Package ‘gmvarkit’

November 22, 2021

Title Estimate Gaussian or Student's t Mixture Vector Autoregressive Model

Version 2.0.0

Description
Unconstrained and constrained maximum likelihood estimation of structural and reduced form Gaussian mixture vector autoregressive, Student's t mixture vector autoregressive, and Gaussian and Student's t mixture vector autoregressive models, quantile residual tests, graphical diagnostics, simulations, forecasting, and estimation of generalized impulse response function and generalized forecast error variance decomposition.

Depends R (>= 3.6.0)

BugReports https://github.com/saviviro/gmvarkit/issues

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Imports Brobdingnag (>= 1.2-4), mvnfast (>= 0.2.5), parallel (>= 3.0.0), stats (>= 3.0.0), pbapply (>= 1.4-2), graphics (>= 3.0.0), grDevices (>= 3.0.0), gsl (>= 2.1-6)

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Savi Virolainen [aut, cre]

Maintainer Savi Virolainen <savi.virolainen@helsinki.fi>

Repository CRAN

Date/Publication 2021-11-22 16:00:02 UTC
R topics documented:

add_data .. 3
alt_gmvar ... 4
alt_gsmvar ... 6
calc_gradient ... 7
check_parameters ... 9
cond_moments ... 12
cond_moment_plot 17
diagnostic_plot ... 18
diag_Omegas ... 20
fitGMVAR .. 21
fitGSMVAR .. 24
GAfit ... 29
gdpdef ... 36
get_boldA_eigens 36
get_omega_eigens 37
get_regime_autocovs 38
get_regime_means 39
GFEVD .. 40
GIRF ... 44
GMVAR .. 48
gmvarkit ... 52
gmvar_to_gsmvar 52
gmvar_to_sgsmvar 53
GSMVAR .. 54
gsmvar_to_sgsmvar 59
in_paramspace ... 61
in_paramspace_int 64
iterate_more ... 67
loglikelihood ... 69
LR_test ... 73
plot.gmvarpred ... 74
plot.gsmvarpred ... 75
plot.qrtest ... 76
predict.gmvar .. 78
predict.gsmvar .. 80
print.gmvar .. 82
print.gmvarsum ... 83
print.gmvarpred ... 83
print.gsmvarsum ... 84
print_std_errors .. 85
profile_logliks .. 86
quantile_residuals 88
random_ind2 .. 90
redecompose_Omegas 93
reorder_W_columns 94
simulate.gsmvar 96
Description

`add_data` adds or updates data to object of class `gsmvar` that defines a GMVAR, StMVAR, or G-StMVAR model. Also calculates mixing weights and quantile residuals accordingly.

Usage

```r
add_data(data, gsmvar, calc_cond_moments = TRUE, calc_std_errors = FALSE)
```

Arguments

- `data`: a matrix or class `ts` object with $d>1$ columns. Each column is taken to represent a univariate time series. NA values are not supported.
- `gsmvar`: an object of class `gsmvar`, typically created with `fitGSMVAR` or `GSMVAR`.
- `calc_cond_moments`: should conditional means and covariance matrices be calculated? Default is TRUE if the model contains data and FALSE otherwise.
- `calc_std_errors`: should approximate standard errors be calculated?

Value

Returns an object of class `gsmvar` defining the specified GSMVAR, StMVAR, or G-StMVAR model with the data added to the model. If the object already contained data, the data will be updated.

References

See Also

fitGSMVAR, GSMVAR, iterate_more, update_numtol

Examples

GMVAR(1, 2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005,
 0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012,
 0.136, 0.674)
mod12 <- GSMVAR(p=1, M=2, d=2, params=params12)
mod12

mod12_2 <- add_data(gdpdef, mod12)
mod12_2

StMVAR(1, 2), d=2 model:
mod12t <- GSMVAR(p=1, M=2, d=2, params=c(params12, 10, 12), model="StMVAR")
mod12t
mod12t_2 <- add_data(gdpdef, mod12t)
mod12t_2

Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
 0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
 0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(p=2, M=2, d=2, params=params22s, structural_pars=list(W=W_22))
mod22s
mod22s_2 <- add_data(gdpdef, mod22s)
mod22s_2

alt_gmvar

DEPRECATED! USE THE FUNCTION alt_gsmvar INSTEAD! Construct a GMVAR model based on results from an arbitrary estimation round of fitGSMVAR.

Description

DEPRECATED! USE THE FUNCTION alt_gsmvar INSTEAD! alt_gmvar constructs a GMVAR model based on results from an arbitrary estimation round of fitGSMVAR.

Usage

alt_gmvar(
 gmvar,
 which_round = 1,
 which_largest,
 calc_cond_moments = TRUE,
Arguments

- **gmvar**: object of class 'gmvar'
- **which_round**: based on which estimation round should the model be constructed? An integer value in 1,...,ncalls.
- **which_largest**: based on estimation round with which largest log-likelihood should the model be constructed? An integer value in 1,...,ncalls. For example, which_largest=2 would take the second largest log-likelihood and construct the model based on the corresponding estimates. If used, then which_round is ignored.
- **calc_cond_moments**: should conditional means and covariance matrices should be calculated? Default is TRUE if the model contains data and FALSE otherwise.
- **calc_std_errors**: should approximate standard errors be calculated?

Details

It’s sometimes useful to examine other estimates than the one with the highest log-likelihood. This function is wrapper around GSMVAR that picks the correct estimates from an object returned by fitGSMVAR.

Value

Returns an object of class 'gsmvar' defining the specified reduced form or structural GMVAR, StMVAR, or G-StMVAR model. Can be used to work with other functions provided in gmvarkit.

Note that the first autocovariance/correlation matrix in $uncond_moments$ is for the lag zero, the second one for the lag one, etc.

References

See Also

- alt_gsmvar
alt_gsmvar

Description

alt_gsmvar constructs a GMVAR, StMVAR, or G-StMVAR model based on results from an arbitrary estimation round of fitGSMVAR.

Usage

alt_gsmvar(
 gsmvar,
 which_round = 1,
 which_largest,
 calc_cond_moments = TRUE,
 calc_std_errors = TRUE
)

Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
which_round based on which estimation round should the model be constructed? An integer value in 1,..,ncalls.
which_largest based on estimation round with which largest log-likelihood should the model be constructed? An integer value in 1,..,ncalls. For example, which_largest=2 would take the second largest log-likelihood and construct the model based on the corresponding estimates. If used, then which_round is ignored.
calc_cond_moments should conditional means and covariance matrices should be calculated? Default is TRUE if the model contains data and FALSE otherwise.
calc_std_errors should approximate standard errors be calculated?

Details

It’s sometimes useful to examine other estimates than the one with the highest log-likelihood. This function is wrapper around GSMVAR that picks the correct estimates from an object returned by fitGSMVAR.

Value

Returns an object of class 'gsmvar' defining the specified reduced form or structural GMVAR, StMVAR, or G-StMVAR model. Can be used to work with other functions provided in gmvarkit. Note that the first autocovariance/correlation matrix in $uncond_moments is for the lag zero, the second one for the lag one, etc.
References

See Also

- `fitGSMVAR`, `GSMVAR`, `iterate_more`, `update_numtols`

Examples

```r
# GMVAR(1,2) model
fit12 <- fitGSMVAR(gdpdef, p=1, M=2, ncalls=2, seeds=4:5)
fit12
fit12_2 <- alt_gsmvar(fit12, which_largest=2)
fit12_2
```

calc_gradient

Calculate gradient or Hessian matrix

Description

`calc_gradient` or `calc_hessian` calculates the gradient or Hessian matrix of the given function at the given point using central difference numerical approximation. `get_gradient` or `get_hessian` calculates the gradient or Hessian matrix of the log-likelihood function at the parameter estimates of a class `gsmvar` object. `get_soc` returns eigenvalues of the Hessian matrix, and `get_foc` is the same as `get_gradient` but named conveniently.

Usage

```r
calc_gradient(x, fn, h = 6e-06, varying_h = NULL, ...)
calc_hessian(x, fn, h = 6e-06, varying_h = NULL, ...)
get_gradient(gsmvar, custom_h = NULL)
get_hessian(gsmvar, custom_h = NULL)
get_foc(gsmvar, custom_h = NULL)
get_soc(gsmvar, custom_h = NULL)
```
Arguments

- **x**: a numeric vector specifying the point where the gradient or Hessian should be calculated.
- **fn**: a function that takes in argument `x` as the **first** argument.
- **h**: difference used to approximate the derivatives.
- **varying_h**: a numeric vector with the same length as `x` specifying the difference `h` for each dimension separately. If `NULL` (default), then the difference given as parameter `h` will be used for all dimensions.
- **...**: other arguments passed to `fn`
- **gsmvar**: an object of class 'gsmvar', typically created with `fitGSMVAR` or `GSMVAR`.
- **custom_h**: same as `varying_h` but if `NULL` (default), then the difference `h` used for differentiating overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is `6e-6` for the other parameters.

Details

In particular, the functions `get_foc` and `get_soc` can be used to check whether the found estimates denote a (local) maximum point, a saddle point, or something else. Note that profile log-likelihood functions can be conveniently plotted with the function `profile_logliks`.

Value

Gradient functions return numerical approximation of the gradient and Hessian functions return numerical approximation of the Hessian. `get_soc` returns eigenvalues of the Hessian matrix.

Warning

No argument checks!

See Also

`profile_logliks`

Examples

```r
# Simple function
foo <- function(x) x^2 + x
calc_gradient(x=1, fn=foo)
calc_gradient(x=-0.5, fn=foo)

# More complicated function
foo <- function(x, a, b) a*x[1]^2 - b*x[2]^2
calc_gradient(x=c(1, 2), fn=foo, a=0.3, b=0.1)

# GMVAR(1,2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005, 0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012,
```
check_parameters

0.136, 0.674
mod12 < GSMVAR(gdpdef, p=1, M=2, params=params12)
get_gradient(mod12)
g

Description

check_parameters checks whether the given parameter vector satisfies the model assumptions.
Does NOT consider the identifiability condition!

Usage

check_parameters(
 p,
 M,
 d,
 params,
 model = c("GMVAR", "StMVAR", "G-StMVAR"),
 parametrization = c("intercept", "mean"),
 constraints = NULL,
 same_means = NULL,
 structural_pars = NULL,
 stat_tol = 0.001,
 posdef_tol = 1e-08,
 df_tol = 1e-08
)

Arguments

p a positive integer specifying the autoregressive order of the model.
M For GMVAR and StMVAR models: a positive integer specifying the number
 of mixture components.
 For G-StMVAR models: a size (2x1) integer vector specifying the number of
 GMVAR type components M1 in the first element and StMVAR type compo-
 nents M2 in the second element. The total number of mixture components
 is M=M1+M2.
d the number of time series in the system.
params a real valued vector specifying the parameter values.

For unconstrained models: Should be size
(M(pd^2 + d(d + 1)/2 + 2) −
M1 − 1)x1) and have the form
θ=(υ_1, ..., υ_M, α_1, ..., α_{M−1}, ν), where
• υ_m = (φ_{m,0}, φ_m, σ_m)
• $\phi_m = \text{vec}(A_{m,1}), ..., \text{vec}(A_{m,p})$
• and $\sigma_m = \text{vech}(\Omega_m)$, $m=1,...,M$,
• $\nu = (\nu_{M+1}, ..., \nu_M)$
• $M1$ is the number of GMVAR type regimes.

For constrained models: Should be size $((M(d+d+1)/2+2)+q-M1-1)x1)$ and have the form $\theta = (\phi_{1,0}, ..., \phi_{M,0}, \psi, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu)$, where

• $\psi (qx1)$ satisfies $(\phi_1, ..., \phi_M) = C\psi$ where C is a (Mpd^2xq) constraint matrix.

For same_means models: Should have the form $\theta = (\mu_1, ..., \sigma_1, ..., \mu_g, ..., \mu_g, \sigma_g, ..., \alpha_1, ..., \alpha_{M-1}, \nu)$, where

• $\mu = (\mu_1, ..., \mu_g)$ where μ_i is the mean parameter for group i and g is the number of groups.
• If AR constraints are employed, ψ is as for constrained models, and if AR constraints are not employed, $\psi = (\phi_1, ..., \phi_M)$.

For structural models: Should have the form $\theta = (\phi_{1,0}, ..., \phi_{M,0}, \phi_1, ..., \phi_M, \text{vec}(W), \lambda_2, ..., \lambda_M, \alpha_1, ..., \alpha_M)$, where

• $\lambda_m = (\lambda_{m1}, ..., \lambda_{md})$ contains the eigenvalues of the mth mixture component.
• If AR parameters are constrained: Replace $\phi_1, ..., \phi_M$ with $\psi (qx1)$ that satisfies $(\phi_1, ..., \phi_M) = C\psi$, as above.
• If same_means: Replace $(\phi_{1,0}, ..., \phi_{M,0})$ with $(\mu_1, ..., \mu_g)$, as above.
• If W is constrained: Remove the zeros from $\text{vec}(W)$ and make sure the other entries satisfy the sign constraints.
• If λ_{mi} are constrained: Replace $\lambda_2, ..., \lambda_M$ with $\gamma (rx1)$ that satisfies $(\lambda_2, ..., \lambda_M) = C_{\lambda}\gamma$ where C_{λ} is a $(d(M-1)xr)$ constraint matrix.

Above, $\phi_{m,0}$ is the intercept parameter, $A_{m,i}$ denotes the ith coefficient matrix of the mth mixture component, Ω_m denotes the error term covariance matrix of the m:th mixture component, and α_m is the mixing weight parameter. The W and λ_{mi} are structural parameters replacing the error term covariance matrices (see Virolainen, 2020). If $M = 1$, α_m and λ_{mi} are dropped. If parametrization="mean", just replace each $\phi_{m,0}$ with regimewise mean μ_m.

vech() is vectorization operator that stacks columns of a given matrix into a vector. vec() stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.

In the GMVAR model, $M1 = M$ and ν is dropped from the parameter vector. In the StMVAR model, $M1 = 0$. In the G-StMVAR model, the first $M1$ regimes are GMVAR type and the rest $M2$ regimes are StMVAR type. In StMVAR and G-StMVAR models, the degrees of freedom parameters in ν should be strictly larger than two.

The notation is similar to the cited literature.

model is "GMVAR", "StMVAR", or "G-StMVAR" model considered? In the G-StMVAR model, the first $M1$ components are GMVAR type and the rest $M2$ components are StMVAR type.
check_parameters

parametrization

"intercept" or "mean" determining whether the model is parametrized with intercept parameters $\phi_m, 0$ or regime means $\mu_m, m=1,...,M$.

constraints

a size $(Mpd^2 \times q)$ constraint matrix C specifying general linear constraints to the autoregressive parameters. We consider constraints of form $(\phi_1, ..., \phi_M) = C\psi$, where $\phi_m = (\text{vec}(A_{m,1}), ..., \text{vec}(A_{m,pd^2}(pd^2 \times 1)), m = 1, ..., M$, contains the coefficient matrices and $\psi (qx1)$ contains the related parameters. For example, to restrict the AR-parameters to be the same for all regimes, set $C = [I: \ldots : I]' (Mpd^2 \times pd^2)$ where $I = \text{diag}(p \times d^2)$. Ignore (or set to NULL) if linear constraints should not be employed.

same_means

Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if $M=3$, the argument list(1,2:3) restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. This constraint is available only for mean parametrized models; that is, when parametrization="mean".

structural_pars

If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

- W - a $(d \times d)$ matrix with its entries imposing constraints on W: NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

- C_λ - a $(d(M - 1) \times r)$ constraint matrix that satisfies $(\lambda_2, ..., \lambda_M) = C_\lambda \gamma$ where γ is the new $(r \times 1)$ parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_λ must be either positive or zero. Ignore (or set to NULL) if the eigenvalues λ_m should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is W times a time-varying diagonal matrix with positive diagonal entries).

stat_tol

numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger that $1 - \text{stat}_\text{tol}$ the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

posdef_tol

numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

df_tol

the parameter vector is considered to be outside the parameter space if all degrees of freedom parameters are not larger than $2 + \text{df}_\text{tol}$.

Value

Throws an informative error if there is something wrong with the parameter vector.
cond_moments

References

@keywords internal

Examples

```r
## Not run:
# These examples will cause an informative error

# GMVAR(1, 1), d=2 model:
params11 <- c(1.07, 127.71, 0.99, 0.00, -0.01, 1.00, 4.05, 2.22, 8.87)
check_parameters(p=1, M=1, d=2, params=params11)

# GMVAR(2, 2), d=2 model:
params22 <- c(1.39, -0.77, 1.31, 0.14, 0.09, 1.29, -0.39, -0.07, -0.11, -0.28, -0.92, -0.03, 4.84, 1.01, 5.93, 1.25, 0.08, -0.04, 1.27, -0.27, -0.07, 0.03, -0.31, 5.85, 10.57, 9.84, 0.74)
check_parameters(p=2, M=2, d=2, params=params22)

# GMVAR(2, 2), d=2 model with AR-parameters restricted to be the same for both regimes:
C_mat <- rbind(diag(2*2^2), diag(2*2^2))
params22c <- c(1.03, 2.36, 1.79, 3.00, 1.25, 0.06, 0.04, 1.34, -0.29, -0.08, -0.05, -0.36, 0.93, -0.15, 5.20, 5.88, 3.56, 9.00, 1.37)
check_parameters(p=2, M=2, d=2, params=params22c, constraints=C_mat)

# Structural GMVAR(2, 2), d=2 model identified with sign-constraints (no error):
params22s <- c(1.03, 2.36, 1.79, 3.125, 0.06, 0.04, 1.34, -0.29, -0.08, -0.05, -0.36, 1.2, 0.05, 1.3, -0.3, -0.1, -0.05, -0.4, 0.89, 0.72, -0.37, 2.16, 7.16, 1.3, 0.37)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
check_parameters(p=2, M=2, d=2, params=params22s, structural_pars=list(W=W_22))

## End(Not run)
```

cond_moments

Compute conditional moments of a GMVAR, StMVAR, or G-StMVAR model
cond_moments

Description

loglikelihood compute conditional regimewise means, conditional means, and conditional
covariance matrices of a GMVAR, StMVAR, or G-StMVAR model.

Usage

cond_moments(
 data,
 p,
 M,
 params,
 model = c("GMVAR", "StMVAR", "G-StMVAR"),
 parametrization = c("intercept", "mean"),
 constraints = NULL,
 same_means = NULL,
 structural_pars = NULL,
 to_return = c("regime_cmeans", "regime_ccovs", "total_cmeans", "total_ccovs",
 "arch_scalars"),
 minval = NA,
 stat_tol = 0.001,
 posdef_tol = 1e-08,
 df_tol = 1e-08)

Arguments

data a matrix or class 'ts' object with d>1 columns. Each column is taken to rep-
resent a univariate time series. NA values are not supported.
p a positive integer specifying the autoregressive order of the model.
M For GMVAR and StMVAR models: a positive integer specifying the number
of mixture components.
For G-StMVAR models: a size (2x1) integer vector specifying the number of
GMVAR type components M1 in the first element and StMVAR type com-
ponents M2 in the second element. The total number of mixture components
is M=M1+M2.
params a real valued vector specifying the parameter values.

For unconstrained models: Should be size ((M(pd2 + d + d(d + 1)/2 + 2) −
M1 − 1)x1) and have the form θ=(υ1, ..., υM, α1, ..., αM−1, ν), where
• υm=(φm,0, φm, σm)
• φm=vec(Am,1), ..., vec(Am,p)
• and σm=vech(Ωm), m=1,...,M,
• ν=(νM1+1, ..., νM)
• M1 is the number of GMVAR type regimes.

For constrained models: Should be size ((M(d + d(d + 1)/2 + 2) + q − M1−
1)x1) and have the form θ=(φ1,0, ..., φM,0, ψ, σ1, ..., σM, α1, ..., αM−1, ν),
where
cond_moments

- \(\psi (qx1) \) satisfies \((\phi_1, ..., \phi_M) = C\psi \) where \(C \) is a \((Mpdxq)\) constraint matrix.

For same_means models: Should have the form \(\theta = (\mu_1, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where

- \(\mu = (\mu_1, ..., \mu_g) \) where \(\mu_i \) is the mean parameter for group \(i \) and \(g \) is
 the number of groups.

- If AR constraints are employed, \(\psi \) is as for constrained models, and if
 AR constraints are not employed, \(\psi = (\phi_1, ..., \phi_M) \).

For structural models: Should have the form \(\theta = (\phi_{1,0}, \phi_{M,0}, \phi_1, ..., \phi_M, vec(W), \lambda_2, ..., \lambda_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where

- \(\lambda_m = (\lambda_{m1}, ..., \lambda_{md}) \) contains the eigenvalues of the \(m \)th mixture
 component.

If AR parameters are constrained: Replace \(\phi_1, ..., \phi_M \) with \(\psi (qx1) \) that
 satisfies \((\phi_1, ..., \phi_M) = C\psi \), as above.

If same_means: Replace \((\phi_{1,0}, ..., \phi_{M,0}) \) with \((\mu_1, ..., \mu_g) \), as above.

If \(W \) is constrained: Remove the zeros from \(vec(W) \) and make sure the
 other entries satisfy the sign constraints.

If \(\lambda_{mi} \) are constrained: Replace \(\lambda_2, ..., \lambda_M \) with \(\gamma (rx1) \) that satisfies \((\lambda_2, ..., \lambda_M) = C\lambda \gamma \) where \(C\lambda \) is a \((d(M-1)rx)\) constraint matrix.

Above, \(\phi_{m,0} \) is the intercept parameter, \(A_{m,i} \) denotes the \(i \)th coefficient
 matrix of the \(m \)th mixture component, \(\Omega_m \) denotes the error term covariance
 matrix of the \(m \)th mixture component, and \(\alpha_m \) is the mixing weight parameter.

