `xlim`, `ylim`: numeric vectors of length 2, giving the x and y coordinates ranges. if they equal
to `NULL` then they will be adjusted from the data.
- `pch`: plotting character, i.e., symbol to use in the 3-D scatter plot.
- `textcex`: a numerical value giving the amount by which plotting text should be magnified
 relative to the default.
- `plotcex`: a numerical value giving the amount by which plotting symbols should be magni-
 fied relative to the default.
- `angle`: angle between x and y axis.
- `col`: color of the text.
- `col.regions`: color vector to be used reflecting magnitude of the dataset at different locations.
The general idea is that this should be a color vector of gradually varying color.
- `...`: further arguments passed to plot and panel settings.
plotgc

Description

This function generates two plots describing a geostatistical count data. The first plot is a bubble plot with size proportional to the response. The second plot is a lattice plot with text describing the number of counts.

Usage

plotgc(data = NULL, locs = NULL, bdry = NULL, col = 2, pch = 1, textcex = 1, col.regions = gray(90:0/100), size = c(0.3, 2.7), ...)

Arguments

data the geostatistical count response.
locs a n by 2 matrix or data frame that indicates the coordinates of locations.
bdry a list containing the coordinates of boundaries.
col the color used for response variable in both plots.
pch the shape used for response variable in the first plot.
textcex a numerical value giving the amount by which plotting text should be magnified relative to the default.
col.regions color vector to be used reflecting magnitude of the dataset at different locations. The general idea is that this should be a color vector of gradually varying color.
size the minimum and maximum of the sizes in the first plot.
... other parameters that control the plotting.

Author(s)

Zifei Han <hanzifei1@gmail.com>

See Also

plot.mlegc, plot.predgc

plot.mlegc, plot.predgc

plot.simgc, plot.mlegc, plot.predgc
The Poisson Marginal of Class \texttt{marginal.gc}

Description

The Poisson marginal parameterized in terms of its mean.

By default, this function is used for likelihood inference and spatial prediction in function \texttt{mlegc} and \texttt{predgc} of the package \texttt{gcKrig}. When all marginal parameters are given, the function is used for simulation and computing correlation in a trans-Gaussian random field in function \texttt{simgc} and \texttt{corrTG}.

Usage

\begin{verbatim}
poisson.gc(link = "log", lambda = NULL)
\end{verbatim}

Arguments

- \texttt{link} : the model link function.
- \texttt{lambda} : a non-negative scalar of the mean parameter.

Value

An object of class \texttt{marginal.gc} representing the marginal component.

Author(s)

Zifei Han <hanzifei1@gmail.com>

See Also

\texttt{marginal.gc, beta.gc, binomial.gc, gm.gc, gaussian.gc, negbin.gc, weibull.gc, zip.gc}

The Powered Exponential Correlation Function of Class \texttt{corr.gc}

Description

The powered exponential correlation function in spatial statistics.

By default, range parameter is not available, so this function is used for likelihood inference and spatial prediction in function \texttt{mlegc} and \texttt{predgc}. Users need to specify the shape parameter \texttt{kappa} and if the correlation model includes a nugget effect \texttt{nugget = TRUE} or not \texttt{nugget = FALSE}.

When both range and nugget parameters are given, the function is used for simulation with function \texttt{simgc} in package \texttt{gcKrig}.
Usage

`powerexp.gc(range = NULL, kappa = 1, nugget = TRUE)`

Arguments

- `range` a non-negative scalar of the range parameter in powered exponential correlation function.
- `kappa` a scalar between 0 and 2; the value of the shape parameter in the powered exponential correlation function.
- `nugget` the nugget effect of the correlation function. If specified, it must be a scalar between 0 and 1.

Details

The powered exponential correlation function with a nugget τ^2 is of the form:

$$\rho(h) = (1 - \tau^2) \exp((-h/\phi)^\kappa)$$

when $h > 0$ and $\rho(h) = 1$ when $h = 0$. Here h is distance, ϕ is range parameter, κ is the shape parameter and τ^2 is the nugget effect.

When using the powered exponential correlation function, note that $0 < \kappa \leq 2$.

Value

An object of class `corr.gc` representing the correlation component.

