Package ‘generalhoslem’

August 25, 2016

Type Package

Title Goodness of Fit Tests for Logistic Regression Models

Version 1.2.3

Date 2016-08-25

Author Matthew Jay [aut, cre]

Maintainer Matthew Jay <matthew.jay.15@ucl.ac.uk>

Description Functions to assess the goodness of fit of binary, multilnomial and ordinal logistic models. Included are the Hosmer-Lemeshow tests (binary, multinomial and ordinal) and the Lipsitz and Pulkstenis-Robinson tests (ordinal).

Depends reshape, MASS, epiR, R (>= 3.3.1)

License GPL-2

Suggests nnet, mlogit, ordinal

NeedsCompilation no

Repository CRAN

Date/Publication 2016-08-25 22:56:35

R topics documented:

generalhoslem-package .. 2
lipsitz.test ... 3
logitgof ... 5
pulkrob.chisq .. 7

Index 9
generalhoslem-package
Goodness of Fit Tests for Logistic Regression Models

Description

Functions to assess the goodness of fit of binary, multinomial and ordinal logistic models. Included are the Hosmer-Lemeshow tests (binary, multinomial and ordinal) and the Lipsitz and Pulkstenis-Robinson tests (ordinal).

Details

- **Package:** generalhoslem
- **Type:** Package
- **Title:** Goodness of Fit Tests for Logistic Regression Models
- **Version:** 1.2.3
- **Date:** 2016-08-25
- **Authors@R:** person("Matthew", "Jay", role = c("aut", "cre"), email = "matthew.jay.15@ucl.ac.uk")
- **Author:** Matthew Jay [aut, cre]
- **Maintainer:** Matthew Jay <matthew.jay.15@ucl.ac.uk>
- **Description:** Functions to assess the goodness of fit of binary, multinomial and ordinal logistic models. Included are the Hosmer-Lemeshow tests (binary, multinomial and ordinal) and the Lipsitz and Pulkstenis-Robinson tests (ordinal).
- **Depends:** reshape, MASS, epiR, R (>= 3.3.1)
- **License:** GPL-2
- **Suggests:** nnet, mlogit, ordinal

Index of help topics:

- `generalhoslem-package`
 Goodness of Fit Tests for Logistic Regression Models
- `lipsitz.test`
 Lipsitz goodness of fit test for ordinal response models.
- `logitgof`
 Hosmer-Lemeshow Tests for Logistic Regression Models
- `pulkrob.chisq`
 Pulkstenis-Robinson goodness of fit tests for ordinal response models.

Author(s)

Matthew Jay [aut, cre] Maintainer: Matthew Jay <matthew.jay.15@ucl.ac.uk>

References

Lipsitz goodness of fit test for ordinal response models.

Description

Performs the Lipsitz goodness-of-fit test for ordinal logistic regression models.

Usage

lipsitz.test(model, g = 10)

Arguments

model an ordinal response model. Must be an object of class polr or clm.
g number of quantiles of risk, defaults to 10.

Details

The Lipsitz test is a goodness-of-fit test for ordinal response logistic regression models. It involves firstly binning the observed data into percentiles in the same manner as for the multinomial Hosmer-Lemeshow test. Strictly speaking, the Lipsitz test first requires an ordinal score be assigned to each subject. This score is the sum of the predicted probabilities for each outcome level within each subject multiplied by equally spaced integer weights but this has been shown to be identical to the more straightforward binning method (Fagerland and Hosmer, 2013). The user can specify the number of groups by assigning an integer value to g, which is 10 by default.

Given this partitioning of the data, dummy variables, I, are derived such that, for each group, I = 1 if the subject is in region g and I = 0 if not. The model is then re-fit with these dummy variables. If the model has good fit, then the logits for all these dummy variables simultaneously = 0. Lipsitz et al (1996) suggest that likelihood ratio, Wald or score tests can be used but lipsitz.test just uses the likelihood ratio test with g-1 degrees of freedom.