The \(W \) and \(\lambda_{mi} \) are structural parameters replacing the error term covariance
 matrices (see Virolainen, 2020). If \(M = 1 \), \(\alpha_m \) and \(\lambda_{mi} \) are dropped. If
 parametrization= "mean", just replace each \(\phi_{m,0} \) with regimewise mean \(\mu_m \).

vec() is vectorization operator that stacks columns of a given matrix into a vector.
vec() stacks columns of a given matrix from the principal diagonal downwards
 (including elements on the diagonal) into a vector.

In the GMVAR model, \(M1 = M \) and \(\nu \) is dropped from the parameter vector.
In the StMVAR model, \(M1 = 0 \). In the G-StMVAR model, the first \(M1 \) regimes
 are GMVAR type and the rest \(M2 \) regimes are StMVAR type. In StMVAR and
 G-StMVAR models, the degrees of freedom parameters in \(\nu \) should be strictly
 larger than two.

The notation is similar to the cited literature.

model

is "GMVAR", "StMVAR", or "G-StMVAR" model considered? In the G-StMVAR
 model, the first \(M1 \) components are GMVAR type and the rest \(M2 \) components are
 StMVAR type.

parametrization

"intercept" or "mean" determining whether the model is parametrized with
 intercept parameters \(\phi_{m,0} \) or regime means \(\mu_m, \ m=1, ..., M \).

constraints

a size \((Mpdxq)\) constraint matrix \(C \) specifying general linear constraints to the
 autoregressive parameters. We consider constraints of form \((\phi_1, ..., \phi_M) = C\psi \),
 where \(\phi_m = vec(A_{m,1}), ..., vec(A_{m,M})(pd^2), m = 1, ..., M \), contains
 the coefficient matrices and \(\psi (qx1) \) contains the related parameters. For example,
 to restrict the AR-parameters to be the same for all regimes, set \(C = [1: ... :1]' \) \((Mp^2xd^2)\) where \(I = diag(p*d^2) \). Ignore (or set to NULL) if linear
 constraints should not be employed.
same_means
Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if $M=3$, the argument `list(1,2:3)` restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. **This constraint is available only for mean parametrized models; that is, when** `parametrization="mean"`.

structural_pars
If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

- **W** - a $(d \times d)$ matrix with its entries imposing constraints on W: NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

- **C_\lambda** - a $(d(M - 1) \times r)$ constraint matrix that satisfies $(\lambda_2, \ldots, \lambda_M) = C_\lambda \gamma$ where γ is the new $(r \times 1)$ parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_λ must be either **positive** or **zero**. Ignore (or set to NULL) if the eigenvalues λ_{mi} should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is W times a time-varying diagonal matrix with positive diagonal entries).

to_return
should the regimewise conditional means, total conditional means, or total conditional covariance matrices be returned?

minval
the value that will be returned if the parameter vector does not lie in the parameter space (excluding the identification condition).

stat_tol
numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger than $1 - \text{stat_tol}$ the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

posdef_tol
numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

df_tol
the parameter vector is considered to be outside the parameter space if all degrees of freedom parameters are not larger than $2 + \text{df_tol}$.

Details
The first p values are used as the initial values, and by conditional we mean conditioning on the past. Formulas for the conditional means and covariance matrices are given in equations (3) and (4) of KMS (2016).
cond_moments

Value

If to_return=="regime_cmeans":
 an \([T-p,d,M]\) array containing the regimewise conditional means (the first \(p\) values are used as the initial values).

If to_return=="regime_ccovs":
 an \([d,d,T-p,M]\) array containing the regimewise conditional covariance matrices (the first \(p\) values are used as the initial values). The index \([,,t,m]\) gives the time \(t\) conditional covariance matrix for the regime \(m\).

If to_return=="total_cmeans":
 a \([T-p,d]\) matrix containing the conditional means of the process (the first \(p\) values are used as the initial values).

If to_return=="total_ccov":
 an \([d,d,T-p]\) array containing the conditional covariance matrices of the process (the first \(p\) values are used as the initial values).

If to_return=="arch_scalars":
 a \([T-p,M]\) matrix containing the regimewise arch scalars multiplying error term covariance matrix in the conditional covariance matrix of the regime. For GMVAR type regimes, these are all ones (the first \(p\) values are used as the initial values).

References

See Also

Other moment functions: `get_regime_autocovs()`, `get_regime_means()`, `uncond_moments()`

Examples

```r
# GMVAR(2, 2), d=2 model;
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
             0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
             0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
cond_moments(data=gdpdef, p=2, M=2, params=params22, to_return="regime_cmeans")
cond_moments(data=gdpdef, p=2, M=2, params=params22, to_return="total_cmeans")
cond_moments(data=gdpdef, p=2, M=2, params=params22, to_return="total_ccovs")
```
cond_moment_plot

Conditional mean or variance plot for a GMVAR, StMVAR, or G-StMVAR model

Description

cond_moment_plot plots the one-step in-sample conditional means/variances of the model along with the individual time series contained in the model (e.g. the time series the model was fitted to). Also plots the regimewise conditional means/variances multiplied with mixing weights.

Usage

```r
cond_moment_plot(
  gsmvar,  # an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
  which_moment = c("mean", "variance"),  # should conditional means or variances be plotted?
  grid = FALSE,  # add grid to the plots?
  ...  # additional parameters passed to grid(...) plotting the grid if grid == TRUE.
)
```

Arguments

- **gsmvar**: an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
- **which_moment**: should conditional means or variances be plotted?
- **grid**: add grid to the plots?
- **...**: additional parameters passed to grid(...) plotting the grid if grid == TRUE.

Details

The conditional mean plot works best if the data contains positive values only. acf from the package stats and the plot method for class 'acf' objects is employed.

References

See Also

- profile_logliks
- fitGSMVAR
- GSMVAR
- quantile_residual_tests
- LR_test
- Wald_test
- diagnostic_plot
Examples

GMVAR(2, 2), d=2 model;
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
 0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
 0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22)
cond_moment_plot(mod22, which_moment="mean")
cond_moment_plot(mod22, which_moment="variance")
cond_moment_plot(mod22, which_moment="mean", grid=TRUE, lty=3)

G-StMVAR(2, 1, 1), d=2 model:
params22gs <- c(0.697, 0.154, 0.049, 0.374, 0.476, 0.318, -0.645, -0.302,
 -0.222, 0.193, 0.042, -0.013, 0.048, 0.554, 0.033, 0.184, 0.005, -0.186,
 0.683, 0.256, 0.031, 0.026, 0.204, 0.583, -0.002, 0.048, 0.182, 4.334)
mod22gs <- GSMVAR(gdpdef, p=2, M=c(1, 1), params=params22gs, model="G-StMVAR")
cond_moment_plot(mod22gs, which_moment="mean")
cond_moment_plot(mod22gs, which_moment="variance")

#StMVAR(4, 1), d=2 model:
params41t <- c(0.512, -0.002, 0.243, 0.024, -0.088, 0.452, 0.242, 0.011,
 0.033, 0.162, -0.097, 0.033, -0.339, 0.19, 0.091, 0.006, 0.168, 0.101,
 0.516, -0.005, 0.054, 4.417)
mod41t <- GSMVAR(gdpdef, p=4, M=1, params=params41t, model="StMVAR")
cond_moment_plot(mod41t, which_moment="mean")
cond_moment_plot(mod41t, which_moment="variance")

diagnostic_plot

Quantile residual diagnostic plot for a GMVAR, StMVAR, or G-StMVAR model

Description

diagnostic_plot plots a multivariate quantile residual diagnostic plot for either autocorrelation, conditional heteroskedasticity, or normality, or simply draws the quantile residual time series.

Usage

diagnostic_plot(
 gsmvar,
 type = c("all", "series", "ac", "ch", "norm"),
 maxlag = 12,
 wait_time = 4
)

Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
type which type of diagnostic plot should be plotted?
diagnostic_plot

- "all" all below sequentially.
- "series" the quantile residual time series.
- "ac" the quantile residual autocorrelation and cross-correlation functions.
- "ch" the squared quantile residual autocorrelation and cross-correlation functions.
- "norm" the quantile residual histogram with theoretical standard normal density (dashed line) and standard normal QQ-plots.

maxlag the maximum lag considered in types "ac" and "ch".

wait_time if type == all how many seconds to wait before showing next figure?

Details

Auto- and cross-correlations (types "ac" and "ch") are calculated with the function acf from the package stats and the plot method for class 'acf' objects is employed.

References

See Also

profile_loglik, fitGSMVAR, GSMVAR, quantile_residual_tests, LR_test, Wald_test, cond_moment_plot, acf, density, predict.gsmvar

Examples

GMVAR(1,2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005, 0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.058, 1.185, -0.012, 0.136, 0.674)
mod12 <- GSMVAR(gdpdef, p=1, M=2, params=params12)
diagnostic_plot(mod12, type="series")
diagnostic_plot(mod12, type="ac")

GMVAR(2,2), d=2 model:
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005, 0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22)
diagnostic_plot(mod22, type="ch")
diagnostic_plot(mod22, type="norm")
G-StMVAR(2, 1, 1), d=2 model:
params22gs <- c(0.697, 0.154, 0.049, 0.374, 0.476, 0.318, -0.645, -0.302,
 -0.222, 0.193, 0.042, -0.013, 0.048, 0.554, 0.033, 0.184, 0.005, -0.186,
 0.683, 0.256, 0.031, 0.026, 0.204, 0.583, -0.002, 0.048, 0.182, 4.334)
mod22gs <- GSMVAR(gdpdef, p=2, M=c(1, 1), params=params22gs, model="G-StMVAR")
diagnostic_plot(mod22gs, wait_time=0)

diag_Omegas

Simultaneously diagonalize two covariance matrices

Description

diag_Omegas Simultaneously diagonalizes two covariance matrices using eigenvalue decomposition.

Usage

diag_Omegas(Omega1, Omega2)

Arguments

- **Omega1**: a positive definite \((d \times d)\) covariance matrix \((d > 1)\)
- **Omega2**: another positive definite \((d \times d)\) covariance matrix

Details

See the return value and Muirhead (1982), Theorem A9.9 for details.

Value

Returns a length \(d^2 + d\) vector where the first \(d^2\) elements are \(\text{vec}(W)\) with the columns of \(W\) being (specific) eigenvectors of the matrix \(\Omega_2 \Omega_1^{-1}\) and the rest \(d\) elements are the corresponding eigenvalues "lambdas". The result satisfies \(WW' = Omega1\) and \(W diag(lambdas) W' = Omega2\).

If Omega2 is not supplied, returns a vectorized symmetric (and pos. def.) square root matrix of Omega1.

Warning

No argument checks! Does not work with dimension \(d = 1\)!

References

Examples

```r
d <- 2
W0 <- matrix(1:(d^2), nrow=2)
lambdas0 <- 1:d
(Omg1 <- W0%*%t(W0))
(Omg2 <- W0%*%diag(lambdas0)%*%t(W0))
res <- diag_Omegas(Omg1, Omg2)
W <- matrix(res[1:(d^2)], nrow=d, byrow=FALSE)
tcrossprod(W) # == Omg1
lambdas <- res[(d^2 + 1):(d^2 + d)]
W%*%diag(lambdas)%*%t(W) # == Omg2
```

Description

DEPRECATED! USE THE FUNCTION `fitGSMVAR` INSTEAD!

`fitGMVAR` estimates a GMVAR model in two phases: in the first phase it uses a genetic algorithm to find starting values for a gradient based variable metric algorithm, which it then uses to finalize the estimation in the second phase. Parallel computing is utilized to perform multiple rounds of estimations in parallel.

Usage

```r
fitGMVAR(
  data, 
  p, 
  M, 
  conditional = TRUE, 
  parametrization = c("intercept", "mean"), 
  constraints = NULL, 
  same_means = NULL, 
  structural_pars = NULL, 
  ncalls = M^6, 
  ncores = 2, 
  maxit = 1000, 
  seeds = NULL, 
  print_res = TRUE, 
  ...
)
```

Arguments

- `data` a matrix or class `ts` object with d>1 columns. Each column is taken to represent a univariate time series. NA values are not supported.
- `p` a positive integer specifying the autoregressive order of the model.
For **GMVAR and StMVAR models**: a positive integer specifying the number of mixture components.

For **G-StMVAR models**: a size (2x1) integer vector specifying the number of GMVAR type components \(M_1 \) in the first element and StMVAR type components \(M_2 \) in the second element. The total number of mixture components is \(M = M_1 + M_2 \).

conditional a logical argument specifying whether the conditional or exact log-likelihood function

parametrization "intercept" or "mean" determining whether the model is parametrized with intercept parameters \(\phi_{m,0} \) or regime means \(\mu_m \), \(m = 1, ..., M \).

constraints a size \((Mp^2xq) \) constraint matrix \(C \) specifying general linear constraints to the autoregressive parameters. We consider constraints of form \((\phi_1, ..., \phi_M) = C\psi \), where \(\phi_m = (vec(A_{m,1}), ..., vec(A_{m,p})(pd^2x1), m = 1, ..., M \), contains the coefficient matrices and \(\psi (qx1) \) contains the related parameters. For example, to restrict the AR-parameters to be the same for all regimes, set \(C = [I: ... : I]'(Mp^2xp^2) \) where \(I = diag(pd^2) \). Ignore (or set to NULL) if linear constraints should not be employed.

same_means Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if \(M = 3 \), the argument list(1,2:3) restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. **This constraint is available only for mean parametrized models; that is, when parametrization="mean".**

structural_pars If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

- \(W \) - a \((dxd) \) matrix with its entries imposing constraints on \(W \): NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

- \(C_{\lambda_{\alpha}} \) - a \((d(M - 1)xr) \) constraint matrix that satisfies \((\lambda_2, ..., \lambda_M) = C_{\lambda_{\alpha}}\gamma \) where \(\gamma \) is the new \((rx1) \) parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of \(C_{\lambda_{\alpha}} \) must be either **positive** or **zero**. Ignore (or set to NULL) if the eigenvalues \(\lambda_{\alpha} \) should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is \(W \) times a time-varying diagonal matrix with positive diagonal entries).

ncalls the number of estimation rounds that should be performed.

ncores the number CPU cores to be used in parallel computing.

maxit the maximum number of iterations in the variable metric algorithm.

seeds a length \(ncalls \) vector containing the random number generator seed for each call to the genetic algorithm, or NULL for not initializing the seed. Exists for creating reproducible results.
print_res should summaries of estimation results be printed?
...
additional settings passed to the function GAfit employing the genetic algorithm.

Details

If you wish to estimate a structural model without overidentifying constraints that is identified statistically, specify your W matrix is structural_pars to be such that it contains the same sign constraints in a single row (e.g. a row of ones) and leave the other elements as NA. In this way, the genetic algorithm works the best. The ordering and signs of the columns of the W matrix can be changed afterwards with the functions reorder_W_columns and swap_W_signs.

Because of complexity and high multimodality of the log-likelihood function, it’s not certain that the estimation algorithms will end up in the global maximum point. It’s expected that most of the estimation rounds will end up in some local maximum or saddle point instead. Therefore, a (sometimes large) number of estimation rounds is required for reliable results. Because of the nature of the model, the estimation may fail especially in the cases where the number of mixture components is chosen too large. With two regimes and couple hundred observations in a two-dimensional time series, 50 rounds is usually enough. Several hundred estimation rounds often suffices for reliably fitting two-regimes models to 3 or 4 dimensional time series. With more than two regimes and more than couple hundred observations, thousands of estimation rounds (or more) are often required to obtain reliable results.

The estimation process is computationally heavy and it might take considerably long time for large models with large number of observations. If the iteration limit maxit in the variable metric algorithm is reached, one can continue the estimation by iterating more with the function iterate_more. Alternatively, one may use the found estimates as starting values for the genetic algorithm and and employ another round of estimation (see ?GAfit how to set up an initial population with the dot parameters).

If the estimation algorithm fails to create an initial population for the genetic algorithm, it usually helps to scale the individual series so that the AR coefficients (of a VAR model) will be relative small, preferably less than one. Even if one is able to create an initial population, it should be preferred to scale the series so that most of the AR coefficients will not be very large, as the estimation algorithm works better with relatively small AR coefficients. If needed, another package can be used to fit linear VARs to the series to see which scaling of the series results in relatively small AR coefficients.

The code of the genetic algorithm is mostly based on the description by Dorsey and Mayer (1995) but it includes some extra features that were found useful for this particular estimation problem. For instance, the genetic algorithm uses a slightly modified version of the individually adaptive crossover and mutation rates described by Patnaik and Srinivas (1994) and employs (50%) fitness inheritance discussed by Smith, Dike and Stegmann (1995).

The gradient based variable metric algorithm used in the second phase is implemented with function optim from the package stats.

Note that the structural models are even more difficult to estimate than the reduced form models due to the different parametrization of the covariance matrices, so larger number of estimation rounds should be considered. Also, be aware that if the lambda parameters are constrained in any other way than by restricting some of them to be identical, the parameter "lambda_scale" of the genetic algorithm (see ?GAfit) needs to be carefully adjusted accordingly. When estimating a structural model that imposes overidentifying constraints to a time series with $d > 3$, it is
highly recommended to create an initial population based on the estimates of a statistically identified model (when $M = 2$). This is because currently obtaining the ML estimate reliably to such a structural model seems difficult in many application.

Finally, the function fails to calculate approximate standard errors and the parameter estimates are near the border of the parameter space, it might help to use smaller numerical tolerance for the stationarity and positive definiteness conditions. The numerical tolerance of an existing model can be changed with the function `update_numtols`.

Value

Returns an object of class `gsmvar` defining the estimated (reduced form or structural) GMVAR, StMVAR, or G-StMVAR model. Multivariate quantile residuals (Kalliovirta and Saikkonen 2010) are also computed and included in the returned object. In addition, the returned object contains the estimates and log-likelihood values from all the estimation rounds performed. The estimated parameter vector can be obtained at `gsmvar$params` (and corresponding approximate standard errors at `gsmvar$std_errors`). See ?GSMVAR for the form of the parameter vector, if needed.

Remark that the first autocovariance/correlation matrix in `$uncond_moments` is for the lag zero, the second one for the lag one, etc.

References

See Also

`fitGSMVAR`
fitGSMVAR

Description

fitGSMVAR estimates a GMVAR, StMVAR, or G-StMVAR model in two phases: in the first phase it uses a genetic algorithm to find starting values for a gradient based variable metric algorithm, which it then uses to finalize the estimation in the second phase. Parallel computing is utilized to perform multiple rounds of estimations in parallel.

Usage

fitGSMVAR(
 data, p, M,
 model = c("GMVAR", "StMVAR", "G-StMVAR"),
 conditional = TRUE,
 parametrization = c("intercept", "mean"),
 constraints = NULL,
 same_means = NULL,
 structural_pars = NULL,
 ncalls = M^6,
 ncores = 2,
 maxit = 1000,
 seeds = NULL,
 print_res = TRUE,
 ...
)

Arguments

data a matrix or class 'ts' object with d>1 columns. Each column is taken to represent a univariate time series. NA values are not supported.
p a positive integer specifying the autoregressive order of the model.
M For GMVAR and StMVAR models: a positive integer specifying the number of mixture components.

For G-StMVAR models: a size (2x1) integer vector specifying the number of GMVAR type components M1 in the first element and StMVAR type components M2 in the second element. The total number of mixture components is M=M1+M2.

model is "GMVAR", "StMVAR", or "G-StMVAR" model considered? In the G-StMVAR model, the first M1 components are GMVAR type and the rest M2 components are StMVAR type.

conditional a logical argument specifying whether the conditional or exact log-likelihood function

parametrization "intercept" or "mean" determining whether the model is parametrized with intercept parameters φm,0 or regime means µm, m=1,...,M.

constraints a size (M pd x q) constraint matrix C specifying general linear constraints to the autoregressive parameters. We consider constraints of form (φ1,...,φM) = Cψ,
where \(\phi_m = (\text{vec}(A_{m,1}), \ldots, \text{vec}(A_{m,p})(pd^2x1), m = 1, \ldots, M \), contains the coefficient matrices and \(\psi(qx1) \) contains the related parameters. For example, to restrict the AR-parameters to be the same for all regimes, set \(C = [I: \ldots: I]'(Mpd^2xpd^2) \) where \(I = \text{diag}(pd^2) \). Ignore (or set to NULL) if linear constraints should not be employed.

same_means

Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if \(M = 3 \), the argument `list(1,2:3)` restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. **This constraint is available only for mean parametrized models; that is, when parametrization="mean".**

structural_pars

If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

- **W** - a \((dxd)\) matrix with its entries imposing constraints on \(W \): NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

- **C_lambda** - a \((d(M - 1)xr)\) constraint matrix that satisfies \((\lambda_2, \ldots, \lambda_M) = C\lambda\gamma\) where \(\gamma \) is the new \((rx1)\) parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of \(C\lambda \) must be either positive or zero. Ignore (or set to NULL) if the eigenvalues \(\lambda_{mi} \) should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is \(W \) times a time-varying diagonal matrix with positive diagonal entries).

ncalls the number of estimation rounds that should be performed.

ncores the number CPU cores to be used in parallel computing.

maxit the maximum number of iterations in the variable metric algorithm.

seeds a length `ncalls` vector containing the random number generator seed for each call to the genetic algorithm, or NULL for not initializing the seed. Exists for creating reproducible results.

print_res should summaries of estimation results be printed?

... additional settings passed to the function GAfit employing the genetic algorithm.

Details

If you wish to estimate a structural model without overidentifying constraints that is identified statistically, specify your W matrix is `structural_pars` to be such that it contains the same sign constraints in a single row (e.g. a row of ones) and leave the other elements as NA. In this way, the genetic algorithm works the best. The ordering and signs of the columns of the W matrix can be changed afterwards with the functions `reorder_W_columns` and `swap_W_signs`.
Because of complexity and high multimodality of the log-likelihood function, it’s not certain that the estimation algorithms will end up in the global maximum point. It’s expected that most of the estimation rounds will end up in some local maximum or saddle point instead. Therefore, a (sometimes large) number of estimation rounds is required for reliable results. Because of the nature of the model, the estimation may fail especially in the cases where the number of mixture components is chosen too large. With two regimes and couple hundred observations in a two-dimensional time series, 50 rounds is usually enough. Several hundred estimation rounds often suffices for reliably fitting two-regimes models to 3 or 4 dimensional time series. With more than two regimes and more than couple hundred observations, thousands of estimation rounds (or more) are often required to obtain reliable results.