Author(s)

Zifei Han <hanzifei1@gmail.com>

See Also

`matern.gc`, `spherical.gc`

Description

Computes the plug-in prediction at unobserved sites. Two methods are implemented. If `method = 'GHK'` then the maximum simulated likelihood estimates are computed and the sequential importance sampling method is used in the integral evaluation. If `method = 'GQT'` then the maximum surrogate likelihood estimates are computed and the generalized quantile transform method is used in integral approximation.
Usage

predgc(obs.y, obs.x = NULL, obs.locs, pred.x = NULL, pred.locs,
longlat = FALSE, distscale = 1, marginal, corr, obs.effort = 1,
pred.effort = 1, method = "GHK", estpar = NULL, corrpar0 = NULL,
pred.interval = NULL, parallel = FALSE,
ghkoptions = list(nrep = c(100, 1000), reorder = FALSE, seed = 12345),
paralleloptions = list(n.cores = 2, cluster.type = "SOCK"))

Arguments

obs.y a non-negative integer vector of observed response with its length equals to the
number of observed locations.
obs.x a numeric matrix or data frame of covariates at observed locations, with its num-
ber of rows equals to the number of observed locations. If no covariates then
obs.x = NULL.
obs.locs a numeric matrix or data frame of observed locations. obs.effort The first column
is x or longitude, the second column is y or latitude. The number of observed
locations is equal to the number of rows.
pred.x a numeric matrix or data frame of covariates at prediction locations, with its
number of rows equals to the number of prediction locations. If no covariates
then pred.x = NULL.
pred.locs a numeric matrix or data frame of prediction locations. First column is x or
longitude, second column is y or latitude. The number of prediction locations
equals to the number of rows.
longlat if FALSE, use Euclidean distance, if TRUE use great circle distance. The default
is FALSE.
distscale a numeric scaling factor for computing distance. If original distance is in kilo-
meters, then distscale = 1000 will convert it to meters.
marginal an object of class marginal.gc specifying the marginal distribution.
corr an object of class corr.gc specifying the correlation function.
obs.effort sampling effort at observed locations. For binomial marginal it is the size pa-
rameter (number of trials). See details.
pred.effort sampling effort at prediction locations. For binomial marginal it is the size pa-
rameter (number of trials). See details.
method two methods are implemented. If method = 'GHK' then the maximum simulated
likelihood estimates are computed, if method = 'GQT' then the maximum surro-
gate likelihood estimates are computed.
estpar if estpar = NULL then the likelihood estimates will be computed first, then plug-
in into the predictive density. When all estimates are available, it is suggested
to specify estpar with the parameter estimates so re-fitting is not needed. If so,
the sequence of the input values for estpar is: regression parameters, overdis-
persion (if any), and correlation parameters (range and nugget, if applicable).
corrpar0 the starting value of correlation parameters in optimization procedure. If corrpar0
= NULL then initial range is set to be half of the median distance in distance ma-
tax, and initial nugget (if nugget = TRUE) is 0.2.
pred.interval a number between 0 and 1 representing confidence level of the prediction interval. The program will output two types of the prediction intervals, see detail. If pred.interval = NULL then no prediction interval will be computed.

parallel if TRUE then parallel computing is used to predict multiple prediction locations simultaneously. If FALSE then a serial version will be called.

ghkoptions a list of three elements that only need to be specified if method = 'GHK'. nrep is the Monte Carlo size of the importance sampling algorithm for likelihood approximation. It can be a vector with increasing positive integers so that the model is fitted with a sequence of different Monte Carlo sizes, and the starting values for optimization are taken from the previous fitting. The default value is 100 for the first optimization and 1000 for the second and definitive optimization.

reorder indicates whether the integral will be reordered every iteration in computation according to the algorithm in Gibson, etal (1994), default is FALSE. seed is seed of the pseudorandom generator used in Monte Carlo simulation.

paralleloptions a list of two elements that only need to be specified if parallel = TRUE. n.cores is the number of cores to be used in parallel prediction. cluster.type is type of cluster to be used for parallel computing; can be "SOCK", "MPI", "PVM", or "NWS".

Details

This program implemented two methods in predicting the response at unobserved sites. See mlegc. The argument obs.effort and pred.effort are the sampling effort (known). It can be used to consider heterogeneity of the measurement time or area at different locations. The default is 1 for all locations. See Han and De Oliveira (2016) for more details.