Note that the outcome variable MUST be converted to a factor before running the model. Using as.factor() within the model function will cause an error because of the way in which lipsitz.test uses the update() function to re-fit the model.

It is recommended (Fagerland and Hosmer, 2016) that the Lipsitz test be run alongside the Hosmer-Lemeshow test (logitgof) and the Pulkstenis-Robinson tests (pulkrob.chisq and pulkrob.deviance).
Value

A list of class htest containing:

- statistic: the value of the likelihood ratio statistic.
- parameter: degrees of freedom used.
- p.value: the p-value.
- method: a character string indicating the name of the test.
- data.name: a character string indicating the model formula used.
- newmoddata: a data frame containing the data used in fitting the updated model (essentially the original data plus the dummy variables).
- predictedprobs: a data frame of predicted probabilities from the original model.

Author(s)

Matthew Alexander Jay

References

See Also

logitgof, pulkrob.chisq.

Examples

data(mtcars)
mtcars$gear <- as.factor(mtcars$gear) # Outcome must be converted to factor
before fitting model otherwise
lipsitz.test() will fail.
mod1 <- polr(gear ~ mpg + cyl, data = mtcars)
lipsitz.test(mod1)
Description

Performs the Hosmer and Lemeshow goodness-of-fit tests for binary, multinomial and ordinal regression models.

Usage

logitgof(obs, exp, g = 10, ord = FALSE)

Arguments

obs a vector of observed values. See details.
exp expected values fitted by the model. See details.
g number of quantiles of risk, 10 by default.
ord logical indicating whether to run the ordinal version, FALSE by default.

Details

The Hosmer-Lemeshow tests

The Hosmer-Lemeshow tests are goodness of fit tests for binary, multinomial and ordinal logistic regression models. logitgof is capable of performing all three. Essentially, they compare observed with expected frequencies and compute a test statistic which is roughly distributed according to the chi-squared distribution. The degrees of freedom depend upon the number of quantiles used and the number of outcome categories. A non-significant p value indicates that there is no evidence that the observed and expected frequencies differ.

Binary version

If obs is a vector of 1s and 0s or a factor vector with 2 levels, then the binary version of the test is run. exp must be the fitted values obtained from the model, which can be accessed using the fitted() function.

Multinomial version

If obs is a factor with three or more levels and ord = FALSE, the multinomial version of the test is run. If using the mlogit package to run a model, ensure outcome = FALSE in the fitted() function. See examples.

Ordinal version

If obs is a factor with three or more levels and ord = TRUE, the ordinal version of the test is run. See examples for how to extract fitted values from models constructed using polr in package MASS or clm in ordinal.

Note that Fagerland and Hosmer recommend running the Hosmer-Lemeshow test for ordinal models alongside the Lipsitz test (lipsitz.test) and Pulkstenis-Robinson tests (pulkrob.chisq and pulkrob.deviance), as each detects different types of lack of fit.

Value

A list of class htest containing:

statistic the value of the relevant test statistic.
logitgof

parameter the number of degrees of freedom used.
p.value the p-value.
method a character string indicating whether the binary or multinomial version of the test was performed.
data.name a character string containing the names of the data passed to obs and exp.
observed a table of observed frequencies with g rows. Either an xtabs generated table (used in the binary version) or a cast generated data frame (multinomial version).
expected a table of expected frequencies with g rows. Either an xtabs generated table or a cast generated data frame.
stddiffs a table of the standardised differences. See Hosmer, Lemeshow and Sturdivant (2013), p 162.

Author(s)
Matthew Alexander Jay, with code adapted from the hoslem.test function written by Peter Solymos for the ResourceSelection package.

References

See Also

lipsitz.test, pulkrob.chisq.