The estimation process is computationally heavy and it might take considerably long time for large models with large number of observations. If the iteration limit maxit in the variable metric algorithm is reached, one can continue the estimation by iterating more with the function iterate_more. Alternatively, one may use the found estimates as starting values for the genetic algorithm and employ another round of estimation (see ?GAfit how to set up an initial population with the dot parameters).

If the estimation algorithm fails to create an initial population for the genetic algorithm, it usually helps to scale the individual series so that the AR coefficients (of a VAR model) will be relative small, preferably less than one. Even if one is able to create an initial population, it should be preferred to scale the series so that most of the AR coefficients will not be very large, as the estimation algorithm works better with relatively small AR coefficients. If needed, another package can be used to fit linear VARs to the series to see which scaling of the series results in relatively small AR coefficients.

The code of the genetic algorithm is mostly based on the description by Dorsey and Mayer (1995) but it includes some extra features that were found useful for this particular estimation problem. For instance, the genetic algorithm uses a slightly modified version of the individually adaptive crossover and mutation rates described by Patnaik and Srinivas (1994) and employs (50%) fitness inheritance discussed by Smith, Dike and Stegmann (1995).

The gradient based variable metric algorithm used in the second phase is implemented with function optim from the package stats.

Note that the structural models are even more difficult to estimate than the reduced form models due to the different parametrization of the covariance matrices, so larger number of estimation rounds should be considered. Also, be aware that if the lambda parameters are constrained in any other way than by restricting some of them to be identical, the parameter “lambda_scale” of the genetic algorithm (see ?GAfit) needs to be carefully adjusted accordingly. When estimating a structural model that imposes overidentifying constraints to a time series with $d > 3$, it is highly recommended to create an initial population based on the estimates of a statistically identified model (when $M = 2$). This is because currently obtaining the ML estimate reliably to such a structural model seems difficult in many application.

Finally, the function fails to calculate approximate standard errors and the parameter estimates are near the border of the parameter space, it might help to use smaller numerical tolerance for the stationarity and positive definiteness conditions. The numerical tolerance of an existing model can be changed with the function update_numtols.
Value

Returns an object of class `gsmvar` defining the estimated (reduced form or structural) GMVAR, StMVAR, or G-StMVAR model. Multivariate quantile residuals (Kalliovirta and Saikkonen 2010) are also computed and included in the returned object. In addition, the returned object contains the estimates and log-likelihood values from all the estimation rounds performed. The estimated parameter vector can be obtained at `gsmvar$params` (and corresponding approximate standard errors at `gsmvar$std_errors`). See `?GSMVAR` for the form of the parameter vector, if needed.

Remark that the first autocovariance/correlation matrix in `$uncond_moments` is for the lag zero, the second one for the lag one, etc.

S3 methods

The following S3 methods are supported for class `gsmvar`: `logLik`, `residuals`, `print`, `summary`, `predict`, `simulate`, and `plot`.

References

See Also

`GSMVAR`, `iterate_more`, `stmvar_to_gstmvar`, `predict.gsmvar`, `profile_loglik`, `simulate.gsmvar`, `quantile_residual_tests`, `print_std_errors`, `swap_parametrization`, `get_gradient`, `GIRF`, `GFEVD`, `LR_test`, `Wald_test`, `gsmvar_to_sgsmvar`, `stmvar_to_gstmvar`, `reorder_W_columns`, `swap_W_signs`, `cond_moment_plot`, `update_numtols`.

Examples

```r
## These are long running examples that use parallel computing!
# Running all the below examples will take approximately 3-4 minutes.

## GMVAR(1,2) model: 10 estimation rounds with seeds set
# for reproducibility
fit12 <- fitGSMVAR(gdpdef, p=1, M=2, ncalls=10, seeds=1:10)
fit12
```
plot(fit12)
summary(fit12)
print_std_errors(fit12)
profile_logliks(fit12)

The rest of the examples only use a single estimation round with a given
seed that produces the MLE to reduce running time of the examples. When
estimating models for empirical applications, a large number of estimation
rounds (ncalls = a large number) should be performed to ensure reliability
of the estimates (see the section details).

StMVAR(2, 2) model
fit22t <- fitGSMVAR(gdpdef, p=2, M=2, model="StMVAR", ncalls=1, seeds=1)
fit22t # Overly large degrees of freedom estimate in the 2nd regime!
fit22gs <- stmvar_to_gstmvar(fit22t) # So switch it to GMVAR type!
fit22gs # This is the appropriate G-StMVAR model based on the above StMVAR model.
fit22gss <- gsmvar_to_sgsmvar(fit22gs) # Switch to structural model
fit22gss # This is the implied statistically identified structural model.

Structural GMVAR(1,2) model identified with sign
constraints.
W_122 <- matrix(c(1, 1, -1, 1), nrow=2)
fit12s <- fitGSMVAR(gdpdef, p=1, M=2, structural_pars=list(W=W_122),
ncalls=1, seeds=1)
fit12s # A statistically identified structural model can also be obtained with
gsmvar_to_sgsmvar(fit12)

GMVAR(2,2) model with autoregressive parameters restricted
to be the same for both regimes
C_mat <- rbind(diag(2*2^2), diag(2*2^2))
fit22c <- fitGSMVAR(gdpdef, p=2, M=2, constraints=C_mat, ncalls=1, seeds=1)
fit22c
fit22gscm <- fitGSMVAR(gdpdef, p=2, M=c(1, 1), model="G-StMVAR", constraints=C_mat,
parametrization="mean", same_means=list(1:2), ncalls=1, seeds=1)

GMVAR(2,2) model with autoregressive parameters restricted
to be the same for both regimes and non-diagonal elements
the coefficient matrices constrained to zero.
tmp <- matrix(c(1, rep(0, 10), 1, rep(0, 8), 1, rep(0, 10), 1),
nrow=2*2^2, byrow=FALSE)
C_mat2 <- rbind(tmp, tmp)
fit22c2 <- fitGSMVAR(gdpdef, p=2, M=2, constraints=C_mat2, ncalls=1,
seeds=1)
fit22c2

GAfit

Genealogical algorithm for preliminary estimation of a GMVAR, StMVAR, or G-StMVAR model
Description

GAfit estimates the specified GMVAR, StMV AR, or G-StMV AR model using a genetic algorithm. It’s designed to find starting values for gradient based methods.

Usage

```r
GAfit(
  data,
  p,
  M,
  model = c("GMVAR", "StMV AR", "G-StMV AR"),
  conditional = TRUE,
  parametrization = c("intercept", "mean"),
  constraints = NULL,
  same_means = NULL,
  structural_pars = NULL,
  ngen = 200,
  popsize,
  smart_mu = min(100, ceiling(0.5 * ngen)),
  initpop = NULL,
  mu_scale,
  mu_scale2,
  omega_scale,
  W_scale,
  lambda_scale,
  ar_scale = 0.2,
  upper_ar_scale = 1,
  ar_scale2 = 1,
  regime_force_scale = 1,
  red_criteria = c(0.05, 0.01),
  pre_smart_mu_prob = 0,
  to_return = c("alt_ind", "best_ind"),
  minval,
  seed = NULL
)
```

Arguments

- `data` a matrix or class ‘ts’ object with d>1 columns. Each column is taken to represent a univariate time series. NA values are not supported.
- `p` a positive integer specifying the autoregressive order of the model.
- `M` a positive integer specifying the number of mixture components.

For GMVAR and StMV AR models: a positive integer specifying the number of mixture components.

For G-StMV AR models: a size (2x1) integer vector specifying the number of GMVAR type components M1 in the first element and StMV AR type components M2 in the second element. The total number of mixture components is M=M1+M2.
model is "GMVAR", "StVAR", or "G-StVAR" model considered? In the G-StMVAR model, the first M_1 components are GMVAR type and the rest M_2 components are StVAR type.

conditional a logical argument specifying whether the conditional or exact log-likelihood function

"intercept" or "mean" determining whether the model is parametrized with intercept parameters $\phi_{m,0}$ or regime means μ_m, $m=1,...,M$.

constraints a size $(Mpd^2 \times q)$ constraint matrix C specifying general linear constraints to the autoregressive parameters. We consider constraints of form $(\phi_1,...,\phi_M) = C\psi$, where $\phi_m = (vec(A_{m,1}),...,vec(A_{m,p'})(pd^2 \times 1), m = 1,...,M$, contains the coefficient matrices and $\psi (qx1)$ contains the related parameters. For example, to restrict the AR-parameters to be the same for all regimes, set $C = [I:...:I]' (Mpd^2 \times pd^2)$ where $I = \text{diag}(p \times d^2)$. Ignore (or set to NULL) if linear constraints should not be employed.

same_means Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if $M=3$, the argument list(1,2:3) restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. This constraint is available only for mean parametrized models; that is, when parametrization="mean".

structural_pars If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

- W - a $(d \times d)$ matrix with its entries imposing constraints on W: NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

- C_{λ} - a $(d(M-1) \times r)$ constraint matrix that satisfies $$(\lambda_2,...,\lambda_M) = C_{\lambda}\gamma$$ where γ is the new $(r \times 1)$ parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_{λ} must be either positive or zero. Ignore (or set to NULL) if the eigenvalues λ_{mi} should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is W times a time-varying diagonal matrix with positive diagonal entries).

ngen a positive integer specifying the number of generations to be ran through in the genetic algorithm.

popsize a positive even integer specifying the population size in the genetic algorithm. Default is $10 \times n$-params.

smart_mu a positive integer specifying the generation after which the random mutations in the genetic algorithm are "smart". This means that mutating individuals will mostly mutate fairly close (or partially close) to the best fitting individual (which has the least regimes with time varying mixing weights practically at zero) so far.
initpop

a list of parameter vectors from which the initial population of the genetic algorithm will be generated from. The parameter vectors should be...

For unconstrained models: Should be size \((M(pd^2 + d + d(d + 1)/2 + 2) - M1 - 1)x1\) and have the form \(\theta = (v_1, ..., v_M, \alpha_1, ..., \alpha_{M-1}, \nu)\), where

- \(v_m = (\phi_{m,0}, \phi_m, \sigma_m)\)
- \(\phi_m = (vec(A_{m,1}), ..., vec(A_{m,p}))\)
- and \(\sigma_m = vech(\Omega_m), m=1,...,M\),
- \(\nu = (\nu_{M1+1}, ..., \nu_M)\)
- \(M1\) is the number of GMVAR type regimes.

For constrained models: Should be size \((M(d + d(d + 1)/2 + 2) + q - M1 - 1)x1\) and have the form \(\theta = (\phi_{1,0}, ..., \phi_{M,0}, \psi, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu)\), where

- \(\psi(qx1)\) satisfies \((\phi_1, ..., \phi_M) = C\psi\) where \(C\) is a \((Mpd^2)xq\) constraint matrix.

For same_means models: Should have the form \(\theta = (\mu, \psi, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu)\), where

- \(\mu = (\mu_1, ..., \mu_g)\) where \(\mu_i\) is the mean parameter for group \(i\) and \(g\) is the number of groups.
- If AR constraints are employed, \(\psi\) is as for constrained models, and if AR constraints are not employed, \(\psi = (\phi_1, ..., \phi_M)\).

For structural models: Should have the form \(\theta = (\phi_{1,0}, ..., \phi_{M,0}, \phi_1, ..., \phi_M, vec(W), \lambda_2, ..., \lambda_M, \alpha_1, ...)\), where

- \(\lambda_m = (\lambda_{m1}, ..., \lambda_{md})\) contains the eigenvalues of the \(m\)th mixture component.

If AR parameters are constrained: Replace \(\phi_1, ..., \phi_M\) with \(\psi(qx1)\) that satisfies \((\phi_1, ..., \phi_M) = C\psi\), as above.

If same_means: Replace \((\phi_{1,0}, ..., \phi_{M,0})\) with \((\mu_1, ..., \mu_g)\), as above.

If \(W\) is constrained: Remove the zeros from \(vec(W)\) and make sure the other entries satisfy the sign constraints.

If \(\lambda_{mi}\) are constrained: Replace \(\lambda_2, ..., \lambda_M\) with \(\gamma(qx1)\) that satisfies \((\lambda_2, ..., \lambda_M) = C_\lambda\gamma\) where \(C_\lambda\) is a \((d(M - 1)xr)\) constraint matrix.

Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th mixture component, \(\Omega_m\) denotes the error term covariance matrix of the \(m\)th mixture component, and \(\alpha_m\) is the mixing weight parameter. The \(W\) and \(\lambda_{mi}\) are structural parameters replacing the error term covariance matrices (see Virolainen, 2020). If \(M = 1\), \(\alpha_m\) and \(\lambda_{mi}\) are dropped. If parametrization="mean", just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_m\).

vec() is vectorization operator that stacks columns of a given matrix into a vector. vech() stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.

In the GMVAR model, \(M1 = M\) and \(\nu\) is dropped from the parameter vector. In the StMVAR model, \(M1 = 0\). In the G-StMVAR model, the first \(M1\) regimes are GMVAR type and the rest \(M2\) regimes are StMVAR type. In StMVAR and G-StMVAR models, the degrees of freedom parameters in \(\nu\) should be strictly larger than two.

The notation is similar to the cited literature.
mu_scale
A size $(dx1)$ vector defining **means** of the normal distributions from which each mean parameter μ_m is drawn from in random mutations. Default is `colMeans(data)`. Note that mean-parametrization is always used for optimization in GAfit - even when parametrization="intercept". However, input (in `initpop`) and output (return value) parameter vectors can be intercept-parametrized.

mu_scale2
A size $(dx1)$ strictly positive vector defining **standard deviations** of the normal distributions from which each mean parameter μ_m is drawn from in random mutations. Default is $2*sd(data[,i]), i=1,..,d$.

omega_scale
A size $(dx1)$ strictly positive vector specifying the scale and variability of the random covariance matrices in random mutations. The covariance matrices are drawn from (scaled) Wishart distribution. Expected values of the random covariance matrices are $\text{diag}(omega_scale)$. Standard deviations of the diagonal elements are $\sqrt{1/d*omega_scale[i]*omega_scale[j]}$ and for non-diagonal elements they are $\sqrt{2/d}*omega_scale[i]$. Note that for $d>4$ this scale may need to be chosen carefully. Default in GAfit is $\text{var(stats::ar(data[,i],order.max=10)$resid,na.rm=TRUE), i=1,...,d$.

This argument is ignored if structural model is considered.

W_scale
A size $(dx1)$ strictly positive vector partly specifying the scale and variability of the random covariance matrices in random mutations. The elements of the matrix W are drawn independently from such normal distributions that the expectation of the main diagonal elements of the first regime’s error term covariance matrix $\Omega_1 = WW'$ is W_scale. The distribution of Ω_1 will be in some sense like a Wishart distribution but with the columns (elements) of W obeying the given constraints. The constraints are accounted for by setting the element to be always zero if it is subject to a zero constraint and for sign constraints the absolute value or negative the absolute value are taken, and then the variances of the elements of W are adjusted accordingly. This argument is ignored if reduced form model is considered.

lambda_scale
A length $M-1$ vector specifying the **standard deviation** of the mean zero normal distribution from which the eigenvalue λ_{mi} parameters are drawn from in random mutations. As the eigenvalues should always be positive, the absolute value is taken. The elements of `lambda_scale` should be strictly positive real numbers with the $m-1$th element giving the degrees of freedom for the mth regime. The expected value of the main diagonal elements ij of the mth ($m > 1$) error term covariance matrix will be $W_scale[i]*(d-n_i)^(-1)*sum(lambdas*ind_fun)$ where the $(dx1)$ vector `lambdas` is drawn from the absolute value of the t-distribution, n_i is the number of zero constraints in the ith row of W and `ind_fun` is an indicator function that takes the value one iff the ijth element of W is not constrained to zero. Basically, larger lambdas (or smaller degrees of freedom) imply larger variance.

If the lambda parameters are **constrained** with the $(d(M-1)xr)$ constraint matrix C_{lambda}, then provide a length r vector specifying the standard deviation of the (absolute value of the) mean zero normal distribution each of the γ parameters are drawn from (the γ is a $(rx1)$ vector). The expected value of the main diagonal elements of the covariance matrices then depend on the constraints.

This argument is ignored if $M == 1$ or a reduced form model is considered. Default is `rep(3,times=M-1)` if lambdas are not constrained and `rep(3,times=r)` if lambdas are constrained.
As with omega_scale and W_scale, this argument should be adjusted carefully if specified by hand. **NOTE** that if lambdas are constrained in some other way than restricting some of them to be identical, this parameter should be adjusted accordingly in order to the estimation succeed!

ar_scale

a positive real number adjusting how large AR parameter values are typically proposed in construction of the initial population: larger value implies larger coefficients (in absolute value). After construction of the initial population, a new scale is drawn from \((0,0.)\) uniform distribution in each iteration.

upper_ar_scale

the upper bound for ar_scale parameter (see above) in the random mutations. Setting this too high might lead to failure in proposing new parameters that are well enough inside the parameter space, and especially with large \(p\) one might want to try smaller upper bound (e.g., 0.5).

ar_scale2

a positive real number adjusting how large AR parameter values are typically proposed in some random mutations (if AR constraints are employed, in all random mutations): larger value implies smaller coefficients (in absolute value). **Values larger than 1 can be used if the AR coefficients are expected to be very small. If set smaller than 1, be careful as it might lead to failure in the creation of stationary parameter candidates**

regime_force_scale

a non-negative real number specifying how much should natural selection favor individuals with less regimes that have almost all mixing weights (practically) at zero. Set to zero for no favoring or large number for heavy favoring. Without any favoring the genetic algorithm gets more often stuck in an area of the parameter space where some regimes are wasted, but with too much favouring the best genes might never mix into the population and the algorithm might converge poorly. Default is 1 and it gives \(2x\) larger surviving probability weights for individuals with no wasted regimes compared to individuals with one wasted regime. Number 2 would give \(3x\) larger probability weights etc.

red_criteria

a length 2 numeric vector specifying the criteria that is used to determine whether a regime is redundant (or "wasted") or not. Any regime \(m\) which satisfies \(\text{sum}(\text{mixingWeights[,m]} > \text{red_criteria[1]} < \text{red_criteria[2]}*n_obs\) will be considered "redundant". One should be careful when adjusting this argument (set \(c(0,0)\) to fully disable the 'redundant regime' features from the algorithm).

pre_smart_mu_prob

A number in \([0,1]\) giving a probability of a "smart mutation" occuring randomly in each iteration before the iteration given by the argument smart_mu.

to_return

should the genetic algorithm return the best fitting individual which has "positive enough" mixing weights for as many regimes as possible ("alt_ind") or the individual which has the highest log-likelihood in general ("best_ind") but might have more wasted regimes?

minval

a real number defining the minimum value of the log-likelihood function that will be considered. Values smaller than this will be treated as they were \(\text{minval}\) and the corresponding individuals will never survive. The default is \(-\left(10^\left\lceil \log_{10}(n_obs) \right\rceil + d \right) -1\).

seed

a single value, interpreted as an integer, or NULL, that sets seed for the random number generator in the beginning of the function call. If calling GAfit from fitGSMVAR, use the argument seeds instead of passing the argument seed.
Details

The core of the genetic algorithm is mostly based on the description by Dorsey and Mayer (1995). It utilizes a slightly modified version of the individually adaptive crossover and mutation rates described by Patnaik and Srinivas (1994) and employs (50%) fitness inheritance discussed by Smith, Dike and Stegmann (1995).

By "redundant" or "wasted" regimes we mean regimes that have the time varying mixing weights practically at zero for almost all t. A model including redundant regimes would have about the same log-likelihood value without the redundant regimes and there is no purpose to have redundant regimes in a model.

Value

Returns the estimated parameter vector which has the form described in initpop.

References

Examples

```r
# Preliminary estimation of a G-StMVAR(1, 1, 1) model with 50 generations.
GA_estimates <- GAfit(gdpdef, p=1, M=c(1, 1), model="G-StMVAR",
                     ngen=50, seed=1)
GA_estimates
```
get_boldA_eigens

Description

gdpdef

U.S. real GDP percent change and GDP implicit price deflator percent change.

Description

A dataset containing a quarterly U.S. time series with two components: the percentage change of real GDP and the percentage change of GDP implicit price deflator, covering the period from 1959Q1 - 2019Q4.

Usage

gdpdef

Format

A numeric matrix of class 'ts' with 244 rows and 2 columns with one time series in each column:

First column (GDP): The quarterly percent change of real U.S. GDP, from 1959Q1 to 2019Q4, https://fred.stlouisfed.org/series/GDPC1.

Second column (GDPDEF): The quarterly percent change of U.S. GDP implicit price deflator, from 1959Q1 to 2019Q4, https://fred.stlouisfed.org/series/GDPDEF.

Source

The Federal Reserve Bank of St. Louis database and the Federal Reserve Bank of Atlanta’s website

get_boldA_eigens

Calculate absolute values of the eigenvalues of the "bold A" matrices containing the AR coefficients

Description

get_boldA_eigens calculates absolute values of the eigenvalues of the "bold A" matrices containing the AR coefficients for each mixture component.

Usage

get_boldA_eigens(gsmvar)

Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
get_omega_eigens

Value

Returns a matrix with $d \times p$ rows and M columns - one column for each regime. The mth column contains the absolute values (or modulus) of the eigenvalues of the "bold A" matrix containing the AR coefficients corresponding to regime m.

References

@keywords internal

Examples

```r
# GMVAR(2, 2), d=2 model
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
             0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
             0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GGMVAR(p=2, M=2, d=2, params=params22)
get_boldA_eigens(mod22)
```

get_omega_eigens

Calculate the eigenvalues of the "Omega" error term covariance matrices

Description

get_omega_eigens calculates the eigenvalues of the "Omega" error term covariance matrices for each mixture component.