The program computes two types of prediction intervals at a given confidence level. The shortest prediction interval is obtained from evaluating the highest to lowest prediction densities; the equal tail prediction interval has equal tail probabilities.

Value

A list of class "predgc" with the following elements:

obs.locs observed locations.
obs.y observed values at observed locations.
pred.locs prediction locations.
predValue the expectation of the conditional predictive distribution.
predCount predicted counts; the closest integer that predValue rounded to.
predVar estimated variance of the prediction at prediction locations.
ConfidenceLevel confidence level (between 0 to 1) if prediction interval is computed.
predInterval.EqualTail equal-tail prediction interval.
predInterval.Shortest shortest length prediction interval.
predgc

Author(s)
Zifei Han <hanzifei1@gmail.com>

References

See Also
gcmr; mlegc

Examples
```r
## Not run:
## For fast check predict at four locations only
data(Weed95)
weedobs <- Weed95[, Weed95$dummy==1, ]
weedpred <- Weed95[, Weed95$dummy==0, ]
predweed1 <- predgc(obs.y = weedobs$weedcount, obs.x = weedobs[,4:5], obs.locs = weedobs[,1:2],
                   pred.x = weedpred[,4:5], pred.locs = weedpred[,1:2],
                   marginal = negbin.gc(link = 'log'), pred.interval = 0.9,
                   corr = matern.gc(kappa = 0.5, nugget = TRUE), method = 'GHK')
#summary(predweed1)
#plot(predweed1)

## Time consuming examples
## Weed prediction at 200 locations using parallel programming
predweed2 <- predgc(obs.y = weedobs$weedcount, obs.x = weedobs[,4:5], obs.locs = weedobs[,1:2],
                   pred.x = weedpred[,4:5], pred.locs = weedpred[,1:2],
                   marginal = negbin.gc(link = 'log'),
                   corr = matern.gc(kappa = 0.5, nugget = TRUE), method = 'GHK',
                   pred.interval = 0.95, parallel = TRUE,
                   paralleloptions = list(n.cores = 4))
#summary(predweed2)
#plot(predweed2)
```
A more time consuming example for generating a prediction map at a fine grid
data(OilWell)
gridstep <- seq(0.5, 30.5, length = 40)
locOilpred <- data.frame(Easting = expand.grid(gridstep, gridstep)[,1], Northing = expand.grid(gridstep, gridstep)[,2])
PredOil <- predgc(obs.y = OilWell[,3], obs.locs = OilWell[,1:2], pred.locs = locOilpred, marginal = binomial.gc(link = 'logit'), corr = matern.gc(nugget = FALSE), obs.effort = 1, pred.effort = 1, method = 'GHK', parallel = TRUE, paralleloptions = list(n.cores = 4))
PredMat <- summary(PredOil)

To generate better prediction maps
library(colorspace)
filled.contour(seq(0.5,30.5,length=40), seq(0.5,30.5,length=40), matrix(PredMat$predMean,40,), zlim = c(0, 1), col=rev(heat_hcl(12)), nlevels=12, xlab = "Eastings", ylab = "Northings", plot.axes = {axis(1); axis(2); points(OilWell[,1:2], col = 1, cex = 0.25 + 0.25*OilWell[,3]))}
filled.contour(seq(0.5,30.5,length=40), seq(0.5,30.5,length=40), matrix(PredMat$predVar,40,), zlim = c(0, 0.3), col = rev(heat_hcl(12)), nlevels = 10, xlab = "Eastings", ylab = "Northings", plot.axes = {axis(1); axis(2); points(OilWell[,1:2], col = 1, cex = 0.25 + 0.25*OilWell[,3]))}

End(Not run)

profile.mlegc

Profile Likelihood Based Confidence Interval of Parameters for Gaussian Copula Models in Geostatistical Count Data

Description

This function computes the (approximate) profile likelihood based confidence interval. The algorithm starts by choosing two starting points at different sides of the MLE and using an iterative process to find the approximate lower and upper bound.

