Package ‘gclm’

June 4, 2020

Type Package
Title Graphical Continuous Lyapunov Models
Version 0.0.1
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
URL https://github.com/gerardovarando/gclm
BugReports https://github.com/gerardovarando/gclm/issues
Suggests testthat
NeedsCompilation yes
Author Gherardo Varando [aut, cre, cph] (<https://orcid.org/0000-0002-6708-1103>), Niels Richard Hansen [aut] (<https://orcid.org/0000-0003-3883-365X>)
Maintainer Gherardo Varando <gherardo.varando@gmail.com>
Repository CRAN
Date/Publication 2020-06-04 08:40:07 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>2</td>
</tr>
<tr>
<td>clyap</td>
<td>2</td>
</tr>
<tr>
<td>gclm</td>
<td>3</td>
</tr>
<tr>
<td>gclm.lowertri</td>
<td>5</td>
</tr>
</tbody>
</table>

Index 6
Generate a naive stable matrix

Description

Generate a naive stable matrix

Usage

\[B0(p) \]

Arguments

p \(\text{dimension of the matrix} \)

Value

a stable matrix with off-diagonal entries equal to 1 and diagonal entries equal to \(-p\)

Solve continuous-time Lyapunov equations

Description

clyap solve the continuous-time Lyapunov equations

\[BX + XB' + C = 0 \]

Using the Bartels-Stewart algorithm with Hessenberg–Schur decomposition. Optionally the Hessenberg-Schur decomposition can be returned.

Usage

clyap(B, C, Q = NULL, all = FALSE)

Arguments

B \(\text{Square matrix} \)
C \(\text{Square matrix} \)
Q \(\text{Square matrix, the orthogonal matrix used to transform the original equation} \)
all \(\text{logical} \)
Details

If the matrix Q is set then the matrix B is assumed to be in upper quasi-triangular form (Hessenberg-Schur canonical form), as required by LAPACK subroutine DTRSYL and Q is the orthogonal matrix associated with the Hessenberg-Schur form of B. Usually the matrix Q and the appropriate form of B are obtained by a first call to clyap(B,C,all = TRUE)

clyap uses lapack subroutines:
- DGEES
- DTRSYL
- DGEMM

Value

The solution matrix X if all = FALSE. If all = TRUE a list with components X, B and Q. Where B and Q are the Hessenberg-Schur form of the original matrix B and the orthogonal matrix that performed the transformation.

Examples

```r
B <- matrix(data = rnorm(9), nrow = 3)
## make B negative diagonally dominant, thus stable:
diag(B) <- - 3 * max(B)
C <- diag(runif(3))
X <- clyap(B, C)
## check X is a solution:
max(abs(B %*% X + X %*% t(B) + C))
```

Description

Estimates a sparse continuous time Lyapunov parametrization of a covariance matrix using a lasso (L1) penalty.

Usage

```r
gclm(Sigma,
    B = -0.5 * diag(ncol(Sigma)),
    C = rep(1, ncol(Sigma)),
    C0 = rep(1, ncol(Sigma)),
    loss = "loglik",
    eps = 0.01,
    alpha = 0.5,
    maxIter = 100,
    lambda = 0,
```

Il penalized loss estimation for GCLM
\begin{verbatim}
lambda = 0,
job = 0
)

gclm.path(
 Sigma,
 lambdas = NULL,
 B = -0.5 * diag(ncol(Sigma)),
 C = rep(1, ncol(Sigma)),
 ...
)

Arguments

Sigma covariance matrix
B initial B matrix
C diagonal of initial C matrix
C0 diagonal of penalization matrix
loss one of "loglik" (default) or "frobenius"
eps convergence threshold
alpha parameter line search
maxIter maximum number of iterations
lambda penalization coefficient for B
lambdac penalization coefficient for C
job integer 0,1,10 or 11
lambdas sequence of lambda
... additional arguments passed to gclm

Details

gclm performs proximal gradient descent for the optimization problem

\[\text{argmin}_L \left\{ \Sigma(B, C) + \lambda \rho(B) + \lambda \| C - C_0 \|_F^2 \right\} \]

subject to \(B \) stable and \(C \) diagonal, where \(\rho(B) \) is the 11 norm of the off-diagonal element of \(B \).
gclm.path simply calls iteratively gclm with different lambda values. Warm start is used, that is in the i-th call to gclm the \(B \) and \(C \) matrices are initialized as the one obtained in the (i-1)th call.

Value

for gclm: a list with the result of the optimization
for gclm.path: a list of the same length of lambdas with the results of the optimization for the different lambda values
\end{verbatim}
Examples

```r
x <- matrix(rnorm(50*20),ncol=20)
S <- cov(x)

## l1 penalized log-likelihood
res <- gclm(S, eps = 0, lambda = 0.1, lambdac = 0.01)

## l1 penalized log-likelihood with fixed C
res <- gclm(S, eps = 0, lambda = 0.1, lambdac = -1)

## l1 penalized frobenius loss
res <- gclm(S, eps = 0, lambda = 0.1, loss = "frobenius")
```

Description

Recover the only lower triangular stable matrix B such that Σ is the solution of the associated continuous Lyapunov equation:

$$B\Sigma + \Sigma B' + C = 0$$

Usage

```r
gclm.lowertri(Sigma, P = solve(Sigma), C = diag(nrow = nrow(Sigma)))
```

Arguments

- **Sigma**: covariance matrix
- **P**: the inverse of the covariance matrix
- **C**: symmetric positive definite matrix

Value

A stable lower triangular matrix
Index

B0, 2

clyap, 2

gclm, 3
gclm.lowertri, 5