Usage

```r
get_omega_eigens(gsmvar)
```

Arguments

- `gsmvar` an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.

Value

Returns a matrix with d rows and M columns - one column for each regime. The mth column contains the eigenvalues of the "Omega" error term covariance matrix of the mth regime.
get_regime_autocovs

References

Examples

```r
# GMVAR(2, 2), d=2 model
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
             0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
             0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GSMVAR(p=2, M=2, d=2, params=params22)
get_omega_eigens(mod22)
```

get_regime_autocovs

Calculate regimewise autocovariance matrices

Description

get_regime_autocovs calculates the first p regimewise autocovariance matrices $\Gamma_m(j)$ for the given GMVAR, StMVAR, or G-StMVAR model.

Usage

```r
get_regime_autocovs(gsmvar)
```

Arguments

- `gsmvar` an object of class `gsmvar`, typically created with `fitGSMVAR` or `GSMVAR`.

Value

Returns an $(d x d x p + 1 x M)$ array containing the first p regimewise autocovariance matrices. The subset $[,]^[j,m]$ contains the j-th lag autocovariance matrix of the m-th regime.

References

See Also

Other moment functions: cond_moments(), get_regime_means(), uncond_moments()

Examples

GMVAR(1,2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005,
0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012,
0.136, 0.674)
mod12 <- GSMVAR(gdpdef, p=1, M=2, params=params12)
get_regime_autocovs(mod12)

Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(gdpdef, p=2, M=2, params=params22s, structural_pars=list(W=W_22))
mod22s
get_regime_autocovs(mod22s)

get_regime_means

Calculate regime means μ_m

description

get_regime_means calculates regime means $\mu_m = (I - \sum A_{m,i})(-1)$ for the given GMVAR, StMVAR, or G-StMVAR model.

Usage

get_regime_means(gsmvar)

Arguments

gsmvar an object of class ‘gsmvar’, typically created with fitGSMVAR or GSMVAR.

Value

Returns a (dxM) matrix containing regime mean μ_m in the m:th column, $m = 1, \ldots, M$.
References

@keywords internal

See Also

`uncond_moments`, `get_regime_autocovs`, `cond_moments`

Other moment functions: `cond_moments()`, `get_regime_autocovs()`, `uncond_moments()`

Examples

```r
# GMVAR(1, 2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005,
             0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012,
             0.136, 0.674)
mod12 <- GSMVAR(gdpdef, p=1, M=2, params=params12)
mod12
get_regime_means(mod12)

# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
               0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
               0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(gdpdef, p=2, M=2, params=params22s, structural_pars=list(W=W_22))
mod22s
get_regime_means(mod22s)
```

GFEVD

Estimate generalized forecast error variance decomposition for a structural GMVAR, StMVAR, or G-StMVAR model.

Description

GFEVD estimates generalized generalized forecast error variance decomposition for a structural GMVAR, StMVAR, or G-StMVAR model.
Usage

```r
GFEVD(
  gsmvar,
  shock_size = 1,
  N = 30,
  initval_type = c("data", "random", "fixed"),
  R1 = 250,
  R2 = 250,
  init_regimes = NULL,
  init_values = NULL,
  which_cumulative = numeric(0),
  include_mixweights = FALSE,
  ncores = 2,
  seeds = NULL
)
```

S3 method for class 'gfevd'
plot(x, ...)

S3 method for class 'gfevd'
print(x, ..., digits = 2, N_to_print)

Arguments

- `gsmvar` an object of class `gsmvar`, typically created with `fitGSMVAR` or `GSMVAR`.
- `shock_size` What shocks size should be used for all shocks? By the definition of the SGMVAR, SStMV AR, and SG-StMV AR model, the conditional covariance matrix of the structural shock is identity matrix.
- `N` a positive integer specifying the horizon how far ahead should the GFEVD be calculated.
- `initval_type` What type initial values are used for estimating the GIRFs that the GFEVD is based on?
 - "data": Estimate the GIRF for all the possible length p histories in the data.
 - "random": Estimate the GIRF for several random initial values generated from the stationary distribution of the process or from the stationary distribution of specific regime(s) chosen with the argument `init_regimes`. The number of initial values is set with the argument `R2`.
 - "fixed": Estimate the GIRF for a fixed initial value only, which is specified with the argument `init_values`.
- `R1` the number of repetitions used to estimate GIRF for each initial value.
- `R2` the number of initial values to be drawn if `initval_type="random"`.
- `init_regimes` a numeric vector of length at most M and elements in $1,\ldots,M$ specifying the regimes from which the initial values should be generated from. The initial values will be generated from a mixture distribution with the mixture components being the stationary distributions of the specific regimes and the (proportional) mixing weights given by the mixing weight parameters of those regimes. Note
that if `init_regimes=1:M`, the initial values are generated from the stationary distribution of the process and if `init_regimes=m`, the initial value are generated from the stationary distribution of the *m*th regime. Ignored if the argument `init_values` is specified.

`init_values` a size (pxd) matrix specifying the initial values, where *d* is the number of time series in the system. The last row will be used as initial values for the first lag, the second last row for second lag etc. If not specified, initial values will be drawn according to mixture distribution specified by the argument `init_regimes`.

`which_cumulative` a numeric vector with values in 1,..., *d* (d=ncol(data)) specifying which the variables for which the impulse responses should be cumulative. Default is none.

`include_mixweights` should the GFEVD be estimated for the mixing weights as well? Note that this is ignored if *M*=1 and if *M*=2 the GFEVD will be the same for both regime’s mixing weights.

`ncores` the number CPU cores to be used in parallel computing. Only single core computing is supported if an initial value is specified (and the GIRF won’t thus be estimated multiple times).

`seeds` a numeric vector containing the random number generator seed for estimation of each GIRF. Should have the length...

- ...nrow(data) -p + 1 if `initval_type="data"`
- ...R2 if `initval_type="random"`
- ...1 if `initval_type="fixed."`

Set to NULL for not initializing the seed. Exists for creating reproducible results.

`x` object of class 'gfevd' generated by the function `GFEVD`.

... currently not used.

`digits` the number of decimals to print

`N_to_print` an integer specifying the horizon how far to print the estimates. The default is that all the values are printed.

Details

The model needs to be structural in order for this function to be applicable. A structural GMVAR, StMVAR, or G-StMVAR model can be estimated by specifying the argument `structural_pars` in the function `fitGSMVAR`.

The GFEVD is a forecast error variance decomposition calculated with the generalized impulse response function (GIRF). Lanne and Nyberg (2016) for details. Note, however, that the related GIRFs are calculated using the algorithm given in Virolainen (2020).

Value

Returns and object of class 'gfevd' containing the GFEVD for all the variables and if `include_mixweights=TRUE` also to the mixing weights. Note that the decomposition does not exist at horizon zero for mixing weights because the related GIRFs are always zero at impact.
Methods (by generic)

- plot: plot method
- print: print method

References

See Also

GIRF, fitGSMVAR, GSMVAR, gsmvar_to_sgsmvar, reorder_W_columns, swap_W_signs, simulate.gsmvar

Examples

```r
# These are long-running examples that use parallel computing.
# It takes approximately 30 seconds to run all the below examples.

# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
               0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
               0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(gdpdef, p=2, M=2, params=params22s,
                 structural_pars=list(W=W_22))
mod22s

# Alternatively, use:
#fit22s <- fitGSMVAR(gdpdef, p=2, M=2, structural_pars=list(W=W_22),
#                   ncall=20, seeds=1:20)
# To obtain an estimated version of the same model.

## NOTE: Use larger R1 is empirical applications! Small R1 is used
## Below only to fasten the execution time of the examples.

# Estimating the GFEVD using all possible histories in the data as the
# initial values:
gfevd1 <- GFEVD(mod22s, N=24, R1=20, initval_type="data")
gfevd1
plot(gfevd1)

# Estimate GFEVD with the initial values generated from the stationary
# distribution of the process:
```
GIRF2 <- GFEVD(mod22s, N=24, R1=20, R2=100, initval_type="random")
gfevd2
plot(gfevd2)

Estimate GFEVD with fixed hand specified initial values. We use the
unconditional mean of the process:
myvals <- rbind(mod22s$uncond_moments$uncond_mean,
 mod22s$uncond_moments$uncond_mean)
gfevd3 <- GFEVD(mod22s, N=36, R1=50, initval_type="fixed",
 init_values=myvals, include_mixweights=TRUE)
gfevd3
plot(gfevd3)

GIRF

Estimate generalized impulse response function for a structural GM-VAR, StMVAR, or G-StMVAR model.

Description

GIRF estimates generalized impulse response function for a structural GMVAR, StMVAR, or G-StMVAR model.

Usage

GIRF(
gsmvar,
which_shocks,
shock_size = 1,
N = 30,
R1 = 250,
R2 = 250,
init_regimes = 1:sum(gsmvar$model$M),
init_values = NULL,
which_cumulative = numeric(0),
scale = NULL,
scale_type = c("instant", "peak"),
scale_horizon = N,
ci = c(0.95, 0.8),
include_mixweights = TRUE,
ncores = 2,
plot_res = TRUE,
seeds = NULL,
...)

S3 method for class 'girf'
plot(x, add_grid = FALSE, margs, ...)

S3 method for class 'girf'
print(x, ..., digits = 2, N_to_print)

Arguments

- `gsmvar` an object of class 'gsmvar', typically created with `fitGSMVAR` or `GSMVAR`.

- `which_shocks` a numeric vector of length at most `d (=ncol(data))` and elements in `1,...,d` specifying the structural shocks for which the GIRF should be estimated.

- `shock_size` a non-zero scalar value specifying the common size for all scalar components of the structural shock. Note that the conditional covariance matrix of the structural shock is an identity matrix and that the (generalized) impulse responses may not be symmetric to the sign and size of the shock.

- `N` a positive integer specifying the horizon how far ahead should the generalized impulse responses be calculated.

- `R1` the number of repetitions used to estimate GIRF for each initial value.

- `R2` the number of initial values to be drawn from a stationary distribution of the process or of a specific regime? The confidence bounds will be sample quantiles of the GIRFs based on different initial values. Ignored if the argument `init_value` is specified.

- `init_regimes` a numeric vector of length at most `M` and elements in `1,...,M` specifying the regimes from which the initial values should be generated from. The initial values will be generated from a mixture distribution with the mixture components being the stationary distributions of the specific regimes and the (proportional) mixing weights given by the mixing weight parameters of those regimes. Note that if `init_regimes=1:M`, the initial values are generated from the stationary distribution of the process and if `init_regimes=m`, the initial value are generated from the stationary distribution of the `m`th regime. Ignored if the argument `init_values` is specified.

- `init_values` a size `(pxd)` matrix specifying the initial values, where `d` is the number of time series in the system. The last row will be used as initial values for the first lag, the second last row for second lag etc. If not specified, initial values will be drawn according to mixture distribution specified by the argument `init_regimes`.

- `which_cumulative` a numeric vector with values in `1,...,d` (`d=ncol(data)`) specifying which the variables for which the impulse responses should be cumulative. Default is none.

- `scale` should the GIRFs to some of the shocks be scaled so that they correspond to a specific magnitude of instantaneous or peak response of some specific variable (see the argument `scale_type`)? Provide a length three vector where the shock of interest is given in the first element (an integer in `1,...,d`), the variable of interest is given in the second element (an integer in `1,...,d`), and the magnitude of its instantaneous or peak response in the third element (a non-zero real number). If the GIRFs of multiple shocks should be scaled, provide a matrix which has one column for each of the shocks with the columns being the length three vectors described above.
scale_type If argument scale is specified, should the GIRFs be scaled to match an instantaneous response ("instant") or peak response ("peak"). If "peak", the scale is based on the largest magnitude of peak response in absolute value. Ignored if scale is not specified.

scale_horizon If scale_type == "peak" what the maximum horizon up to which peak response is expected? Scaling won’t based on values after this.

ci a numeric vector with elements in (0, 1) specifying the confidence levels of the confidence intervals.

include_mixweights should the generalized impulse response be calculated for the mixing weights as well? TRUE or FALSE.

ncores the number CPU cores to be used in parallel computing. Only single core computing is supported if an initial value is specified (and the GIRF won’t thus be estimated multiple times).

plot_res TRUE if the results should be plotted, FALSE if not.

seeds a length R2 vector containing the random number generator seed for estimation of each GIRF. A single number of an initial value is specified. or NULL for not initializing the seed. Exists for creating reproducible results.

... arguments passed to grid which plots grid to the figure.

x object of class 'girf' generated by the function GIRF.

add_grid should grid be added to the plots?

margs numeric vector of length four that adjusts the [bottom_marginal,left_marginal,top_marginal,right_marginal] as the relative sizes of the marginals to the figures of the responses.

digits the number of decimals to print

N_to_print an integer specifying the horizon how far to print the estimates and confidence intervals. The default is that all the values are printed.

Details

The model needs to be structural in order for this function to be applicable. A structural GMVAR, StMVAR, or G-StMVAR model can be estimated by specifying the argument structural_pars in the function fitGSMVAR.

The confidence bounds reflect uncertainty about the initial state (but currently not about the parameter estimates) if initial values are not specified. If initial values are specified, there won’t currently be confidence intervals. See the cited paper by Virolainen (2020) for details about the algorithm.

Note that if the argument scale is used, the scaled responses of the mixing weights might be more than one in absolute value.

Value

Returns a class 'girf' list with the GIRFs in the first element ($girf_res) and the used arguments the rest. The first element containing the GIRFs is a list with the n element containing the point estimates for the GIRF in $point_est (the first element) and confidence intervals in $conf_ints (the second element). The first row is for the GIRF at impact (n = 0), the second for n = 1, the third for n = 2, and so on.
Methods (by generic)

- plot: plot method
- print: print method

References

See Also

GFEVD, fitGSMVAR, GSMVAR, gsmvar_to_sgsmsvar, reorder_W_columns, swap_W_signs, simulate.gsmvar, predict.gsmvar, profile_logliks, quantile_residual_tests, LR_test, Wald_test

Examples

```r
# These are long-running examples that use parallel computing.
# It takes approximately 30 seconds to run all the below examples.

# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(gdpdef, p=2, M=2, params=params22s,
structural_pars=list(W=W_22))
mod22s

# Alternatively, use:
#fit22s <- fitGSMVAR(gdpdef, p=2, M=2, structural_pars=list(W=W_22),
# ncalls=20, seeds=1:20)
# To obtain an estimated version of the same model.

# Estimating the GIRFs of both structural shocks with initial values
drawn from the stationary distribution of the process,
# 12 periods ahead, confidence levels 0.95 and 0.8:
girf1 <- GIRF(mod22s, N=12, R1=100, R2=100)
girf1
plot(girf1)

# Estimating the GIRF of the second shock only, 12 periods ahead
# and shock size 1, initial values drawn from the stationary distribution
# of the first regime, confidence level 0.9:
girf2 <- GIRF(mod22s, which_shocks=2, shock_size=1, N=12, init_regimes=1,
ci=0.9, R1=100, R2=100)
```
Estimating the GIRFs of both structural shocks, negative one standard
error shock, N=20 periods ahead, estimation based on 200 Monte Carlo
simulations, and fixed initial values given by the last p observations
of the data:
girf3 <- GIRF(mod22s, shock_size=-1, N=20, R1=200,
 init_values=mod22s$data)

GMVAR

DEPRECATED! USE THE FUNCTION GSMVAR INSTEAD! Create a class 'gsmvar' object defining a reduced form or structural GMVAR model

Description

GMVAR creates a class 'gsmvar' object that defines a reduced form or structural GMVAR model. DEPRECATED! USE THE FUNCTION GSMVAR INSTEAD!

Usage

```r
GMVAR(
  data,
  p,
  M,
  d,
  params,
  conditional = TRUE,
  parametrization = c("intercept","mean"),
  constraints = NULL,
  same_means = NULL,
  structural_pars = NULL,
  calc_cond_moments,
  calc_std_errors = FALSE,
  stat_tol = 0.001,
  posdef_tol = 1e-08
)
```

Arguments

- **data**: a matrix or class 'ts' object with d>1 columns. Each column is taken to represent a single times series. NA values are not supported. Ignore if defining a model without data is desired.
- **p**: a positive integer specifying the autoregressive order of the model.
- **M**: For GMVAR and StMVAR models: a positive integer specifying the number of mixture components.
For **G-StMVAR models**: a size (2x1) integer vector specifying the number of GMVAR type components \(M1 \) in the first element and StMVAR type components \(M2 \) in the second element. The total number of mixture components is \(M=M1+M2 \).

\(d \) number of times series in the system, i.e. \(\text{ncol}(\text{data}) \). This can be used to define GSMVAR models without data and can be ignored if data is provided.

params a real valued vector specifying the parameter values.

For **unconstrained models**: Should be size \(((M(pd^2 + d + d(d + 1)/2 + 2) - M1 - 1)x1) \) and have the form \(\theta=(v_1,...,v_M, \alpha_1,...,\alpha_{M-1},\nu) \), where

- \(v_m=(\phi_{m,0},\phi_m,\sigma_m) \)
- \(\phi_m=(vecc(A_{m,1}),...,vecc(A_{m,p})) \)
- and \(\sigma_m=vech(\Omega_m), m=1,...,M, \)
- \(\nu=(\nu_{M1+1},...\nu_M) \)
- \(M1 \) is the number of GMVAR type regimes.

For **constrained models**: Should be size \(((M(d+d(d+1)/2+2)+q-M-1)x1) \) and have the form \(\theta=(\phi_{1,0},...,\phi_{M,0},\psi,\sigma_1,...,\sigma_M,\alpha_1,...,\alpha_{M-1},\nu) \), where

- \(\psi(qx1) \) satisfies \((\phi_1,...,\phi_M) = C\psi \) where \(C \) is a \((Mpd^2qxq)\) constraint matrix.

For **same_means models**: Should have the form \(\theta=(\mu,\psi,\sigma_1,...,\sigma_M,\alpha_1,...,\alpha_{M-1},\nu) \), where

- \(\mu=(\mu_1,...,\mu_g) \) where \(\mu_i \) is the mean parameter for group \(i \) and \(g \) is the number of groups.
- If AR constraints are employed, \(\psi \) is as for constrained models, and if AR constraints are not employed, \(\psi=(\phi_1,...,\phi_M) \).

For **structural models**: Should have the form \(\theta=(\phi_{1,0},...,\phi_{M,0},\phi_1,...,\phi_M, vec(W),\lambda_2,...,\lambda_M, \alpha_1,...,\alpha_{M-1},\nu) \), where

- \(\lambda_m=(\lambda_{m1},...,\lambda_{md}) \) contains the eigenvalues of the \(m \)th mixture component.

If AR parameters are constrained: Replace \(\phi_1,...,\phi_M \) with \(\psi(qx1) \) that satisfies \((\phi_1,...,\phi_M) = C\psi \), as above.

If same_means: Replace \((\phi_{1,0},...,\phi_{M,0}) \) with \((\mu_1,...,\mu_g) \), as above.

If \(W \) is constrained: Remove the zeros from \(vec(W) \) and make sure the other entries satisfy the sign constraints.

If \(\lambda_{mi} \) are constrained: Replace \(\lambda_2,...,\lambda_M \) with \(\gamma(qx1) \) that satisfies \(\gamma(\lambda_2,...,\lambda_M) = C\lambda \gamma \) where \(C\lambda \) is a \((d(M-1)xq)\) constraint matrix.

Above, \(\phi_{m,0} \) is the intercept parameter, \(A_{m,i} \) denotes the \(i \)th coefficient matrix of the \(m \)th mixture component, \(\Omega_m \) denotes the error term covariance matrix of the \(m \)th mixture component, and \(\alpha_m \) is the mixing weight parameter. The \(W \) and \(\lambda_{mi} \) are structural parameters replacing the error term covariance matrices (see Virolainen, 2020). If \(M = 1 \), \(\alpha_m \) and \(\lambda_{mi} \) are dropped. If \text{parametrization}=="mean", just replace each \(\phi_{m,0} \) with regimewise mean \(\mu_m \).

\(vec() \) is vectorization operator that stacks columns of a given matrix into a vector. \(vech() \) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.
In the GMVAR model, $M_1 = M$ and ν is dropped from the parameter vector. In the StMVAR model, $M_1 = 0$. In the G-StMVAR model, the first M_1 regimes are GMVAR type and the rest M_2 regimes are StMVAR type. In StMVAR and G-StMVAR models, the degrees of freedom parameters in ν should be strictly larger than two.

The notation is similar to the cited literature.

conditional

a logical argument specifying whether the conditional or exact log-likelihood function should be used.

parametrization

"intercept" or "mean" determining whether the model is parametrized with intercept parameters $\phi_{m,0}$ or regime means μ_m, $m=1,...,M$.

constraints

a size (Mpd^2xq) constraint matrix C specifying general linear constraints to the autoregressive parameters. We consider constraints of form $(\phi_1,...,\phi_M) = C\psi$, where $\phi_m = (vec(A_{m,1}),...,vec(A_{m,p}))(pd^2x1)$, $m = 1,...,M$, contains the coefficient matrices and ψ $(qx1)$ contains the related parameters. For example, to restrict the AR-parameters to be the same for all regimes, set $C = [I:...:I]'$ (Mpd^2xp^d2) where $I = \text{diag}(pd^2)$. Ignore (or set to NULL) if linear constraints should not be employed.

same_means

Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if $M=3$, the argument list(1,2:3) restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. This constraint is available only for mean parametrized models; that is, when parametrization="mean".

structural_pars

If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

- W - a (dxd) matrix with its entries imposing constraints on W: NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

- C_{λ} - a $(d(M-1)xr)$ constraint matrix that satisfies $(\lambda_2,...,\lambda_M) = C_{\lambda}\gamma$ where γ is the new $(rx1)$ parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_{λ} must be either positive or zero. Ignore (or set to NULL) if the eigenvalues λ_{mi} should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is W times a time-varying diagonal matrix with positive diagonal entries).

calc_cond_moments

should conditional means and covariance matrices should be calculated? Default is TRUE if the model contains data and FALSE otherwise.

calc_std_errors

should approximate standard errors be calculated?
stat_tol numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger that 1 -stat_tol the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

posdef_tol numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

Details

If data is provided, then also multivariate quantile residuals (Kalliovirta and Saikkonen 2010) are computed and included in the returned object.