Usage

```r
## S3 method for class 'mlegc'
profile(fitted, par.index, alpha = 0.05, start.point = NULL, method = 'GQT', nrep = 1000, seed = 12345, ...)
```
Arguments

- **fitted**: an object of class mlegc, typically inherited from function mlegc.
- **par.index**: the index of the parameter which should be profiled.
- **alpha**: the significance level, default is 0.05 which corresponds to 95 percent confidence interval.
- **start.point**: numeric vector of length 2 indicating the starting points for finding the left and right bound. If start.point = NULL then the default starting points will be used.
- **method**: Two methods are implemented. If method = 'GHK' then the simulated likelihood will be used, if method = 'GQT' then the surrogate likelihood will be used.
- **nrep**: the Monte Carlo size of the importance sampling algorithm for likelihood approximation; only need to be specified if method = 'GHK'.
- **seed**: seed of the pseudorandom generator used in Monte Carlo simulation; only need to be specified if method = 'GHK'.
- ***...*** other arguments passed.

Value

Lower and upper bounds of the approximate confidence interval.

Author(s)

Zifei Han <hanzifei1@gmail.com>

References

See Also

- mlegc

Examples

```r
## Not run:
data(LansingTrees)
Treefit4 <- mlegc(y = LansingTrees[,3], x = LansingTrees[,4],
                 locs = LansingTrees[,1:2], marginal = zip.gc(link = 'log'),
                 corr = matern.gc(kappa = 0.5, nugget = TRUE), method = 'GHK')
summary(Treefit4)

profile(Treefit4, 1, 0.05, method = 'GHK', nrep = 1000, seed = 12345)
```
simgc

Simulate Geostatistical Data from Gaussian Copula Model at Given Locations

Description

Simulate geostatistical data from Gaussian copula model at given locations. This function can simulate multiple datasets simultaneously.

Usage

simgc(locs, sim.n = 1, marginal, corr, longlat = FALSE)

Arguments

- **locs**: a numeric matrix or data frame of n-D points with row denoting points. First column is x or longitude, second column is y or latitude. The number of locations is equal to the number of rows.
- **sim.n**: the number of simulation samples required.
- **marginal**: an object of class `marginal.gc` specifying the marginal distribution.
- **corr**: an object of class `corr.gc` specifying the correlation function.
- **longlat**: if FALSE, use Euclidean distance, if TRUE use great circle distance. Default is FALSE.

Value

A list of two elements:

- **data**: a numeric matrix with each row denoting a simulated data.
- **locs**: the location of the simulated data, same as the input locs.

Author(s)

Zifei Han <hanzifei1@gmail.com>
Examples

```
grid <- seq(0.05, 0.95, by = 0.1)
xloc <- expand.grid(x = grid, y = grid)[,1]
yloc <- expand.grid(x = grid, y = grid)[,2]
set.seed(12345)
sim1 <- simgc(locs = cbind(xloc, yloc), sim.n = 10, marginal = negbin.gc(mu = 5, od = 1),
corr = matern.gc(range = 0.3, kappa = 0.5, nugget = 0.1))
#plot(sim1, index = 1)
```

spherical.gc

The Spherical Correlation Function of Class `corr.gc`

Description

The spherical correlation function in spatial statistics.

By default, range parameter is not available, so this function is used for likelihood inference and spatial prediction in function `mlegc` and `predgc`. Users need to specify if the correlation model includes a nugget effect `nugget = TRUE` or not `nugget = FALSE`.

When both range and nugget parameters are given, the function is used for simulation with function `simgc` in package `gcKrig`.

Usage

```
spherical.gc(range = NULL, nugget = TRUE)
```

Arguments

- `range` a non-negative scalar of the range parameter in the spherical correlation function.
- `nugget` the nugget effect of the correlation function. If specified, it must be a scalar between 0 and 1.

Details

The spherical correlation function with a nugget τ^2 is of the form:

$$
\rho(h) = (1 - \tau^2)(1 - 1.5(h/\phi) + 0.5(-h/\phi)^3)
$$

when $h > 0$ and $\rho(h) = 1$ when $h = 0$, h is distance.

Value

An object of class `corr.gc` representing the correlation component.

Author(s)

Zifei Han `<hanzifei1@gmail.com>`
Methods for Extracting Information from Fitted Object of Class \texttt{mlegc}

Description

Return a summary table of results from model fitting.