Examples

```r
## binary model
# 1/0 coding
data(mtcars)
mod1 <- glm(vs ~ cyl + mpg, data = mtcars, family = binomial)
logitgof(mtcars$vs, fitted(mod1))

# factor name coding
mtcars$engine <- factor(ifelse(mtcars$vs==0, "V", "S"), levels = c("V", "S"))
mod2 <- glm(engine ~ cyl + mpg, data = mtcars, family = binomial)
logitgof(mtcars$engine, fitted(mod2))

## Multinomial model
# with nnet
```

```r
```
library(nnet)
mod3 <- multinom(gear ~ mpg + cyl, data = mtcars)
logitgof(mtcars$gear, fitted(mod3))

with mlogit
library(mlogit)
data("Fishing", package = "mlogit")
Fish <- mlogit.data(Fishing, varying = c(2:9), shape = "wide", choice = "mode")
mod4 <- mlogit(mode ~ 0 | income, data = Fish)
logitgof(Fishing$mode, fitted(mod4, outcome = FALSE))

Ordinal model
polr in package MASS
mod5 <- polr(as.factor(gear) ~ mpg + cyl, data = mtcars)
logitgof(mtcars$gear, fitted(mod5), g = 5, ord = TRUE)

clm in package ordinal
library(ordinal)
mtcars$gear <- as.factor(mtcars$gear)
mod6 <- clm(gear ~ mpg + cyl, data = mtcars)
predprob <- data.frame(mpg = mtcars$mpg, cyl = mtcars$cyl)
fv <- predict(mod6, newdata = predprob, type = "prob")$fit
logitgof(mtcars$gear, fv, g = 5, ord = TRUE)

pulkrob.chisq Pulkstenis-Robinson goodness of fit tests for ordinal response models.

Description
Performs the Pulkstenis-Robinson goodness of fit chi-squared and deviance tests for ordinal logistic regression models.

Usage

pulkrob.chisq(model, catvars)
pulkrob.deviance(model, catvars)

Arguments

model an ordinal response model. Must be an object of class polr or clm.
catvars a character vector containing the names of the categorical covariates.

Details
The Pulkstenis-Robinson tests are goodness-of-fit tests for ordinal response models. They are capable of accommodating models with continuous as well as categorical predictors. The data are partitioned according to observed covariate patterns using the categorical covariates only. Any unobserved covariate patterns are discarded and only categorical predictors are used to avoid partitioning among an unacceptably high number of covariate patterns. Each subject is assigned an
ordinal response score by summing the predicted probabilities of each subject for each outcome level multiplied by equally spaced integer weights. The covariate patterns are then split into two at the median score within each.

Based on this partitioning, observed and expected frequencies are calculated and the test statistic computed. This statistic is distributed by the chi-squared distribution with \((2I - 1)(J - 1) - k - 1\) degrees of freedom, where \(I\) is the number of covariate patterns, \(J\) is the number of response categories and \(k\) is the number of categorical variables in the model.

It is recommended (Fagerland and Hosmer, 2016) that the Pulkstenis-Robinson tests be run alongside the Hosmer-Lemeshow test (logitgof) and the Lipsitz test (lipsitz.test).

Value

A list of class `htest` containing:

- `statistic` the chi-squared or deviance statistic.
- `parameter` degrees of freedom used.
- `p.value` the p-value.
- `method` a character string indicating the name of the test.
- `data.name` a character string indicating the model formula used.
- `observed` a cast generated data frame of observed frequencies.
- `expected` a cast generated data frame of expected frequencies.

Author(s)

Matthew Alexander Jay

References

See Also

`logitgof`, `lipsitz.test`.

Examples

data(mtcars)
mod1 <- polr(as.factor(gear) ~ mpg + cyl + vs, data = mtcars)
pulkrob.chisq(mod1, c("vs"))
pulkrob.deviance(mod1, c("v$"))
Index

*Topic package
 generalhoslem-package, 2
*Topic regression
 lipsitz.test, 3
 logitgof, 5
 pulkrob.chisq, 7

generalhoslem (generalhoslem-package), 2
generalhoslem-package, 2

lipsitz.test, 3, 6, 8
logitgof, 4, 5, 8

pulkrob.chisq, 4, 6, 7
pulkrob.deviance (pulkrob.chisq), 7