If the function fails to calculate approximative standard errors and the parameter values are near the border of the parameter space, it might help to use smaller numerical tolerance for the stationarity and positive definiteness conditions.

The first plot displays the time series together with estimated mixing weights. The second plot displays a (Gaussian) kernel density estimates of the individual series together with the marginal stationary density implied by the model. The colored regimewise stationary densities are multiplied with the mixing weight parameter estimates.

Value

Returns an object of class 'gsmvar' defining the specified reduced form or structural GMVAR, StMVAR, or G-StMVAR model. Can be used to work with other functions provided in gmvarkit.

Note that the first autocovariance/correlation matrix in $uncond_moments is for the lag zero, the second one for the lag one, etc.

About S3 methods

Only the print method is available if data is not provided. If data is provided, then in addition to the ones listed above, the predict method is also available.

References

See Also

GSMVAR
Description

gmvarkit is a package for reduced form and structural Gaussian mixture vector autoregressive (GMVAR), Student’s t Mixture Vector Autoregressive (StMVAR), or Gaussian and Student’s t Mixture Vector Autoregressive (G-StMVAR) model analysis. It provides functions for unconstrained and constrained maximum likelihood estimation of the model parameters, quantile residuals tests, graphical diagnostics, estimation of generalized impulse response function, estimation of generalized forecast error variance decomposition, simulation from GMVAR processes, forecasting, and more.

The readme file is a good place to start and the vignette might be useful too.

gmvar_to_gsmvar

Makes class 'gmvar' objects compatible with the functions using class 'gsmvar' objects

Usage

gmvar_to_gsmvar(gsmvar)

Arguments

gsmvar a class 'gmvar' or 'gsmvar' object.

Details

This exists so that models estimated with earlier versions of the package can be used conveniently.

Value

If the provided object has the class 'gsmvar', the provided object is returned without modifications. If the provided object has the class 'gmvar', its element $model is given a new subelement called also model and this is set to be "GMVAR". Also, the class of this object is changes to 'gsmvar' and then it is returned.
Description

DEPRECATED! USE THE FUNCTION fitGSMVAR INSTEAD! gmvar_to_sgmvar constructs SGMVAR model based on a reduced form GMVAR, StMVAR, or G-StMVAR model.

Usage

gmvar_to_sgmvar(gmvar, calc_std_errors = TRUE)

Arguments

gmvar
object of class 'gmvar'
calc_std_errors
should approximate standard errors be calculated?

Details

The switch is made by simultaneously diagonalizing the two error term covariance matrices with a well known matrix decomposition (Muirhead, 1982, Theorem A9.9) and then normalizing the diagonal of the matrix W positive (which implies positive diagonal of the B-matrix). Models with more than two regimes are not supported because the matrix decomposition does not generally exists for more than two covariance matrices. If the model has only one regime (= regular SVAR model), a symmetric and pos. def. square root matrix of the error term covariance matrix is used.

The columns of W as well as the lambda parameters can be re-ordered (without changing the implied reduced form model) afterwards with the function reorder_W_columns. Also all signs in any column of W can be swapped (without changing the implied reduced form model) afterwards with the function swap_W_signs. These two functions work with models containing any number of regimes.

Value

Returns an object of class ‘gsmvar’ defining a structural GMVAR, StMVAR, or G-StMVAR model based on a two-regime reduced form GMVAR, StMVAR, or G-StMVAR model, with the main diagonal of the B-matrix normalized to be positive.

References

See Also

gsmvar_to_sgsmvar

GSMVAR

Create a class `gsmvar` object defining a reduced form or structural GMVAR, StMVAR, or G-StMVAR model

Description

GSMVAR creates a class `gsmvar` object that defines a reduced form or structural GMVAR, StMVAR, or G-StMVAR model

Usage

```r
GSMVAR(
  data,
  p,
  M,
  d,
  params,
  conditional = TRUE,
  model = c("GMVAR", "StMVAR", "G-StMVAR"),
  parametrization = c("intercept", "mean"),
  constraints = NULL,
  same_means = NULL,
  structural_pars = NULL,
  calc_cond_moments,
  calc_std_errors = FALSE,
  stat_tol = 0.001,
  posdef_tol = 1e-08,
  df_tol = 1e-08
)
```

```r
## S3 method for class 'gsmvar'
logLik(object, ...)
```

```r
## S3 method for class 'gsmvar'
residuals(object, ...)
```

```r
## S3 method for class 'gsmvar'
summary(object, ..., digits = 2)
```

```r
## S3 method for class 'gsmvar'

```
plot(x, ..., type = c("both", "series", "density"))

S3 method for class 'gsmvar'
print(x, ..., digits = 2, summary_print = FALSE)

Arguments

data a matrix or class 'ts' object with \(d>1\) columns. Each column is taken to represent a single times series. NA values are not supported. Ignore if defining a model without data is desired.

p a positive integer specifying the autoregressive order of the model.

M For **GMVAR and StMVAR models**: a positive integer specifying the number of mixture components.

For **G-StMVAR models**: a size (2x1) integer vector specifying the number of GMVAR type components \(M_1\) in the first element and StMVAR type components \(M_2\) in the second element. The total number of mixture components is \(M=M_1+M_2\).

d number of times series in the system, i.e. \(\text{ncol(data)}\). This can be used to define GSMVAR models without data and can be ignored if data is provided.

params a real valued vector specifying the parameter values.

For **unconstrained models**: Should be size \(((M(pd^2+d(d+1)/2+2)−M1−1)x1)\) and have the form \(\theta=(v_1,...,v_M, \alpha_1,...,\alpha_{M−1},\nu)\), where
- \(v_m=(\phi_{m,0},\phi_m,\sigma_m)\)
- \(\phi_m=(\text{vec}(A_{m,1}),...,\text{vec}(A_{m,p}))\)
- and \(\sigma_m=\text{vech}(\Omega_m), m=1,...,M\),
- \(\nu=\nu_{M1+1},...,\nu_M\)
- \(M1\) is the number of GMVAR type regimes.

For **constrained models**: Should be size \(((M(d+d(d+1)/2+2)+q−M1−1)x1)\) and have the form \(\theta=(\phi_{1,0},...,\phi_{M,0},\psi,\sigma_1,...,\sigma_M, \alpha_1,...,\alpha_{M−1},\nu)\), where
- \(\psi (qx1)\) satisfies \((\phi_1,...,\phi_M)=C\psi\) where \(C\) is a \((Mpd^2xq)\) constraint matrix.

For **same_means models**: Should have the form \(\theta=(\mu,\psi,\sigma_1,...,\sigma_M, \alpha_1,...,\alpha_{M−1},\nu)\), where
- \(\mu=(\mu_1,...,\mu_g)\) where \(\mu_i\) is the mean parameter for group \(i\) and \(g\) is the number of groups.
- If AR constraints are employed, \(\psi\) is as for constrained models, and if AR constraints are not employed, \(\psi=(\phi_1,...,\phi_M)\).

For **structural models**: Should have the form \(\theta=(\phi_{1,0},...,\phi_{M,0},\phi_1,...,\phi_M, \text{vec}(W),\lambda_2,...,\lambda_M, \alpha_1,...,\lambda_m)\), where
- \(\lambda_m=(\lambda_{m1},...,\lambda_{md})\) contains the eigenvalues of the \(m\)th mixture component.

If AR parameters are constrained: Replace \(\phi_1,...,\phi_M\) with \(\psi (qx1)\) that satisfies \((\phi_1,...,\phi_M)=C\psi\), as above.

If same_means: Replace \((\phi_{1,0},...,\phi_{M,0})\) with \((\mu_1,...,\mu_g)\), as above.
If \(W \) is constrained: Remove the zeros from \(\text{vec}(W) \) and make sure the other entries satisfy the sign constraints.

If \(\lambda_{mi} \) are constrained: Replace \(\lambda_2, \ldots, \lambda_M \) with \(\gamma(rx1) \) that satisfies \((\lambda_2, \ldots, \lambda_M) = C\lambda \gamma \) where \(C \) is a \((d(M-1)xr)\) constraint matrix.

Above, \(\phi_{m,0} \) is the intercept parameter, \(A_{m,i} \) denotes the \(i \)th coefficient matrix of the \(m \)th mixture component, \(\Omega_m \) denotes the error term covariance matrix of the \(m \)th mixture component, and \(\alpha_m \) is the mixing weight parameter. The \(W \) and \(\lambda_{mi} \) are structural parameters replacing the error term covariance matrices (see Virolainen, 2020). If \(M = 1 \), \(\alpha_m \) and \(\lambda_{mi} \) are dropped. If \text{parametrization}=="mean" just replace each \(\phi_{m,0} \) with regimewise mean \(\mu_m \).

\text{vec}(\cdot) \) is vectorization operator that stacks columns of a given matrix into a vector. \(\text{vech}(\cdot) \) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.

In the \text{GMVAR model}, \(M_1 = M \) and \(\nu \) is dropped from the parameter vector. In the \text{StMVAR model}, \(M_1 = 0 \). In the \text{G-StMVAR} model, the first \(M_1 \) regimes are \text{GMVAR type} and the rest \(M_2 \) regimes are \text{StMVAR type}. In \text{StMVAR} and \text{G-StMVAR} models, the degrees of freedom parameters in \(\nu \) should be strictly larger than two.

The notation is similar to the cited literature.

\text{conditional} \quad \text{a logical argument specifying whether the conditional or exact log-likelihood function should be used.}

\text{model} \quad \text{is "GMVAR", "StMVAR", or "G-StMVAR" model considered? In the G-StMVAR model, the first \(M_1 \) components are \text{GMVAR type} and the rest \(M_2 \) components are \text{StMVAR type}.}

\text{parametrization} \quad \text{"intercept" or "mean" determining whether the model is parametrized with intercept parameters \(\phi_{m,0} \) or regime means \(\mu_m \), \(m=1,...,M \).}

\text{constraints} \quad \text{a size \((Mpd^2)xq\) constraint matrix \(C \) specifying general linear constraints to the autoregressive parameters. We consider constraints of form \((\phi_1,...,\phi_M) = C\psi \), where \(\phi_m = \text{vec}(A_{m,1}),...,\text{vec}(A_{m,pd^2x1}) \), \(m = 1,...,M \), contains the coefficient matrices and \(\psi (qx1) \) contains the related parameters. For example, to restrict the AR-parameters to be the same for all regimes, set \(C = [I:...:I]' \) \((Mpd^2xpd^2) \) where \(I = \text{diag}(p*d^2) \). Ignore (or set to NULL) if linear constraints should not be employed.}

\text{same_means} \quad \text{Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if \(M=3 \), the argument \text{list(1,2:3)} restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. \text{This constraint is available only for mean parametrized models; that is, when parametrization="mean".}}

\text{structural_pars} \quad \text{If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:}
• W, a $(d \times d)$ matrix with its entries imposing constraints on W: NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.
• C_{λ}, a $(d(M - 1) \times r)$ constraint matrix that satisfies $(\lambda_2, ..., \lambda_M) = C_{\lambda} \gamma$ where γ is the new $(r \times 1)$ parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_{λ} must be either positive or zero. Ignore (or set to NULL) if the eigenvalues λ_{mi} should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is W times a time-varying diagonal matrix with positive diagonal entries).

calc_cond_moments
should conditional means and covariance matrices should be calculated? Default is TRUE if the model contains data and FALSE otherwise.

calc_std_errors
should approximate standard errors be calculated?

stat_tol
numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger that $1 - \text{stat_tol}$ the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

posdef_tol
numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

df_tol
the parameter vector is considered to be outside the parameter space if all degrees of freedom parameters are not larger than $2 + \text{df_tol}$.

object
object of class 'gsmvar' generated by fitGSMVAR or GSMVAR.

... currently not used.

digits
number of digits to be printed.

x
object of class 'gsmvar' generated by fitGSMVAR or GSMVAR.

type
which type figure should be produced? Or both?

summary_print
if set to TRUE then the print will include log-likelihood and information criteria values.

Details

If data is provided, then also multivariate quantile residuals (Kalliovirta and Saikkonen 2010) are computed and included in the returned object.

If the function fails to calculate approximative standard errors and the parameter values are near the border of the parameter space, it might help to use smaller numerical tolerance for the stationarity and positive definiteness conditions.

The first plot displays the time series together with estimated mixing weights. The second plot displays a (Gaussian) kernel density estimates of the individual series together with the marginal
stationary density implied by the model. The colored regimewise stationary densities are multiplied with the mixing weight parameter estimates.

Value

Returns an object of class 'gsmvar' defining the specified reduced form or structural GMVAR, StMVAR, or G-StMVAR model. Can be used to work with other functions provided in gmvarkit.

Note that the first autocovariance/correlation matrix in $uncond_moments is for the lag zero, the second one for the lag one, etc.

Methods (by generic)

- logLik: Log-likelihood method
- residuals: residuals method to extract multivariate quantile residuals
- summary: summary method
- plot: plot method for class 'gsmvar'
- print: print method

About S3 methods

If data is not provided, only the print and simulate methods are available. If data is provided, then in addition to the ones listed above, predict method is also available. See ?simulate.gsmvar and ?predict.gsmvar for details about the usage.

References

See Also

fitGSMVAR, add_data, swap_parametrization, GIRF, gsmvar_to_sgsmvar, stmvar_to_gstmvar, reorder_W_columns, swap_W_signs, update_numtols

Examples

GMVAR(1, 2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005, 0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012, 0.136, 0.674)
mod12 <- GSMVAR(gdpdef, p=1, M=2, params=params12)
mod12
GMVAR(1, 2), d=2 model without data
mod12_2 <- GSMVAR(p=1, M=2, d=2, params=params12)
mod12_2

StMVAR(1, 2), d=2 model:
mod12t <- GSMVAR(gdpdef, p=1, M=2, params=c(params12, 10, 20),
 model="StMVAR")
mod12t

G-StMVAR(1, 1, 1), d=2 model:
mod12gs <- GSMVAR(gdpdef, p=1, M=c(1, 1), params=c(params12, 20),
 model="G-StMVAR")
mod12gs

GMVAR(2, 2), d=2 model with mean-parametrization:
params22 <- c(0.869, 0.549, 0.223, 0.059, -0.151, 0.395, 0.406,
 -0.005, 0.083, 0.299, 0.215, 0.002, 0.03, 0.576, 1.168, 0.218,
 0.02, -0.119, 0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004,
 0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22, parametrization="mean")
mod22

Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
 0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
 0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(gdpdef, p=2, M=2, params=params22s,
 structural_pars=list(W=W_22))
mod22s

gsmvar_to_sgsmvar

 Switch from two-regime reduced form GMVAR, StMVAR, or G-StMVAR model to a structural model.

Description

gsmvar_to_sgsmvar constructs SGMVAR, SStMVAR, or SG-StMVAR model based on a reduced form GMVAR, StMVAR, or G-StMVAR model.

Usage

gsmvar_to_sgsmvar(gsmvar, calc_std_errors = TRUE)

Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
calc_std_errors

should approximate standard errors be calculated?
Details

The switch is made by simultaneously diagonalizing the two error term covariance matrices with a well known matrix decomposition (Muirhead, 1982, Theorem A9.9) and then normalizing the diagonal of the matrix W positive (which implies positive diagonal of the B-matrix). Models with more that two regimes are not supported because the matrix decomposition does not generally exists for more than two covariance matrices. If the model has only one regime (= regular SV AR model), a symmetric and pos. def. square root matrix of the error term covariance matrix is used.

The columns of W as well as the lambda parameters can be re-ordered (without changing the implied reduced form model) afterwards with the function reorder_W_columns. Also all signs in any column of W can be swapped (without changing the implied reduced form model) afterwards with the function swap_W_signs. These two functions work with models containing any number of regimes.

Value

Returns an object of class ‘gsmvar’ defining a structural GMVAR, StMVAR, or G-StMVAR model based on a two-regime reduced form GMVAR, StMVAR, or G-StMVAR model, with the main diagonal of the B-matrix normalized to be positive.

References

See Also

fitGSMVAR, GSMVAR, GIRF, reorder_W_columns, swap_W_signs, stmvar_to_gstmvar

Examples

```r
# Reduced form GMVAR(1,2) model
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319,
  0.005, 0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185,
  -0.012, 0.136, 0.674)
mod12 <- GSMVAR(gdpdef, p=1, M=2, params=params12)

# Form a structural model based on the reduced form model:
mod12s <- gsmvar_to_sgsmvar(mod12)
mod12s

# Reduced form StMVAR(1,2) model
mod12t <- GSMVAR(gdpdef, p=1, M=2, params=c(params12, 11, 12), model="StMVAR")
```
Form a structural model based on the reduced form model:
mod12ts <- gsmvar_to_sgsmvar(mod12t)
mod12ts

in_paramspace

Determine whether the parameter vector lies in the parameter space

Description

`in_paramspace` checks whether the given parameter vector lies in the parameter space. Does NOT test the identification conditions!

Usage

```r
in_paramspace(
  p, M, d, 
  params,
  model = c("GMVAR", "StMV AR", "G-StMV AR"),
  constraints = NULL,
  same_means = NULL,
  structural_pars = NULL,
  stat_tol = 0.001,
  posdef_tol = 1e-08,
  df_tol = 1e-08
)
```

Arguments

- `p` a positive integer specifying the autoregressive order of the model.
- `M` a positive integer specifying the number of mixture components.

 For GMVAR and StMV AR models: a positive integer specifying the number of mixture components.

 For G-StMV AR models: a size (2x1) integer vector specifying the number of `GMVAR` type components `M1` in the first element and `StMV AR` type components `M2` in the second element. The total number of mixture components is `M=M1+M2`.
- `d` the number of time series in the system.
- `params` a real valued vector specifying the parameter values.

 For unconstrained models: Should be size `(M(pd^2 + d + d(d+1)/2 + 2) - M1 - 1)x1` and have the form `θ=(v_1, ..., v_M, α_1, ..., α_{M-1}, ν)`, where

 - `v_m = (φ_{m,0}, φ_m, σ_m)`
 - `φ_m = vec(A_{m,1}), ..., vec(A_{m,p})`
 - and `σ_m = vech(Ω_m), m=1,...,M`,

 For constrained models
\(\nu = (\nu_{M1+1}, ..., \nu_M) \)

\(M1 \) is the number of GMVAR type regimes.

For constrained models: Should be size \(((M(d+d(d+1)/2+2)+q-M1-1)x1) \) and have the form \(\theta = (\phi_{1,0}, ..., \phi_{M,0}, \psi, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where

\(\psi (qx1) \) satisfies \((\phi_1, ..., \phi_M) = C\psi \) where \(C \) is a \((Mpd^2xq)\) constraint matrix.

For same_means models: Should have the form \(\theta = (\mu, \psi, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where

- \(\mu = (\mu_1, ..., \mu_g) \) where \(\mu_i \) is the mean parameter for group \(i \) and \(g \) is the number of groups.
- If AR constraints are employed, \(\psi \) is as for constrained models, and if AR constraints are not employed, \(\psi = (\phi_1, ..., \phi_M) \).

For structural models: Should have the form \(\theta = (\phi_{1,0}, ..., \phi_{M,0}, \phi_1, ..., \phi_M, vec(W), \lambda_2, ..., \lambda_M, \alpha_1, ..., \nu) \), where

- \(\lambda_m = (\lambda_{m1}, ..., \lambda_{md}) \) contains the eigenvalues of the \(m \)th mixture component.

If AR parameters are constrained: Replace \(\phi_1, ..., \phi_M \) with \(\psi (qx1) \) that satisfies \((\phi_1, ..., \phi_M) = C\psi \), as above.

If same_means: Replace \((\phi_{1,0}, ..., \phi_{M,0}) \) with \((\mu_1, ..., \mu_g) \), as above.

If \(W \) is constrained: Remove the zeros from \(vec(W) \) and make sure the other entries satisfy the sign constraints.

If \(\lambda_{mi} \) are constrained: Replace \(\lambda_2, ..., \lambda_M \) with \(\gamma (rx1) \) that satisfies \((\lambda_2, ..., \lambda_M) = C_\lambda \gamma \) where \(C_\lambda \) is a \((d(M-1)xr)\) constraint matrix.

Above, \(\phi_{m,0} \) is the intercept parameter, \(A_{m,i} \) denotes the \(i \)th coefficient matrix of the \(m \)th mixture component, \(\Omega_m \) denotes the error term covariance matrix of the \(m \)th mixture component, and \(\alpha_m \) is the mixing weight parameter.

The \(W \) and \(\lambda_{mi} \) are structural parameters replacing the error term covariance matrices (see Virolainen, 2020). If \(M = 1 \), \(\alpha_m \) and \(\lambda_{mi} \) are dropped. If \(\text{parametrization} = \text{"mean"}, \) just replace each \(\phi_{m,0} \) with regimewise mean \(\mu_m \).

\(vec() \) is vectorization operator that stacks columns of a given matrix into a vector. \(vech() \) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.

In the GMVAR model, \(M1 = M \) and \(\nu \) is dropped from the parameter vector. In the StMVAR model, \(M1 = 0 \). In the G-StMVAR model, the first \(M1 \) regimes are GMVAR type and the rest \(M2 \) regimes are StMVAR type. In StMVAR and G-StMVAR models, the degrees of freedom parameters in \(\nu \) should be strictly larger than two.