Usage

```r
## S3 method for class 'mlegc'
summary(object, ...)
```

Arguments

- **object**: an object of class \texttt{mlegc} inherited from function \texttt{mlegc}.
- **...**: additional arguments, but currently not used.

Value

A table summary of the estimates, standard error, z-value and several information criteria.

Author(s)

Zifei Han <hanzifei1@gmail.com>

See Also

\texttt{mlegc}

Methods for Extracting Information from Fitted Object of Class \texttt{predgc}

Description

Output a summary data frame.

Usage

```r
## S3 method for class 'predgc'
summary(object,...)
```
Arguments

 object an object of class predgc inherited from function predgc.
 ... further arguments.

Value

 A table including the following information:

 pred.locs prediction locations.
 predMean the expectation of the conditional predictive distribution.
 predCount predicted counts; the closest integer that predMean rounded to.
 predVar estimated variance of the prediction at prediction locations.
 predInterval.EqualTail equal-tail prediction interval; computed only if ConfidenceLevel = TRUE.
 predInterval.Shortest shortest length prediction interval; computed only if ConfidenceLevel = TRUE.

Author(s)

 Zifei Han <hanzifei1@gmail.com>

See Also

 mlegc, predgc

vcov.mlegc Covariance Matrix of the Maximum Likelihood Estimates

Description

 Calculate covariance and correlation matrix.

Usage

 ## S3 method for class 'mlegc'
 vcov(object, digits = max(3,getOption("digits") - 3), ...)

Arguments

 object an object of class mlegc inherited from function mlegc.
 digits integer indicating the number of decimal places (round) or significant digits (signif) to be used.
 ... other arguments passed to vcov.
Value
The estimated variance-covariance matrix and estimated correlation matrix.

Author(s)
Zifei Han <hanzifei1@gmail.com>

See Also
mlegc

Weed95

Counts of Weed Plants on a Field

Description
The weed species Viola Arvensis was counted within circular frames each of area 0.25 square meter except for 10 missing sites in the first row, from a 20 by 14 rectangular grid, so the total number of locations is 270. Also, the percentages of organic matter in a soil sample are collected. The data was studied by Christensen and Waagepetersen (2002) to investigate whether weed occurrence could be predicted from observations of soil texture and soil chemical properties.

Usage
data(Weed95)

Format
A data frame with 270 observations and 6 variables.

- **xloc** Cartesian x-coordinate of the locations (in meter).
- **yloc** Cartesian y-coordinate of the locations (in meter).
- **weedcount** Number of weed collected at the given site.
- **scaled Y coord** The scaled Y coordinate with range -1 to 1 as a covariate in regression.
- **organic** Another chemical component indicating the organic matter of the soil.
- **dummy** A dummy variable taking values 0 or 1. If 0 it is treated as observed location and 1 treated as predicted location in Christensen and Waagepetersen (2002).

References

Examples
data(Weed95)
str(Weed95)
The Weibull Marginal of Class `marginal.gc`

Description

The Weibull marginal used for simulation and computing correlation in the trans-Gaussian random field in function `simgc` and `corrTG` of the package `gcKrig`. It cannot be used in function `mlegc` nor `predgc` to make model inferences.

Usage

```r
weibull.gc(shape = 1, scale = 1)
```

Arguments

- `shape`: a positive scalar of shape parameter in the Weibull distribution.
- `scale`: a positive scalar of scale parameter in the Weibull distribution.

Details

The Weibull distribution with shape parameter a and scale parameter b has density given by

$$(a/b)(x/b)^{a-1}\exp(-(x/b)^a)$$

Value

An object of class `marginal.gc` representing the marginal component.

Author(s)

Zifei Han <hanzifei1@gmail.com>

See Also

`marginal.gc`, `beta.gc`, `binomial.gc`, `gm.gc`, `gaussian.gc`, `negbin.gc`, `poisson.gc`, `zip.gc`
Description

The zero-inflated Poisson marginal parameterized in terms of its mean and overdispersion. By default, this function is used for likelihood inference and spatial prediction in function mlegc and predgc of the package gcKrig. When all marginal parameters are given, the function is used for simulation and computing correlation in a trans-Gaussian random field in function simgc and corrTG.

