Type Package
Title Functional Conditional Independence Testing with the GHCM
Version 2.0.0
Description A statistical hypothesis test for conditional independence. Given residuals from a sufficiently powerful regression, it tests whether the covariance of the residuals is vanishing. It can be applied to both discretely-observed functional data and multivariate data. Details of the method can be found in Anton Rask Lundborg, Rajen D. Shah and Jonas Peters (2021) <arXiv:2101.07108>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports graphics, MASS, refund, stats, utils, CompQuadForm
Depends R (>= 4.0.0)
RoxygenNote 7.1.1
Suggests testthat, knitr, rmarkdown, bookdown, GeneralisedCovarianceMeasure, ggplot2, reshape2
URL https://github.com/arlundborg/ghcm
BugReports https://github.com/arlundborg/ghcm/issues
VignetteBuilder knitr
NeedsCompilation no
Author Anton Rask Lundborg [aut, cre], Rajen D. Shah [aut], Jonas Peters [aut]
Maintainer Anton Rask Lundborg <a.lundborg@statslab.cam.ac.uk>
Repository CRAN
Date/Publication 2021-09-27 18:20:02 UTC
ghcm_sim_data

R topics documented:

ghcm_sim_data .. 2
ghcm_test ... 3

Index

ghcm_sim_data GHCM simulated data

Description

A simulated dataset containing a combination of functional and scalar variables. The functional
variables each consists of 101 observations on an equidistant grid on [0, 1].

Usage

ghcm_sim_data

Format

A data frame with 500 rows of 5 variables:

X 500 x 101 matrix.
Z 500 x 101 matrix.
W 500 x 101 matrix.
Y_1 Numeric vector.
Y_2 Numeric vector.

Details

Y_1 and Y_2 are scalar random variables and are both functions of Z. X, Z and W are functional, Z
is a function of X and W is a function of Z.

Source

The generation script can be found in the data-raw folder of the package.
Conditional Independence Test using the GHCM

Description
Testing X independent of Y given Z using the Generalised Hilbertian Covariance Measure. The function is applied to residuals from regressing X on Z and regressing Y on Z and its validity is contingent on the performance of the regression methods.

Usage
ghcm_test(resid_X_on_Z, resid_Y_on_Z, alpha = 0.05)

Arguments
resid_X_on_Z, resid_Y_on_Z
Numeric vectors or matrices. Residuals when regressing X (Y) on Z with a suitable regression method.
alpha
Numeric in the unit interval. Significance level of the test.

Value
An object of class ghcm containing:
test_statistic Numeric, test statistic of the test.
p Numeric in the unit interval, estimated p-value of the test.
cov matrix, estimated covariance of the truncated limiting Gaussian.
alpha Numeric in the unit interval, significance level of the test.

References

Examples
library(refund)
set.seed(1)
data(ghcm_sim_data)
grid <- seq(0, 1, length.out = 101)

Test independence of two scalars given a functional variable
m_1 <- pfr(Y_1 ~ lf(Z), data=ghcm_sim_data)
m_2 <- pfr(Y_2 ~ lf(Z), data=ghcm_sim_data)
ghcm_test(resid(m_1), resid(m_2))
Test independence of a functional variable and a scalar variable given a functional variable

m_X <- pffr(X ~ ff(Z), data=ghcm_sim_data, chunk.size=31000)
ghcm_test(resid(m_X), resid(m_1))

Test independence of two functional variables given a functional variable

m_W <- pffr(W ~ ff(Z), data=ghcm_sim_data, chunk.size=31000)
ghcm_test(resid(m_X), resid(m_W))
Index

* datasets
 ghcm_sim_data, 2

ghcm_sim_data, 2
ghcm_test, 3