The notation is similar to the cited literature.

model

is "GMVAR", "StMVAR", or "G-StMVAR" model considered? In the G-StMVAR model, the first \(M1 \) components are GMVAR type and the rest \(M2 \) components are StMVAR type.

constraints

a size \((Mpd^2xq)\) constraint matrix \(C \) specifying general linear constraints to the autoregressive parameters. We consider constraints of form \((\phi_1, ..., \phi_M) = C\psi \), where \(\phi_m = (vec(A_{m,1}), ..., vec(A_{m,p}))(pd^2x1) \), \(m = 1, ..., M \), contains the
coefficient matrices and ψ ($qx1$) contains the related parameters. For example, to restrict the AR-parameters to be the same for all regimes, set $C = \{1: \ldots :1\}^t (Mpd^2 \times pd^2)$ where $I = \text{diag}(p \times d^2)$. Ignore (or set to NULL) if linear constraints should not be employed.

same_means
Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if $M=3$, the argument `list(1,2:3)` restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. **This constraint is available only for mean parametrized models; that is, when parametrization="mean".**

structural_pars
If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

- **W** - a $(d \times d)$ matrix with its entries imposing constraints on W: NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

- **C_lambda** - a $(d(M-1) \times r)$ constraint matrix that satisfies $(\lambda_2, \ldots, \lambda_M) = C \gamma$ where γ is the new $(r \times 1)$ parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of $C\Lambda$ must be either positive or zero. Ignore (or set to NULL) if the eigenvalues λ_{mi} should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is W times a time-varying diagonal matrix with positive diagonal entries).

stat_tol
numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger that $1 - \text{stat_tol}$ the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

posdef_tol
numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

df_tol
the parameter vector is considered to be outside the parameter space if all degrees of freedom parameters are not larger than $2 + \text{df_tol}$.

Value
Returns TRUE if the given parameter vector lies in the parameter space and FALSE otherwise.

References

@keywords internal

Examples

GMVAR(1,1), d=2 model:
params11 <- c(1.07, 127.71, 0.99, 0.00, -0.01, 0.99, 4.05, 2.22, 8.87)
in_paramspace(p=1, M=1, d=2, params=params11)

GMVAR(2,2), d=2 model:
params22 <- c(1.39, -0.77, 1.31, 0.14, 0.09, 1.29, -0.39, -0.07, -0.11, -0.28, 0.92, -0.03, 4.84, 1.01, 5.93, 1.25, 0.08, -0.04, 1.27, -0.27, -0.07, 0.03, -0.31, 5.85, 3.57, 9.84, 0.74)
in_paramspace(p=2, M=2, d=2, params=params22)

GMVAR(2,2), d=2 model with AR-parameters restricted to be
the same for both regimes:
C_mat <- rbind(diag(2*2^2), diag(2*2^2))
params22c <- c(1.03, 2.36, 1.79, 3.00, 1.25, 0.06, 0.04, 1.34, -0.29, -0.08, -0.05, -0.36, 0.93, -0.15, 5.20, 5.88, 3.56, 9.80, 0.37)
in_paramspace(p=2, M=2, d=2, params=params22c, constraints=C_mat)

Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(1.03, 2.36, 1.79, 3, 1.25, 0.06, 0.04, 1.34, -0.29, -0.08, -0.05, -0.36, 0.05, 1.3, -0.3, -0.05, -0.4, 0.89, 0.72, -0.37, 2.16, 7.16, 1.3, 0.37)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
in_paramspace(p=2, M=2, d=2, params=params22s, structural_pars=list(W=W_22))

in_paramspace_int

Determine whether the parameter vector lies in the parameter space

Description

in_paramspace_int checks whether the parameter vector lies in the parameter space.

Usage

in_paramspace_int(
 p,
 M,
 d,
)
params,
model = c("GMVAR", "StMVAR", "G-StMVAR"),
all_boldA,
alphas,
all_Omega,
W_constraints = NULL,
stat_tol = 0.001,
posdef_tol = 1e-08,
df_tol = 1e-08
)

Arguments

p a positive integer specifying the autoregressive order of the model.

M For **GMVAR and StMVAR models**: a positive integer specifying the number of mixture components.

For **G-StMVAR models**: a size (2x1) integer vector specifying the number of **GMVAR type** components \(M_1 \) in the first element and **StMVAR type** components \(M_2 \) in the second element. The total number of mixture components is \(M = M_1 + M_2 \).

d the number of time series in the system.

params a real valued vector specifying the parameter values.

For **unconstrained models**: Should be size \((M(pd^2 + d + d(d + 1)/2 + 2) - M1 - 1)x1 \) and have the form \(\theta = (v_1, ..., v_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where

- \(v_m = (\phi_{m,0}, \phi_m, \sigma_m) \)
- \(\phi_m = \text{vec}(A_{m,1}), ..., \text{vec}(A_{m,p}) \)
- and \(\sigma_m = \text{vech}(\Omega_m), m=1,...,M, \)
- \(\nu = (\nu_{M1+1}, ..., \nu_M) \)
- \(M1 \) is the number of GMVAR type regimes.

For **constrained models**: Should be size \(((M(d + d(d + 1)/2 + 2) + q - M1 - 1)x1) \) and have the form \(\theta = (\phi_1, ..., \phi_M, \psi, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where

- \(\psi \ (qx1) \) satisfies \((\phi_1, ..., \phi_M) = C\psi \) where \(C \) is a \((Mpd^2 x q) \) constraint matrix.

For **same_means models**: Should have the form \(\theta = (\mu, \psi, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where

- \(\mu = (\mu_1, ..., \mu_g) \) where \(\mu_i \) is the mean parameter for group \(i \) and \(g \) is the number of groups.
- If AR constraints are employed, \(\psi \) is as for constrained models, and if AR constraints are not employed, \(\psi = (\phi_1, ..., \phi_M) \).

For **structural models**: Should have the form \(\theta = (\phi_1, ..., \phi_M, \phi_1, ..., \phi_M, \text{vec}(W), \lambda_2, ..., \lambda_M, \alpha_1, ..., \) where

- \(\lambda_m = (\lambda_{m1}, ..., \lambda_{md}) \) contains the eigenvalues of the \(m \)th mixture component.

If **AR parameters are constrained**: Replace \(\phi_1, ..., \phi_M \) with \(\psi \ (qx1) \) that satisfies \((\phi_1, ..., \phi_M) = C\psi \), as above.
If same_means: Replace \((\phi_{1,0}, \ldots, \phi_{M,0})\) with \((\mu_{1}, \ldots, \mu_{g})\), as above.

If \(W\) is constrained: Remove the zeros from \(\text{vec}(W)\) and make sure the other entries satisfy the sign constraints.

If \(\lambda_{mi}\) are constrained: Replace \(\lambda_{2}, \ldots, \lambda_{M}\) with \(\gamma (rx1)\) that satisfies \((\lambda_{2}, \ldots, \lambda_{M}) = C_{\lambda} \gamma\) where \(C_{\lambda}\) is a \((d(M-1)\times r)\) constraint matrix.

Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\)th mixture component, and \(\alpha_{m}\) is the mixing weight parameter. The \(W\) and \(\lambda_{mi}\) are structural parameters replacing the error term covariance matrices (see Virolainen, 2020). If \(M = 1\), \(\alpha_{m}\) and \(\lambda_{mi}\) are dropped. If \(\text{parametrization}==\text{"mean"}\), just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\).

\(\text{vec}()\) is vectorization operator that stacks columns of a given matrix into a vector. \(\text{vech}()\) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.

In the GMVAR model, \(M_{1} = M\) and \(\nu\) is dropped from the parameter vector. In the STMVAR model, \(M_{1} = 0\). In the G-STMVAR model, the first \(M_{1}\) regimes are GMVAR type and the rest \(M_{2}\) regimes are StMVAR type. In STMVAR and G-STMVAR models, the degrees of freedom parameters in \(\nu\) should be strictly larger than two.

The notation is similar to the cited literature.

Details

The parameter vector in the argument \text{params} should be unconstrained and it is used for structural models only.
iterate_more

Value

Returns TRUE if the given parameter values are in the parameter space and FALSE otherwise. This function does NOT consider the identifiability condition!

References

@keywords internal

iterate_more

Maximum likelihood estimation of a GMVAR, StMVAR, or G-StMVAR model with preliminary estimates

Description

iterate_more uses a variable metric algorithm to finalize maximum likelihood estimation of a GMVAR, StMVAR, or G-StMVAR model (object of class ‘gsmvar’) which already has preliminary estimates.

Usage

iterate_more(
 gsmvar, # an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
 maxit = 100, # the maximum number of iterations in the variable metric algorithm.
 calc_std_errors = TRUE, # should approximate standard errors be calculated?
 custom_h = NULL,
 stat_tol = 0.001,
 posdef_tol = 1e-08,
 df_tol = 1e-08
)

Arguments

- gsmvar: an object of class ‘gsmvar’, typically created with fitGSMVAR or GSMVAR.
- maxit: the maximum number of iterations in the variable metric algorithm.
- calc_std_errors: should approximate standard errors be calculated?
A numeric vector with the same length as the parameter vector; i:th element of custom_h is the difference used in central difference approximation for partial differentials of the log-likelihood function for the i:th parameter. If NULL (default), then the difference used for differentiating overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is 6e-6 for the other parameters.

stat_tol

Numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger than 1 - stat_tol the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

posdef_tol

Numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

df_tol

The parameter vector is considered to be outside the parameter space if all degrees of freedom parameters are not larger than 2 + df_tol.

Details

The purpose of `iterate_more` is to provide a simple and convenient tool to finalize the estimation when the maximum number of iterations is reached when estimating a GMVAR, StMVAR, or G-StMVAR model with the main estimation function `fitGSMVAR`. `iterate_more` is essentially a wrapper around the function `optim` from the package `stats` and `GSMVAR` from the package `gmvarkit`.

Value

Returns an object of class 'gsmvar' defining the estimated GMVAR, StMVAR, or G-StMVAR model.

References

See Also

`fitGSMVAR`, `GSMVAR`, `optim`, `profile_logliks`, `update_numtols`
Examples

These are long running examples that use parallel computing!
Running the below examples takes approximately 2 minutes

GMVAR(1,2) model, only 5 iterations of the variable metric
algorithm
fit12 <— fitGSMVAR(gdpdef, p=1, M=2, ncalls=1, maxit=5, seeds=1)
fit12

Iterate more:
fit12_2 <— iterate_more(fit12)
fit12_2

loglikelihood

* Compute log-likelihood of a GMVAR, StMVAR, or G-StMVAR model using parameter vector

Description

loglikelihood computes log-likelihood of a GMVAR, StMVAR, or G-StMVAR model using parameter vector instead of an object of class 'gsmvar'. Exists for convenience if one wants to for example employ other estimation algorithms than the ones used in fitGSMVAR. Use minval to control what happens when the parameter vector is outside the parameter space.

Usage

```r
loglikelihood(
  data,
  p,
  M,
  params,
  model = c("GMVAR", "StMVAR", "G-StMVAR"),
  conditional = TRUE,
  parametrization = c("intercept", "mean"),
  constraints = NULL,
  same_means = NULL,
  structural_pars = NULL,
  minval = NA,
  stat_tol = 0.001,
  posdef_tol = 1e-08,
  df_tol = 1e-08
)
```
Arguments

- **data**: a matrix or class `ts` object with d>1 columns. Each column is taken to represent a univariate time series. NA values are not supported.

- **p**: a positive integer specifying the autoregressive order of the model.

- **M**: a positive integer specifying the number of mixture components.

 For GMVAR and StMVAR models: a positive integer specifying the number of GMVAR type components.

 For G-StMVAR models: a size (2×1) integer vector specifying the number of GMVAR type components M_1 in the first element and StMVAR type components M_2 in the second element. The total number of mixture components is $M=M_1+M_2$.

- **params**: a real valued vector specifying the parameter values.

 For unconstrained models: Should be size $((M(pd^2+d(d+1)/2+2) - M1 - 1)x1)$ and have the form \(\theta = (\mathbf{v}_1, ..., \mathbf{v}_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where
 - \(\mathbf{v}_m = (\phi_{m,0}, \phi_m, \sigma_m) \)
 - \(\phi_m = (\text{vec}(A_{m,1}), ..., \text{vec}(A_{m,p})) \)
 - and \(\sigma_m = \text{vech}(\Omega_m) \), \(m=1,...,M \),
 - \(\nu = (\nu_{M1+1}, ..., \nu_M) \)
 - \(M1 \) is the number of GMVAR type regimes.

 For constrained models: Should be size $((M(d+d(d+1)/2+2)+q-M1-1)x1)$ and have the form \(\theta = (\phi_{1,0}, ..., \phi_{M,0}, \psi, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where
 - \(\psi (qx1) \) satisfies \((\phi_1, ..., \phi_M) = C\psi \) where \(C \) is a (Mpd^2xq) constraint matrix.

 For same_means models: Should have the form \(\theta = (\mu_1, ..., \mu_g, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}, \nu) \), where
 - \(\mu = (\mu_1, ..., \mu_g) \) where \(\mu_i \) is the mean parameter for group \(i \) and \(g \) is the number of groups.
 - If AR constraints are employed, \(\psi \) is as for constrained models, and if AR constraints are not employed, \(\psi = (\phi_1, ..., \phi_M) \).

 For structural models: Should have the form \(\theta = (\phi_{1,0}, ..., \phi_{M,0}, \phi_1, ..., \phi_M, \text{vec}(W), \lambda_2, ..., \lambda_M, \alpha_1, ..., \) where
 - \(\lambda_m = (\lambda_{m1}, ..., \lambda_{md}) \) contains the eigenvalues of the \(m \)th mixture component.

 If AR parameters are constrained: Replace \(\phi_1, ..., \phi_M \) with \(\psi (qx1) \) that satisfies \((\phi_1, ..., \phi_M) = C\psi \), as above.

 If same_means: Replace \((\phi_{1,0}, ..., \phi_{M,0}) \) with \((\mu_1, ..., \mu_g) \), as above.

 If \(W \) is constrained: Remove the zeros from \(\text{vec}(W) \) and make sure the other entries satisfy the sign constraints.

 If \(\lambda_{mi} \) are constrained: Replace \(\lambda_2, ..., \lambda_M \) with \(\gamma (rx1) \) that satisfies \((\lambda_2, ..., \lambda_M) = C\gamma \) where \(C\gamma \) is a $(d(M-1)xr)$ constraint matrix.

Above, \(\phi_{m,0} \) is the intercept parameter, \(A_{m,i} \) denotes the \(i \)th coefficient matrix of the \(m \)th mixture component, \(\Omega_m \) denotes the error term covariance matrix of the \(m \)th mixture component, and \(\alpha_m \) is the mixing weight parameter. The \(W \) and \(\lambda_{mi} \) are structural parameters replacing the error term covariance.
matrices (see Virolainen, 2020). If $M = 1$, α_m and λ_{mi} are dropped. If `parametrization`="mean", just replace each $\phi_{m,0}$ with regimewise mean μ_m.

`vec()` is vectorization operator that stacks columns of a given matrix into a vector. `vech()` stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.

In the GMVAR model, $M1 = M$ and ν is dropped from the parameter vector. In the StMVAR model, $M1 = 0$. In the G-StMVAR model, the first $M1$ regimes are GMVAR type and the rest $M2$ regimes are StMVAR type. In StMVAR and G-StMVAR models, the degrees of freedom parameters in ν should be strictly larger than two.

The notation is similar to the cited literature.

model

is "GMVAR", "StMVAR", or "G-StMVAR" model considered? In the G-StMVAR model, the first $M1$ components are GMVAR type and the rest $M2$ components are StMVAR type.

conditional

a logical argument specifying whether the conditional or exact log-likelihood function should be used.

parametrization

"intercept" or "mean" determining whether the model is parametrized with intercept parameters $\phi_{m,0}$ or regime means μ_m, $m=1,...,M$.

constraints

a size (Mpd^2xq) constraint matrix C specifying general linear constraints to the autoregressive parameters. We consider constraints of form $(\phi_1,...,\phi_M) = C\psi$, where $\phi_m = (vec(A_{m,1}),...,vec(A_{m,pd^2x1}),m = 1,...,M$, contains the coefficient matrices and $\psi (qx1)$ contains the related parameters. For example, to restrict the AR-parameters to be the same for all regimes, set $C = [I:...:I]' (Mpd^2xp^2)$ where $I = \text{diag}(p*\text{d}^2)$. Ignore (or set to NULL) if linear constraints should not be employed.

same_means

Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if $M=3$, the argument `list(1,2:3)` restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. This constraint is available only for mean parametrized models; that is, when `parametrization`="mean".

structural_pars

If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

- W - a (dxd) matrix with its entries imposing constraints on W: NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

- C_{λ} - a ($d(M-1)xr$) constraint matrix that satisfies $(\lambda_2,...,\lambda_M) = C_{\lambda}\gamma$ where γ is the new ($rx1$) parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_{λ} must be either positive or zero. Ignore (or set to NULL) if the eigenvalues λ_{mi} should not be constrained.
See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is W times a time-varying diagonal matrix with positive diagonal entries).

\text{minval} \quad \text{the value that will be returned if the parameter vector does not lie in the parameter space (excluding the identification condition).}

\text{stat_tol} \quad \text{numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger than $1 - \text{stat_tol}$ the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.}

\text{posdef_tol} \quad \text{numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.}

\text{df_tol} \quad \text{the parameter vector is considered to be outside the parameter space if all degrees of freedom parameters are not larger than $2 + \text{df_tol}$.}

Details

\text{loglikelihood_int} \text{ takes use of the function} \text{dmvn} \text{ from the package} \text{mvnfast}.

Value

\text{Returns log-likelihood if} \text{params} \text{ is in the parameters space and} \text{minval} \text{ if not.}

References

See Also

\text{fitGSMVAR, GSMVAR, calc_gradient}

Examples

```r
# GMVAR(2, 2), d=2 model;
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005, 0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
```
LR_test

loglikelihood(data=gdpdef, p=2, M=2, params=params22)

Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
loglikelihood(data=gdpdef, p=2, M=2, params=params22s, structural_pars=list(W=W_22))

LR_test

Perform likelihood ratio test for a GMVAR, StMVAR, or G-StMVAR model

Description

LR_test performs a likelihood ratio test for a GMVAR, StMVAR, or G-StMVAR model.

Usage

LR_test(gsmvar1, gsmvar2)

Arguments

gsmvar1 an object of class 'gsmvar' generated by fitGSMVAR or GSMVAR, containing the freely estimated model.

gsmvar2 an object of class 'gsmvar' generated by fitGSMVAR or GSMVAR, containing the constrained model.

Details

Performs a likelihood ratio test, testing the null hypothesis that the true parameter value lies in the constrained parameter space. Under the null, the test statistic is asymptotically χ^2-distributed with k degrees of freedom, k being the difference in the dimensions of the unconstrained and constrained parameter spaces.

Note that this function does **not** verify that the two models are actually nested.

Value

A list with class "htest" containing the following components:

- **statistic** the value of the likelihood ratio statistics.
- **parameter** the degrees of freedom of the likelihood ratio statistic.
- **p.value** the p-value of the test.
- **alternative** a character string describing the alternative hypothesis.
- **method** a character string indicating the type of the test (likelihood ratio test).
- **data.name** a character string giving the names of the supplied models, gsmvar1 and gsmvar2.
- **gsmvar1** the supplied argument gsmvar1
- **gsmvar2** the supplied argument gsmvar2
References

@keywords internal

See Also

Wald_test, fitGSMVAR, GSMVAR, diagnostic_plot, profile_logliks, quantile_residual_tests, cond_moment_plot

Examples

```r
## These are long running examples that use parallel computing!
## The below examples take around 1 minute to run.

# Structural GMVAR(2, 2), d=2 model with recursive identification
W22 <- matrix(c(1, NA, 0, 1), nrow=2, byrow=FALSE)
fit22s <- fitGSMVAR(gdpdef, p=2, M=2, structural_pars=list(W=W22),
    ncalls=1, seeds=2)

# The same model but the AR coefficients restricted to be the same
# in both regimes:
C_mat <- rbind(diag(2*2^2), diag(2*2^2))
fit22sc <- fitGSMVAR(gdpdef, p=2, M=2, constraints=C_mat,
    structural_pars=list(W=W22), ncalls=1, seeds=1)

# Test the AR constraints with likelihood ratio test:
LR_test(fit22s, fit22sc)
```

plot.gmvarpred

plot method for class 'gmvarpred' objects

Description

plot.gmvarpred is plot method for gsmvarpred objects. EXISTS FOR BACKWARD COMPATIBILITY. THE CLASS 'gmvarpred' IS DEPRECATED FROM THE VERSION 2.0.0 ONWARD: WE USE THE CLASS 'gsmvarpred' NOW.
Usage

S3 method for class 'gmvarpred'
plot(x, ..., nt, mix_weights = TRUE, add_grid = TRUE)

S3 method for class 'gmvarpred'
print(x, ..., digits = 2)

Arguments

x object of class 'gmvarpred' generated by predict.gsmvar.
... arguments passed to grid which plots grid to the figure.
nt a positive integer specifying the number of observations to be plotted along with
 the prediction (ignored if plot_res==FALSE). Default is round(nrow(data)*0.15).
mix_weights TRUE if forecasts for mixing weights should be plotted, FALSE in not.
add_grid should grid be added to the plots?
digits how many digits to print?

Details

These methods exist so that objects created with earlier versions of the package can be used normally.

Description

plot.gsmvarpred is plot method for gsmvarpred objects.

Usage

S3 method for class 'gsmvarpred'
plot(x, ..., nt, mix_weights = TRUE, add_grid = TRUE)

Arguments

x object of class 'gsmvarpred' generated by predict.gsmvar.
... arguments passed to grid which plots grid to the figure.
nt a positive integer specifying the number of observations to be plotted along with
 the prediction (ignored if plot_res==FALSE). Default is round(nrow(data)*0.15).
mix_weights TRUE if forecasts for mixing weights should be plotted, FALSE in not.
add_grid should grid be added to the plots?
Details

This method is used plot forecasts of GSMVAR processes

References

@keywords internal

plot.qrtest
Quantile residual tests

Description

`quantile_residual_tests` performs quantile residual tests described by *Kalliovirta and Saikkonen 2010*, testing autocorrelation, conditional heteroskedasticity, and normality.