Usage

zip.gc(link = "log", mu = NULL, od = NULL)

Arguments

link the model link function.

mu a non-negative scalar of the mean parameter.

od a non-negative scalar of the overdispersion parameter.

Details

The zero-inflated Poisson distribution with parameters $\mu = a$ and $\od = b$ has density

$$\frac{b}{1 + b} + \frac{\exp(-a + ab)}{1 + b}$$

when $y = 0$, and

$$\exp(-a + ab) \ast (a + ab)^y / ((1 + b)y!$$

when $y = 1, 2, ...$

Under this parameterization, $\text{var}(Y) = \mu + \od \ast \mu^2$, where μ is the mean parameter and \od is the overdispersion parameter. For more details see Han and De Oliveira (2016).

Value

An object of class marginal.gc representing the marginal component.

Author(s)

Zifei Han <hanzifei1@gmail.com>

References

zip.gc

See Also

marginal.gc, beta.gc, binomial.gc, gm.gc, gaussian.gc, negbin.gc, poisson.gc, weibull.gc
Index

* Correlation Structure
 corrTG, 6
 FHUBdiscrete, 7

* Correlation
 corr.gc, 5
 matern.gc, 12
 powerexp.gc, 25
 spherical.gc, 33

* Data Visualization
 plot.mlegc, 21
 plot.predgc, 22
 plot.simgc, 23
 plotgc, 24

* Datasets
 AtlanticFish, 2
 LansingTrees, 10
 OilWell, 20
 Weed95, 36

* Estimation
 marginal.gc, 11
 mlegc, 13
 mvnintGHK, 17
 plot.mlegc, 21
 profile.mlegc, 30
 summary.mlegc, 34
 vcov.mlegc, 35

* Marginal
 beta.gc, 3
 binomial.gc, 4
 gaussian.gc, 8
 gm.gc, 9
 marginal.gc, 11
 negbin.gc, 19
 poisson.gc, 25
 weibull.gc, 37
 zip.gc, 38

* Prediction
 marginal.gc, 11
 plot.predgc, 22
 predgc, 26
 summary.predgc, 34

* Simulation
 beta.gc, 3
 binomial.gc, 4
 corr.gc, 5
 gaussian.gc, 8
 gm.gc, 9
 marginal.gc, 11
 matern.gc, 12
 negbin.gc, 19
 plot.simgc, 23
 poisson.gc, 25
 powerexp.gc, 25
 simgc, 32
 spherical.gc, 33
 weibull.gc, 37
 zip.gc, 38

AtlanticFish, 2

beta.gc, 3, 5, 9, 11, 12, 20, 25, 37, 39
binomial.gc, 4, 4, 9, 11, 12, 20, 25, 37, 39
corr.gc, 5, 12–14, 25–27, 32, 33
corrTG, 6
FHUBdiscrete, 7
gaussian.gc, 4, 5, 8, 9, 11, 12, 20, 25, 37, 39
gcmr, 15, 29
gm.gc, 4, 5, 9, 9, 11, 12, 20, 25, 37, 39
LansingTrees, 10

marginal.gc, 3–6, 8, 9, 11, 14, 19, 20, 25, 27, 32, 37–39
matern.gc, 5, 6, 12, 26, 34
mlegc, 13, 21, 23, 28, 29, 31, 34–36
mvnintGHK, 17
negbin.gc, 4, 5, 9, 11, 12, 19, 25, 37, 39

OilWell, 20

plot.mlegc, 21, 23, 24
plot.predgc, 21, 22, 24
plot.simgc, 21, 23, 24
plotgc, 24
pmvnorm, 18
poisson.gc, 4, 5, 9, 11, 12, 20, 25, 37, 39
powerexp.gc, 5, 6, 13, 25
predgc, 22, 23, 26, 35
print.mlegc (summary.mlegc), 34
print.summary.mlegc (summary.mlegc), 34
profile.mlegc, 30

simgc, 23, 32
spherical.gc, 5, 6, 13, 26, 33, 34
summary.mlegc, 34
summary.predgc, 34

vcov.mlegc, 35

Weed95, 36
weibull.gc, 4, 5, 9, 11, 12, 20, 25, 37, 39

zip.gc, 4, 5, 9, 11, 12, 20, 25, 37, 38