Package ‘gge’

October 31, 2021

Title Genotype Plus Genotype-by-Environment Biplots
Version 1.7
Description Create biplots for GGE (genotype plus genotype-by-environment) and
 GGB (genotype plus genotype-by-block-of-environments) models.
 See Laffont et al. (2013) <doi:10.2135/cropsci2013.03.0178>.
Type Package
Imports nipals, reshape2
Suggests agridat, knitr, lattice, rgl, rmarkdown, testthat
License GPL-3
URL https://kwstat.github.io/gge/
BugReports https://github.com/kwstat/gge/issues
VignetteBuilder knitr
RoxygenNote 7.1.2
Encoding UTF-8
NeedsCompilation no
Author Kevin Wright [aut, cre] (<https://orcid.org/0000-0002-0617-8673>),
 Jean-Louis Laffont [aut]
Maintainer Kevin Wright <kw.stat@gmail.com>
Repository CRAN
Date/Publication 2021-10-31 21:20:02 UTC

R topics documented:

 gge .. 2
 RedGrayBlue .. 6

Index 7
Description

Fit a GGE (genotype + genotype * environment) model and display the results.

Usage

gge(x, ...)

S3 method for class 'data.frame'
gge(x, formula, gen.group = NULL, env.group = NULL, ggb = FALSE, ...)

S3 method for class 'formula'
gge(formula, data, gen.group = NULL, env.group = NULL, ggb = FALSE, ...)

S3 method for class 'matrix'
gge(
x,
 center = TRUE,
 scale = TRUE,
 gen.group = NULL,
 env.group = NULL,
 ggb = FALSE,
 comps = c(1, 2),
 method = "svd",
 ...
)

S3 method for class 'gge'
plot(x, main = substitute(x), ...)

S3 method for class 'gge'
biplot(
 x,
 main = substitute(x),
 subtitle = "",
 xlab = "auto",
 ylab = "auto",
 cex.gen = 0.6,
 cex.env = 0.5,
 col.gen = "darkgreen",
 col.env = "orange3",
 pch.gen = 1,
 lab.env = TRUE,
 comps = 1:2,
biplot3d(x, ...)

S3 method for class 'gge'

biplot3d(
 x,
 cex.gen = 0.6,
 cex.env = 0.5,
 col.gen = "darkgreen",
 col.env = "orange3",
 comps = 1:3,
 lab.env = TRUE,
 res.vec = TRUE,
 zoom.gen = 1,
 ...
)

Arguments

- **x**
 A matrix or data.frame.

- **...**
 Other arguments (e.g. maxiter, gramschmidt)

- **formula**
 A formula

- **gen.group**
 genotype group

- **env.group**
 env group

- **ggb**
 If TRUE, fit a GGB biplot model.

- **data**
 Data frame

- **center**
 If TRUE, center values for each environment

- **scale**
 If TRUE, scale values for each environment

- **comps**
 Principal components to use for the biplot. Default c(1,2).

- **method**
 method used to find principal component directions. Either "svd" or "nipals".

- **main**
 Title, by default the name of the data. Use NULL to suppress the title.

- **subtitle**
 Subtitle to put in front of options. Use NULL to suppress the subtitle.

- **xlab**
 Label along axis. Default "auto" shows percent of variation explained. Use NULL to suppress.

- **ylab**
 Label along axis. Default "auto" shows percent of variation explained. Use NULL to suppress.
cex.gen Character expansion for genotypes, default 0.6. Use 0 to omit genotypes.
cex.env Character expansion for environment labels.
col.gen Color for genotype labels. May be a single color for all genotypes, or a vector
 of colors for each genotype.
col.env Color for environments. May be a single color for all environments, or a vector
 of colors for each environment.
pch.gen Plot character for genotypes
lab.env Label environments if TRUE.
flip If "auto" then each axis is flipped so that the genotype ordinate is positively
 correlated with genotype means. Can also be a vector like c(TRUE, FALSE) for
 manual control.
origin If "auto", the plotting window is centered on genotypes, otherwise the origin is
 at the middle of the window.
res.vec If TRUE, for each group, draw residual vectors from the mean of the locs to the
 individual locs.
hull If TRUE, show a which-won-where polygon.
zoom.gen Zoom factor for manual control of genotype xlim, ylim. The default is 1. Values
 less than 1 may be useful if genotype names are long.
zoom.env Zoom factor for manual control of environment xlim, ylim. The default is 1.
 Values less than 1 may be useful if environment names are long. Not used for
 3D biplots.

Details

If there is replication in G*E, then the replications are averaged together before constructing the
biplot.

The singular value decomposition of \(x \) is used to calculate the principal components for the biplot.
Missing values are NOT allowed.

The argument method can be either 'svd' for complete-data or 'nipals' for missing-data.

Value

A list of class gge containing:

x The filled-in data
x.orig The original data
genCoord genotype coordinates
locCoord loc coordinates
blockCoord block coordinates
gen.group If not NULL, use this to specify a column of the data.frame to classify genotypes
 into groups.
env.group If not NULL, use this to specify a column of the data.frame to classify environments into groups.
gge

If TRUE, create a GGB biplot

If TRUE, create a GGB biplot

genMeans

Genotype means

Genotype means

mosdat

Mosaic plot data

Mosaic plot data

R2

Variation explained by each PC

Variation explained by each PC

center

Data centered?

Data centered?

scale

Data scaled?

Data scaled?

method

Method used to calculate principal components.

Method used to calculate principal components.

pctMiss

Percent of x that is missing values

Percent of x that is missing values

maxPCs

Maximum number of PCs

Maximum number of PCs

Author(s)

Kevin Wright, Jean-Louis Laffont

Kevin Wright, Jean-Louis Laffont

Jean-Louis Laffont, Kevin Wright

Jean-Louis Laffont, Kevin Wright

References

Examples

Example 1. Data is a data.frame in 'matrix' format

B <- matrix(c(50, 67, 90, 98, 120,
 55, 71, 93, 102, 129,
 65, 76, 95, 105, 134,
 50, 80, 102, 130, 138,
 60, 82, 97, 135, 151,
 65, 89, 106, 137, 153,
 75, 95, 117, 133, 155), ncol=5, byrow=TRUE)

rownames(B) <- c("G1", "G2", "G3", "G4", "G5", "G6", "G7")
colnames(B) <- c("E1", "E2", "E3", "E4", "E5")

library(gge)
m1 = gge(B)
plot(m1)
biplot(m1, main="Example biplot")
biplot3d(m1)

if(require(agridat)){
 # crossa.wheat biplot

 # Specify env.group as column in data frame
data(crossa.wheat)
dat2 <- crossa.wheat
m2 <- gge(yield~gen*loc, dat2, env.group=locgroup, scale=FALSE)
plot(m2)
biplot(m2, lab.env=TRUE, main="crossa.wheat")
biplot3d(m2)

RedGrayBlue

Function to create a Red-Gray-Blue palette

Description
A function to create a Red-Gray-Blue palette.

Usage
RedGrayBlue(n)

Arguments
n Number of colors to create

Details
Using gray instead of white allows missing values to appear as white (actually, transparent).

Value
A vector of n colors.

Author(s)
Kevin Wright

Examples
pie(rep(1,11), col=RedGrayBlue(11))
title("RedGrayBlue(11)")
Index

biplot.gge (gge), 2
biplot3d (gge), 2

gge, 2

package-gge (gge), 2
plot.gge (gge), 2

RedGrayBlue, 6