Usage

```r
## S3 method for class 'qrtest'
plot(x, ...)

## S3 method for class 'qrtest'
print(x, ..., digits = 3)

quantile_residual_tests(
  gsmvar,
  lags_ac = c(1, 3, 6, 12),
  lags_ch = lags_ac,
  nsim = 1,
  ncores = 1,
  print_res = TRUE,
  stat_tol,
  posdef_tol,
  df_tol
)
```

Arguments

- `x` object of class 'qrtest' generated by the function `quantile_residual_tests`.
- `...` currently not used.
digits the number of decimals to print
gsmvar an object of class ‘gsmvar’, typically created with fitGSMVAR or GSMVAR.
lags_ac a positive integer vector specifying the lags used to test autocorrelation.
lags_ch a positive integer vector specifying the lags used to test conditional heteroskedasticity.
nsim to how many simulations should the covariance matrix Omega used in the qr-tests be based on? If smaller than sample size, then the covariance matrix will be evaluated from the sample. Larger number of simulations might improve the tests size properties but it increases the computation time.
ncores the number of CPU cores to be used in numerical differentiation. Multiple cores are not supported on Windows, though.
print_res should the test results be printed while computing the tests?
stat_tol numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger that 1 - stat_tol the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.
posdef_tol numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

df_tol the parameter vector is considered to be outside the parameter space if all degrees of freedom parameters are not larger than 2 + df_tol.

Details

If the function fails to calculate the tests because of numerical problems and the parameter values are near the border of the parameter space, it might help to use smaller numerical tolerance for the stationarity and positive definiteness conditions. The numerical tolerance of an existing model can be changed with the function update_numtols or you can set it directly with the arguments stat_tol and posdef_tol.

Value

Returns an object of class ‘qrtest’ which has its own print method. The returned object is a list containing the quantile residual test results for normality, autocorrelation, and conditional heteroskedasticity. The autocorrelation and conditional heteroskedasticity results also contain the associated (vectorized) individual statistics divided by their standard errors (see Kalliovirta and Saikkonen 2010, s.17-20) under the label $ind_stats.$

Methods (by generic)

- plot: Plot p-values of the autocorrelation and conditional heteroskedasticity tests.
- print: Print method for class ‘qrtest’
References

See Also

`fitGSMVAR`, `GSMVAR`, `quantile_residuals`, `GIRF`, `diagnostic_plot`, `predict.gsmvar`, `profile_logliks`, `LR_test`, `Wald_test`, `cond_moment_plot`, `update_numtols`

Examples

```r
# GMVAR(3,2) model
fit32 <- fitGSMVAR(gdpdef, p=3, M=2, ncalls=1, seeds=2)
qrtests32 <- quantile_residual_tests(fit32)
plot(qrtests32)

# Structural GMVAR(1,2) model identified with sign constraints and build with hand-specified parameter values.
# Tests based on simulation procedure with nsim=1000:
params12s <- c(0.55, 0.112, 0.619, 0.173, 0.344, 0.055, -0.009, 0.718,
               0.255, 0.017, -0.136, 0.858, 0.541, 0.057, -0.162, 0.162, 3.623,
               4.726, 0.674)
W_12 <- matrix(c(1, 1, -1, 1), nrow=2)
mod12s <- GSMVAR(gdpdef, p=1, M=2, params=params12s,
                 structural_pars=list(W=W_12))
qrtests12s <- quantile_residual_tests(mod12s, nsim=1000)
qrtests12s
```

```
predict.gmvar  DEPRECATED! USE THE FUNCTION predict.gsmvar INSTEAD!
Predict method for class 'gmvar' objects
```

Description

`predict.gmvar` is a predict method for class 'gsmvar' objects. The forecasts of the GMVAR model are computed by performing independent simulations and using the sample medians or means as point forecasts and empirical quantiles as prediction intervals. For one-step-ahead predictions using the exact conditional mean is also supported.
predict.gmvar

Usage

```r
## S3 method for class 'gmvar'
predict(
  object,
  ..., n_ahead,
  n_simu = 2000,
  pi = c(0.95, 0.8),
  pi_type = c("two-sided", "upper", "lower", "none"),
  pred_type = c("median", "mean", "cond_mean"),
  plot_res = TRUE,
  mix_weights = TRUE,
  nt
)
```

Arguments

- **object**: an object of class 'gmvar'
- **...**: additional arguments passed to `grid` (ignored if `plot_res==FALSE`) which plots grid to the figure.
- **n_ahead**: how many steps ahead should be predicted?
- **n_simu**: to how many independent simulations should the forecast be based on?
- **pi**: a numeric vector specifying the confidence levels of the prediction intervals.
- **pi_type**: should the prediction intervals be "two-sided", "upper", or "lower"?
- **pred_type**: should the prediction be based on sample "median" or "mean"? Or should it be one-step-ahead forecast based on the exact conditional mean ("cond_mean")? Prediction intervals won't be calculated if the exact conditional mean is used.
- **plot_res**: should the results be plotted?
- **mix_weights**: TRUE if forecasts for mixing weights should be plotted, FALSE in not.
- **nt**: a positive integer specifying the number of observations to be plotted along with the prediction (ignored if `plot_res==FALSE`). Default is `round(nrow(data)*0.15)`.

Value

Returns a class 'gsmvarpred' object containing, among the specifications,...

- **$pred**: Point forecasts
- **$pred_int**: Prediction intervals, as `[,,d]`.
- **$mix_pred**: Point forecasts for the mixing weights
- **mix_pred_int**: Individual prediction intervals for mixing weights, as `[,,m]`, `m=1,...,M`.
References

See Also

`predict.gsmvar`

predict.gsmvar
Predict method for class ‘gsmvar’ objects

Description

`predict.gsmvar` is a predict method for class ‘gsmvar’ objects. The forecasts of the GMVAR, StMVAR, and G-StMVAR models are computed by performing independent simulations and using the sample medians or means as point forecasts and empirical quantiles as prediction intervals. For one-step-ahead predictions using the exact conditional mean is also supported.

Usage

```r
## S3 method for class 'gsmvar'
predict(
  object, ...
  n_ahead, nsim = 2000,
  pi = c(0.95, 0.8),
  pi_type = c("two-sided", "upper", "lower", "none"),
  pred_type = c("median", "mean", "cond_mean"),
  plot_res = TRUE,
  mix_weights = TRUE,
  nt
)
```

Arguments

- `object`: an object of class ‘gsmvar’, typically created with `fitGSMVAR` or `GSMVAR`.
- `...`: additional arguments passed to `grid` (ignored if `plot_res==FALSE`) which plots grid to the figure.
- `n_ahead`: how many steps ahead should be predicted?
predict.gsmvar

nsim to how many independent simulations should the forecast be based on?
pi a numeric vector specifying the confidence levels of the prediction intervals.
pi_type should the prediction intervals be "two-sided", "upper", or "lower"?
pred_type should the prediction be based on sample "median" or "mean"? Or should it be one-step-ahead forecast based on the exact conditional mean ("cond_mean")? Prediction intervals won’t be calculated if the exact conditional mean is used.
plot_res should the results be plotted?
mix_weights TRUE if forecasts for mixing weights should be plotted, FALSE in not.
nt a positive integer specifying the number of observations to be plotted along with the prediction (ignored if plot_res==FALSE). Default is round(nrow(data)*0.15).

Value

Returns a class 'gsmvarpred' object containing, among the specifications,..

$pred Point forecasts
$pred_int Prediction intervals, as [,d].
$mix_pred Point forecasts for the mixing weights
mix_pred_int Individual prediction intervals for mixing weights, as [,m], m=1,...M.

References

@keywords internal

See Also

GIRF, GFEVD, simulate.gsmvar

Examples

GMVAR(2, 2), d=2 model
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GMVAR(gdpdef, p=2, M=2, d=2, params=params22)
p1 <- predict(mod22, n_ahead=10, pred_type="median", nsim=500)
p1
p2 <- predict(mod22, n_ahead=10, nt=20, lty=1, nsim=500)
p2
p3 <- predict(mod22, n_ahead=10, pi=c(0.99, 0.90, 0.80, 0.70),
nt=30, lty=0, nsim=500)
```r
p3

# StMVAR(2, 2), d=2 model
params22t <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005, 0.083, 0.295, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58, 3, 4)
mod22t <- GSMVAR(gdpdef, p=2, M=2, d=2, params=params22t, model="StMVAR")
p1 <- predict(mod22t, n_ahead=12, pred_type="median", nsim=500, pi=0.9)
p1
```

print.gmvar

Deprecated S3 methods for the deprecated class 'gmvar'

Description

Deprecated S3 methods for the deprecated class 'gmvar'. From the gmvarkit version 2.0.0 onwards, class 'gsmvar' is used instead.

Usage

```r
## S3 method for class 'gmvar'
print(x, ..., digits = 2)

## S3 method for class 'gmvar'
summary(object, ..., digits)

## S3 method for class 'gmvar'
predict(x, ...)

## S3 method for class 'gmvar'
logLik(object, ...)

## S3 method for class 'gmvar'
residuals(object, ...)
```

Arguments

- `x`: a class 'gmvar' object. THIS CLASS IS DEPRECATED FROM THE VERSION 2.0.0 ONWARDS.
- `...`: See the usage from the documentation of the appropriate class 'gsmvar' S3 method.
- `digits`: number of digits to be printed.
- `object`: object of class 'gmvar'. THIS CLASS IS DEPRECATED FROM THE VERSION 2.0.0 ONWARDS.
Details

These methods exist so that models estimated with earlier versions of the package can be used normally.

print.gmvarsum
Summary print method from objects of class 'gmvarsum'

Description

print.gmvarsum is a print method for object 'gmvarsum'. EXISTS FOR BACKWARD COMPATIBILITY. CLASS 'gmvarsum' IS DEPRECATED FROM THE VERSION 2.0.0 ONWARDS. NOW, WE USE THE CLASS 'gsmvarsum'.

Usage

S3 method for class 'gmvarsum'
print(x, ..., digits)

Arguments

x
object of class 'gsmvarsum' generated by summary.gsmvar.

...
currently not used.

digits
the number of digits to be printed.

print.gsmvarpred
Print method for class 'gsmvarpred' objects

Description

print.gsmvarpred is a print method for object generated by predict.gsmvar.

Usage

S3 method for class 'gsmvarpred'
print(x, ..., digits = 2)

Arguments

x
object of class 'gsmvarpred' generated by predict.gsmvar.

...
currently not used.

digits
the number of decimals to print
Examples

GMVAR(2, 2), d=2 model;
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22)
pred22 <- predict(mod22, n_ahead=3, plot_res=FALSE)
print(pred22)
print(pred22, digits=3)

print.gsmvarsum
Summary print method from objects of class 'gsmvarsum'

Description

print.gsmvarsum is a print method for object 'gsmvarsum' generated by summary.gsmvar.

Usage

S3 method for class 'gsmvarsum'
print(x, ..., digits)

Arguments

x object of class 'gsmvarsum' generated by summary.gsmvar.

... currently not used.

digits the number of digits to be printed.

Examples

GMVAR(2, 2), d=2 model;
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22)
sumry22 <- summary(mod22)
print(sumry22)
print_std_errors

Print standard errors of a GMVAR, StMVAR, or G-StMVAR model in the same form as the model estimates are printed

Description

print_std_errors prints the approximate standard errors of a GMVAR, StMVAR, or G-StMVAR model in the same form as the parameters of objects of class 'gsmvar' are printed.

Usage

print_std_errors(gsmvar, digits = 3)

Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
digits how many digits should be printed?

Details

The main purpose of print_std_errors is to provide a convenient tool to match the standard errors to certain parameter estimates. Note that if the model is intercept parametrized, there won’t be standard errors for the unconditional means, and vice versa. Also, there is no standard error for the last mixing weight alpha_M because it is not parametrized.

Note that if linear constraints are imposed and they involve summations or multiplications, then the AR parameter standard errors are printed separately as they don’t correspond one-to-one to the model parameter standard errors.

References

See Also

profile_logliks, fitGSMVAR, GSMVAR, print.gsmvar, swap_parametrization
Examples

GMVAR(1,2) model
fit12 <- fitGSMVAR(gdpdef, p=1, M=2, ncalls=1, seeds=1)
fit12
print_std_errors(fit12)

profile_loglik

Plot profile log-likelihoods around the estimates

Description

profile_loglik plots profile log-likelihoods around the estimates.

Usage

profile_loglik(
 gsmvar,
 which_pars,
 scale = 0.02,
 nrows,
 ncols,
 precision = 200,
 stat_tol = 0.001,
 posdef_tol = 1e-08,
 df_tol = 1e-08
)

Arguments

 gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
 which_pars the profile log-likelihood function of which parameters should be plotted? An integer vector specifying the positions of the parameters in the parameter vector. The parameter vector has the form...

For unconstrained models: Should be size ((M(pd^2 + d(d+1)/2 + 1) - 1)x1) and have form \(\theta = (\nu_1, ..., \nu_M, \alpha_1, ..., \alpha_{M-1}) \), where:
 \(\nu_m = (\phi_{m,0}, \phi_m, \sigma_m) \)
 \(\phi_m = (\text{vec}(A_{m,1}), ..., \text{vec}(A_{m,p})) \)
 and \(\sigma_m = \text{vech}(\Omega_m) \), m=1,...,M.

For constrained models: Should be size ((M(d+d(d+1)/2+1)+q-1)x1) and have form \(\theta = (\phi_{1,0}, ..., \phi_{M,0}, \psi, \sigma_1, ..., \sigma_M, \alpha_1, ..., \alpha_{M-1}) \), where:
 \(\psi (qx1) \) satisfies \((\phi_1, ..., \phi_M) = C \psi \). Here \(C \) is \((Mpd^2 x q) \) constraint matrix.
Above, $\phi_{m,0}$ is the intercept parameter, $A_{m,i}$ denotes the i:th coefficient matrix of the m:th mixture component, Ω_m denotes the error term covariance matrix of the m:th mixture component, and α_m is the mixing weight parameter.

The default is that profile log-likelihood functions for all parameters are plotted.

- **scale**: a numeric scalar specifying the interval plotted for each estimate: the estimate plus-minus abs(scale*estimate).
- **nrows**: how many rows should be in the plot-matrix? The default is max(ceiling(log2(length(which_pars))), 1).
- **ncols**: how many columns should be in the plot-matrix? The default is ceiling(length(which_pars)/nrows). Note that nrows*ncols should not be smaller than the length of which_pars.
- **precision**: at how many points should each profile log-likelihood be evaluated at?
- **stat_tol**: numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger than 1 - stat_tol the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.
- **posdef_tol**: numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.
- **df_tol**: the parameter vector is considered to be outside the parameter space if all degrees of freedom parameters are not larger than 2 + df_tol.

Details

When the number of parameters is large, it might be better to plot a smaller number of profile log-likelihood functions at a time using the argument which_pars.

The red vertical line points the estimate.

Value

Only plots to a graphical device and doesn’t return anything.

References

quantile_residuals

Calculate multivariate quantile residuals of a GMVAR, StMVAR, or G-StMVAR model

Description

quantile_residuals calculates multivariate quantile residuals (proposed by Kalliovirta and Saikkonen 2010) for a GMVAR, StMVAR, or G-StMVAR model.

Usage

quantile_residuals(gsmvar)

Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.

Examples

Running all the below examples takes approximately 2 minutes.

GMVAR(1,2) model
fit12 <- fitGSMVAR(gdpdef, p=1, M=2, ncalls=1, seeds=1)
fit12
profile_logliks(fit12)

Structural GMVAR(1,2) model identified with sign constraints: model build based on inaccurate hand-given estimates.
W_122 <- matrix(c(1, 1, -1, 1), nrow=2)
params12s <- c(0.55, 0.11, 0.62, 0.17, 0.34, 0.05, -0.01, 0.72, 0.25,
0.02, -0.14, 0.86, 0.54, 0.06, -0.16, 0.16, 3.62, 4.73, 0.67)
mod12s <- GSMVAR(gdpdef, p=1, M=2, params=params12s,
structural_pars=list(W=W_122))
profile_logliks(mod12s)

G-StMVAR(2, 1, 1), d=2 model:
params22gs <- c(0.697, 0.154, 0.049, 0.374, 0.476, 0.318, -0.645, -0.302,
-0.222, 0.193, 0.042, -0.013, 0.048, 0.554, 0.033, 0.184, 0.005, -0.186,
0.683, 0.256, 0.031, 0.026, 0.204, 0.583, -0.002, 0.048, 0.182, 4.334)
mod22gs <- GSMVAR(gdpdef, p=2, M=c(1, 1), params=params22gs, model="G-StMVAR")
profile_logliks(mod22gs, which_pars=c(1, 3, 28))
Value

Returns \((n, bs - p)xd\) matrix containing the multivariate quantile residuals, \(j\)th column corresponds to the time series in the \(j\)th column of the data. The multivariate quantile residuals are calculated so that the first column quantile residuals are the "unconditioned ones" and the rest condition on all the previous ones in numerical order. Read the cited article by Kalliovirta and Saikkonen 2010 for details.

References

See Also

fitGSMVAR, GSMVAR, quantile_residual_tests, diagnostic_plot, predict.gsmvar, profile_logliks

Examples

```r
# GMVAR(1,2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005, 0.03,
             0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012, 0.136, 0.674)
mod12 <- GSMVAR(gdpdef, p=1, M=2, params=params12)
quantile_residuals(mod12)

# GMVAR(2,2), d=2 model with mean-parametrization:
params22 <- c(0.869, 0.549, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
             0.083, 0.299, 0.215, 0.002, 0.03, 0.576, 1.168, 0.218, 0.02, -0.119,
             0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22, parametrization="mean")
quantile_residuals(mod22)

# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
               0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
               0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(gdpdef, p=2, M=2, params=params22s, structural_pars=list(W=W_22))
quantile_residuals(mod22s)
```
random_ind2

Create somewhat random parameter vector of a GMVAR, StMVAR, or G-StMVAR model that is always stationary

Description

random_ind2 generates random mean-parametrized parameter vector that is always stationary.

Usage

```r
random_ind2(
  p,
  M,
  d,
  model = c("GMVAR", "StMVAR", "G-StMVAR"),
  same_means = NULL,
  structural_pars = NULL,
  mu_scale,
  mu_scale2,
  omega_scale,
  ar_scale = 1,
  W_scale,
  lambda_scale
)
```

Arguments

- `p`: a positive integer specifying the autoregressive order of the model.
- `M`: the number of mixture components.
- `d`: the number of time series in the system.
- `model`: the model considered? In the G-StMVAR model, the first `M1` components are GMVAR type and the rest `M2` components are StMVAR type.
- `same_means`: Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if `M=3`, the argument `list(1,2:3)` restricts the mean parameters of the second and third regime to be the same but the first regime has freely estimated (unconditional) mean. Ignore if mean parameters should not be restricted to be the same among any regimes. This constraint is available only for mean parametrized models; that is, when `parametrization="mean"`.

For GMVAR and StMVAR models: a positive integer specifying the number of mixture components.

For G-StMVAR models: a size (2x1) integer vector specifying the number of GMVAR type components `M1` in the first element and StMVAR type components `M2` in the second element. The total number of mixture components is `M=M1+M2`.

This constraint is available only for mean parametrized models; that is, when `parametrization="mean"`.
If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

- **W** - a \((d \times d)\) matrix with its entries imposing constraints on \(W\): NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

- **C_\lambda** - a \((d(M - 1) \times r)\) constraint matrix that satisfies \((\lambda_2, ..., \lambda_M) = C_\lambda \gamma\) where \(\gamma\) is the new \((rx1)\) parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of \(C_\lambda\) must be either positive or zero. Ignore (or set to NULL) if the eigenvalues \(\lambda_m\) should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is \(W\) times a time-varying diagonal matrix with positive diagonal entries).

mu_scale

A size \((dx1)\) vector defining means of the normal distributions from which each mean parameter \(\mu_m\) is drawn from in random mutations. Default is \(\text{colMeans(data)}\). Note that mean-parametrization is always used for optimization in GAfit - even when \text{parmatrization=}"intercept". However, input (in \text{initpop}) and output (return value) parameter vectors can be intercept-parametrized.

mu_scale2

A size \((dx1)\) strictly positive vector defining standard deviations of the normal distributions from which each mean parameter \(\mu_m\) is drawn from in random mutations. Default is \(2 \times \text{sd(data[,i]), i=1,..,d}\).

omega_scale

A size \((dx1)\) strictly positive vector specifying the scale and variability of the random covariance matrices in random mutations. The covariance matrices are drawn from (scaled) Wishart distribution. Expected values of the random covariance matrices are \(\text{diag(omega_scale)}\). Standard deviations of the diagonal elements are \(\sqrt{2/d \times \text{omega_scale[i]}}\) and for non-diagonal elements they are \(\sqrt{1/d \times \text{omega_scale[i]} \times \text{omega_scale[j]}}\). Note that for \(d>4\) this scale may need to be chosen carefully. Default in GAfit is \(\text{var(stats::ar(data[,i],order.max=10)$residuals))}\). This argument is ignored if structural model is considered.

ar_scale

A positive real number adjusting how large AR parameter values are typically proposed in construction of the initial population: larger value implies larger coefficients (in absolute value). After construction of the initial population, a new scale is drawn from \((0,0.)\) uniform distribution in each iteration.

W_scale

A size \((dx1)\) strictly positive vector partly specifying the scale and variability of the random covariance matrices in random mutations. The elements of the matrix \(W\) are drawn independently from such normal distributions that the expectation of the main diagonal elements of the first regime’s error term covariance matrix \(\Omega_1 = WW’\) is \(W_scale\). The distribution of \(\Omega_1\) will be in some sense like a Wishart distribution but with the columns (elements) of \(W\) obeying the given constraints. The constraints are accounted for by setting the element to be always zero if it is subject to a zero constraint and for sign constraints the absolute value or negative the absolute value are taken, and then the variances of the elements of \(W\) are adjusted accordingly. This argument is ignored if reduced form model is considered.
lambda_scale a length $M - 1$ vector specifying the standard deviation of the mean zero normal distribution from which the eigenvalue λ_{mi} parameters are drawn from in random mutations. As the eigenvalues should always be positive, the absolute value is taken. The elements of lambda_scale should be strictly positive real numbers with the $m - 1$th element giving the degrees of freedom for the mth regime. The expected value of the main diagonal elements ij of the mth ($m > 1$) error term covariance matrix will be $W_{scale}[i]*(d - n_i)^{-1}*$sum(lambdas*ind_fun) where the $(dx1)$ vector lambdas is drawn from the absolute value of the t-distribution, n_i is the number of zero constraints in the ith row of W and ind_fun is an indicator function that takes the value one iff the ijth element of W is not constrained to zero. Basically, larger lambdas (or smaller degrees of freedom) imply larger variance.

If the lambda parameters are constrained with the $(d(M-1)xr)$ constraint matrix C_λ, then provide a length r vector specifying the standard deviation of the (absolute value of the) mean zero normal distribution each of the γ parameters are drawn from (the γ is a $(rx1)$ vector). The expected value of the main diagonal elements of the covariance matrices then depend on the constraints. This argument is ignored if $M == 1$ or a reduced form model is considered. Default is rep(3, times=M-1) if lambdas are not constrained and rep(3, times=r) if lambdas are constrained. As with omega_scale and W_scale, this argument should be adjusted carefully if specified by hand. **NOTE** that if lambdas are constrained in some other way than restricting some of them to be identical, this parameter should be adjusted accordingly in order to the estimation succeed!

Details

The coefficient matrices are generated using the algorithm proposed by Ansley and Kohn (1986) which forces stationarity. It’s not clear in detail how ar_scale exactly affects the coefficient matrices but larger ar_scale seems to result in larger AR coefficients. Read the cited article by Ansley and Kohn (1986) and the source code for more information.

The covariance matrices are generated from (scaled) Wishart distribution.

Models with AR parameters constrained are not supported!

Value

Returns random mean-parametrized parameter vector that has the same form as the argument params in the other functions, for instance, in the function loglikelihood.

References

redecompose_Omegas

In the decomposition of the covariance matrices (Muirhead, 1982, Theorem A9.9), change the order of the covariance matrices.

Description

redecompose_Omegas exchanges the order of the covariance matrices in the decomposition of Muirhead (1982, Theorem A9.9) and returns the new decomposition.

Usage

redecompose_Omegas(M, d, W, lambdas, perm = 1:sum(M))

Arguments

M For GMVAR and StMVAR models: a positive integer specifying the number of mixture components.

For G-StMVAR models: a size (2x1) integer vector specifying the number of GMVAR type components \(M_1\) in the first element and StMVAR type components \(M_2\) in the second element. The total number of mixture components is \(M=M_1+M_2\).

d the number of time series in the system.

W a length \(d^2\) vector containing the vectorized \(W\) matrix.

lambdas a length \(d*(M-1)\) vector of the form \(\lambda_2, ..., \lambda_M\) where \(\lambda_m = (\lambda_{m1}, ..., \lambda_{md})\)

perm a vector of length \(M\) giving the new order of the covariance matrices (relative to the current order)

Details

We consider the following decomposition of positive definite covariance matrices: \(\Omega_1 = WW'\), \(\Omega_m = W\Lambda_m W'\), \(m = 2, ..., M\) where \(\Lambda_m = diag(\lambda_{m1}, ..., \lambda_{md})\) contains the strictly positive eigenvalues of \(\Omega_m\Omega_m^{-1}\) and the column of the invertible \(W\) are the corresponding eigenvectors. Note that this decomposition does not necessarily exists for \(M > 2\).

See Muirhead (1982), Theorem A9.9 for more details on the decomposition and the source code for more details on the reparametrization.

Value

Returns a \(d^2 + (M - 1) * dx 1\) vector of the form \(c(\text{vec}(\text{new}_W), \text{new}_\text{lambdas})\) where the lambdas parameters are in the regimewise order (first regime 2, then 3, etc) and the "new \(W\)" and "new lambdas" are constitute the new decomposition with the order of the covariance matrices given by the argument \(\text{perm}\). Notice that if the first element of \(\text{perm}\) is one, the \(W\) matrix will be the same and the lambdas are just re-ordered.

Note that unparametrized zero elements ARE present in the returned \(W\)!
Warning

No argument checks! Does not work with dimension \(d = 1 \) or with only one mixture component \(M = 1 \).

References

Examples

d <- 2
M <- 2
Omega1 <- matrix(c(2, 0.5, 0.5, 2), nrow=d)
Omega2 <- matrix(c(1, -0.2, -0.2, 1), nrow=d)

Decomposition with Omega1 as the first covariance matrix:
decomp1 <- diag_Omegas(Omega1, Omega2)
W <- matrix(decomp1[1:d^2], nrow=d, ncol=d)
lambdas <- decomp1[(d^2 + 1):length(decomp1)]
tcrossprod(W) # = Omega1
W%*%tcrossprod(diag(lambdas), W) # = Omega2

Reorder the covariance matrices in the decomposition so that now
the first covariance matrix is Omega2:
decomp2 <- redecompose_Omegas(M=M, d=d, W=as.vector(W), lambdas=lambdas,
perm=2:1)
new_W <- matrix(decomp2[1:d^2], nrow=d, ncol=d)
new_lambdas <- decomp2[(d^2 + 1):length(decomp2)]
tcrossprod(new_W) # = Omega2
new_W%*%tcrossprod(diag(new_lambdas), new_W) # = Omega1

reorder_W_columns

Reorder columns of the W-matrix and lambda parameters of a structural GMVAR, StMVAR, or G-StMVAR model.

Description

reorder_W_columns reorder columns of the W-matrix and lambda parameters of a structural GMVAR, StMVAR, or G-StMVAR model.

Usage

reorder_W_columns(gsmvar, perm)

Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
perm an integer vector of length \(d \) specifying the new order of the columns of \(W \). Also lambda parameters of each regime will be reordered accordingly.
Details

The order of the columns of W can be changed without changing the implied reduced form model as long as the order of lambda parameters is also changed accordingly. Note that the constraints imposed on W (or the B-matrix) will also be modified accordingly.

This function does not support models with constraints imposed on the lambda parameters!

Also all signs in any column of W can be swapped (without changing the implied reduced form model) with the function `swap_W_signs` but this obviously also swaps the sign constraints in the corresponding columns of W.

Value

Returns an object of class 'gsmvar' defining a structural GMVAR, StMVAR, or G-StMVAR model with the modified structural parameters and constraints.

References

@keywords internal

See Also

fitGSMVAR, GSMVAR, GIRF, gsmvar_to_sgsmvar, stmvar_to_gstmvar, swap_W_signs

Examples

```r
# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
               0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
               0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(p=2, M=2, d=2, params=params22s, structural_pars=list(W=W_22))
mod22s

# The same reduced form model, reordered W and lambda in the structural model:
mod22s_2 <- reorder_W_columns(mod22s, perm=2:1)
mod22s_2

# Structural StMVAR(2, 2), d=2 model identified with sign-constraints:
mod22ts <- GSMVAR(p=2, M=2, d=2, params=c(params22s, 10, 20), model="StMVAR",
                  structural_pars=list(W=W_22))
mod22ts

# The same reduced form model, reordered W and lambda in the structural model:
mod22ts_2 <- reorder_W_columns(mod22ts, perm=2:1)
```
simulate.gsmvar

Simulate method for class 'gsmvar' objects

Description

`simulate.gsmvar` is a simulate method for class 'gsmvar' objects. It allows to simulate observations from a GMVAR, StMVAR, or G-StMVAR process.

Usage

```r
## S3 method for class 'gsmvar'
simulate(
  object, nsim = 1, seed = NULL, ...
  init_values = NULL,
  init_regimes = 1:sum(gsmvar$model$M),
  ntimes = 1,
  drop = TRUE,
  girf_pars = NULL
)
```

Arguments

- **object**
 - an object of class 'gsmvar', typically created with `fitGSMVAR` or `GSMVAR`.

- **nsim**
 - number of observations to be simulated.

- **seed**
 - set seed for the random number generator?

- **...**
 - currently not in use.

- **init_values**
 - a size (pxd) matrix specifying the initial values, where d is the number of time series in the system. The last row will be used as initial values for the first lag, the second last row for second lag etc. If not specified, initial values will be drawn according to mixture distribution specified by the argument init_regimes.

- **init_regimes**
 - a numeric vector of length at most M and elements in 1,...,M specifying the regimes from which the initial values should be generated from. The initial values will be generated from a mixture distribution with the mixture components being the stationary distributions of the specific regimes and the (proportional) mixing weights given by the mixing weight parameters of those regimes. Note that if `init_regimes=1:M`, the initial values are generated from the stationary distribution of the process and if `init_regimes=m`, the initial value are generated from the stationary distribution of the mth regime. Ignored if the argument init_values is specified.
simulate.gsmvar

ntimes how many sets of simulations should be performed?
drop if TRUE (default) then the components of the returned list are coerced to lower
dimension if ntimes==1, i.e., $sample and $mixing_weights will be matrices,
and $component will be vector.
girf_pars This argument is used internally in the estimation of generalized impulse re-
response functions (see ?GIRF). You should ignore it.

Details

The argument ntimes is intended for forecasting: a GMVAR, StMVAR, or G-StMVAR process can
be forecasted by simulating its possible future values. One can easily perform a large number sim-
ulations and calculate the sample quantiles from the simulated values to obtain prediction intervals
(see the forecasting example).

Value

If drop==TRUE and ntimes==1 (default): $sample, $component, and $mixing_weights are matrices. Otherwise, returns a list with...

$sample a size (nsimxdimes) array containing the samples: the dimension [t,,] is the time
index, the dimension [,d,] indicates the marginal time series, and the dimension [,i] indi-
cates the i:th set of simulations.

$component a size (nsimntimes) matrix containing the information from which mixture compo-
nent each value was generated from.

$mixing_weights a size (nsimxMxntimes) array containing the mixing weights corresponding
to the sample: the dimension [t,,] is the time index, the dimension [,m,] indicates the
regime, and the dimension [,i] indicates the i:th set of simulations.

References

• Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression.
 Letters*, 124, 92-96.
• Virolainen S. 2021. Gaussian and Student’s t mixture vector autoregressive model. Unpub-

See Also

fitGSMVAR,GSMVAR,diagnostic_plot,predict.gsmvar,profile_logliks,quantile_residual_tests,
GIRF,GFEVD
Examples

GMVAR(1,2), d=2 process, initial values from the stationary
distribution
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005,
0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012, 0.136,
0.674)
mod12 <- GSMVAR(p=1, M=2, d=2, params=params12)
set.seed(1)
sim12 <- simulate(mod12, nsim=500)
plot.ts(sim12$sample)
ts.plot(sim12$mixing_weights, col=c("blue", "red"), lty=2)
plot(sim12$component, type="l")

StMVAR(2, 2), d=2 model
params22t <- c(0.554, 0.033, 0.184, 0.005, -0.186, 0.683, 0.256, 0.031,
0.026, 0.204, 0.583, -0.002, 0.048, 0.697, 0.154, 0.049, 0.374, 0.476,
0.318, -0.645, -0.302, -0.222, 0.193, 0.042, -0.013, 0.048, 0.818,
4.334, 20)
mod22t <- GSMVAR(gdpdef, p=2, M=2, params=params22t, model="StMVAR")
sim22t <- simulate(mod22t, nsim=100)
plot.ts(sim22t$mixing_weights)

FORECASTING EXAMPLE
Forecast 5-steps-ahead, 500 sets of simulations with initial
values from the data:
GMVAR(2,2), d=2 model
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22)
sim22 <- simulate(mod22, nsim=5, ntimes=500)

Point forecast + 95% prediction intervals:
apply(sim22$sample, MARGIN=1:2, FUN=quantile, probs=c(0.025, 0.5, 0.972))

Similar forecast for the mixing weights:
apply(sim22$mixing_weights, MARGIN=1:2, FUN=quantile,
probs=c(0.025, 0.5, 0.972))
Usage

simulateGMVAR(
 gmvar,
 nsimu,
 init_values = NULL,
 ntimes = 1,
 drop = TRUE,
 seed = NULL,
 girf_pars = NULL
)

Arguments

gmvar object of class 'gmvar'
simu number of observations to be simulated.
init_values a size \([pxd]\) matrix specifying the initial values, where \(d\) is the number of time series in the system. The last row will be used as initial values for the first lag, the second last row for second lag etc. If not specified, initial values will be drawn according to mixture distribution specified by the argument init_regimes.
ntimes how many sets of simulations should be performed?
drop if TRUE (default) then the components of the returned list are coerced to lower dimension if ntimes==1, i.e., $sample and $mixing_weights will be matrices, and $component will be vector.
seed set seed for the random number generator?
girf_pars This argument is used internally in the estimation of generalized impulse response functions (see ?GIRF). You should ignore it.

Details

The argument ntimes is intended for forecasting: a GMVAR, StMVAR, or G-StMVAR process can be forecasted by simulating its possible future values. One can easily perform a large number simulations and calculate the sample quantiles from the simulated values to obtain prediction intervals (see the forecasting example).

Value

If drop==TRUE and ntimes==1 (default): $sample, $component, and $mixing_weights are matrices. Otherwise, returns a list with...

$sample a size \([nsimu\times d\times ntimes]\) array containing the samples: the dimension \([t,\cdot]\) is the time index, the dimension \([\cdot, d,\cdot]\) indicates the marginal time series, and the dimension \([\cdot, i,\cdot]\) indicates the \(i:th\) set of simulations.
$component a size \([nsimu\times ntimes]\) matrix containing the information from which mixture component each value was generated from.
$mixing_weights a size \([nsimu\times M\times ntimes]\) array containing the mixing weights corresponding to the sample: the dimension \([t,\cdot]\) is the time index, the dimension \([\cdot, m,\cdot]\) indicates the regime, and the dimension \([\cdot, i,\cdot]\) indicates the \(i:th\) set of simulations.
References

See Also

simulate.gsmvar

stmvar_to_gstmvar

Estimate a G-StMVAR model based on a StMVAR model that has large degrees of freedom parameters

Description

stmvar_to_gstmvar estimates a G-StMVAR model based on a StMVAR model that has large degrees of freedom parameters.

Usage

```r
stmvar_to_gstmvar(
  gsmvar,
  estimate = estimate,
  calc_std_errors = estimate,
  maxdf = 100,
  maxit = 100
)
```

Arguments

- **gsmvar**: an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
- **estimate**: set TRUE if the new model should be estimated with a variable metric algorithm using the StMAR model parameter value as the initial value. By default TRUE iff the model contains data.
- **calc_std_errors**: set TRUE if the approximate standard errors should be calculated.
- **maxdf**: regimes with degrees of freedom parameter value larger than this will be turned into GMVAR type.
- **maxit**: the maximum number of iterations for the variable metric algorithm. Ignored if estimate==FALSE.
Details

If a StMVAR model contains large estimates for the degrees of freedom parameters, one should consider switching to the corresponding G-StMAR model that lets the corresponding regimes to be GMVAR type. `stmvar_to_gstmvar` does this switch conveniently. Also G-StMVAR models are supported if some of the StMVAR type regimes have large degrees of freedom parameters.

Note that if the model imposes constraints on the autoregressive parameters, or if a structural model imposes constraints on the lambda parameters, and the ordering the regimes changes, the constraints are removed from the model. This is because of the form of the constraints that does not generally allow to switch the ordering of the regimes. If you wish to keep the constraints, you may construct the resulting G-StMVAR model parameter vector by hand, redefine your constraints accordingly, build the model with the function `GSMVAR`, and then estimate it with the function `iterate_more`. Alternatively, you can always directly estimate the constrained G-StMVAR model with the function `fitGSMVAR`.

Value

Returns an object of class 'gsmvar' defining a G-StMVAR model based on the provided StMVAR (or G-StMVAR) model with the regimes that had large degrees of freedom parameters changed to GMVAR type.

References

See Also

`fitGSMVAR, GSMVAR, GIRF, reorder_W_columns, swap_W_signs, gsmvar_to_sgsmvar`

Examples

```r
# StMVAR(1, 2), d=2 model:
params12t <- c(0.5453, 0.1157, 0.331, 0.0537, -0.0422, 0.7089, 0.4181, 0.0018,
              0.0413, 1.6004, 0.4843, 0.1256, -0.0311, -0.6139, 0.7221, 1.2123, -0.0357,
              0.1381, 0.8337, 7.5564, 90000)
mod12t <- GSMVAR(gdpdef, p=1, M=2, params=params12t, model="StMVAR")
mod12t

# Switch to the G-StMVAR model:
mod12gs <- stmvar_to_gstmvar(mod12t)
mod12gs
```
swap_parametrization

Swap the parametrization of a GMVAR, StMVAR, or G-StMVAR model

Description

swap_parametrization swaps the parametrization of a GMVAR, StMVAR or G-StMVAR, model to "mean" if the current parametrization is "intercept", and vice versa.

Usage

swap_parametrization(gsmvar)

Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.

Details

swap_parametrization is a convenient tool if you have estimated the model in "intercept"-parametrization, but wish to work with "mean"-parametrization in the future, or vice versa. In gmvarkit, the approximate standard errors are only available for parametrized parameters.

Value

Returns an object of class 'gsmvar' defining the specified reduced form or structural GMVAR, StMVAR, or G-StMVAR model. Can be used to work with other functions provided in gmvarkit.

Note that the first autocovariance/correlation matrix in $uncond_moments is for the lag zero, the second one for the lag one, etc.

References

See Also

fitGSMVAR, GSMVAR, iterate_more, update_numtols
Examples

GMVAR(2, 2), d=2 model with mean-parametrization:
params22 <- c(0.869, 0.549, 0.223, 0.059, -0.151, 0.395, 0.406,
-0.005, 0.083, 0.299, 0.215, 0.002, 0.03, 0.576, 1.168, 0.218,
0.02, -0.119, 0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004,
0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22, parametrization="mean")
mod22 # mean parametrization

mod22_2 <- swap_parametrization(mod22)
mod22_2 # intercept parametrization

G-StMVAR(2, 1, 1), d=2 model with mean-parametrization:
mod22gs <- GSMVAR(gdpdef, p=2, M=c(1, 1), params=c(params22, 10), model="G-StMVAR",
parametrization="mean")
mod22gs # mean parametrization

mod22gs_2 <- swap_parametrization(mod22gs)
mod22gs_2 # intercept parametrization

Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(p=2, M=2, d=2, params=params22s, structural_pars=list(W=W_22))
mod22s # intercept parametrization

mod22s_2 <- swap_parametrization(mod22s)
mod22s_2 # mean parametrization

swap_W_signs

Swapping all signs in pointed columns a the W matrix of a structural GMVAR, StMVAR, or G-StMVAR model.

Description

swap_W_signs swaps all signs in pointed columns a the W matrix of a structural GMVAR, StMVAR, or G-StMVAR model. Consequently, signs in the columns of the B-matrix are also swapped accordingly.

Usage

`swap_W_signs(gsmvar, which_to_swap)`
Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.

which_to_swap a numeric vector of length at most \(d\) and elements in \(1, \ldots, d\) specifying the columns of \(W\) whose sign should be swapped.

Details

All signs in any column of \(W\) can be swapped without changing the implied reduced form model. Consequently, also the signs in the columns of the B-matrix are swapped. Note that the sign constraints imposed on \(W\) (or the B-matrix) are also swapped in the corresponding columns accordingly.

Also the order of the columns of \(W\) can be changed (without changing the implied reduced form model) as long as the order of lambda parameters is also changed accordingly. This can be done with the function reorder_W_columns.

Value

Returns an object of class 'gsmvar' defining a structural GMVAR, StMVAR, or G-StMVAR model with the modified structural parameters and constraints.

References

@keywords internal

See Also

fitGSMVAR, GSMVAR, GIRF, reorder_W_columns, gsmvar_to_sgsmvar, stmvar_to_gstmvar

Examples

```r
# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
               0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
               0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(p=2, M=2, d=2, params=params22s, structural_pars=list(W=W_22))
mod22s

# The same reduced form model, with signs in the second column of W swapped:
swap_W_signs(mod22s, which_to_swap=2)

# The same reduced form model, with signs in both column of W swapped:
swap_W_signs(mod22s, which_to_swap=1:2)
```
uncond_moments

Structural G-StMVAR(2, 1, 1), d=2 model identified with sign-constraints:
mod22gss <- GSMVAR(p=2, M=c(1, 1), d=2, params=c(params22s, 10), model="G-StMVAR",
 structural_pars=list(W=W_22))

mod22gss

The same reduced form model, with signs in the first column of W swapped:
swap_W_signs(mod22gss, which_to_swap=1)

uncond_moments

Calculate the unconditional mean, variance, the first p autocovariances, and the first p autocorrelations of a GMVAR, StMVAR, or G-StMVAR process

Description

uncond_moments calculates the unconditional mean, variance, the first p autocovariances, and the first p autocorrelations of the given GMVAR, StMVAR, or G-StMVAR process.

Usage

uncond_moments(gsmvar)

Arguments

gsmvar an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.

Details

The unconditional moments are based on the stationary distribution of the process.

Value

Returns a list with three components:

$uncond_mean a length d vector containing the unconditional mean of the process.

$autocovs an $(dxdp + 1)$ array containing the lag 0,1,...,p autocovariances of the process. The subset $[,]$ contains the lag j autocovariance matrix (lag zero for the variance).

$autocors the autocovariance matrices scaled to autocorrelation matrices.

References

See Also

Other moment functions: cond_moments(), get_regime_autocovs(), get_regime_means()

Examples

GMVAR(1,2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005,
 0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012,
 0.136, 0.674)
mod12 <- GSMVAR(gdpdef, p=1, M=2, params=params12)
uncond_moments(mod12)

Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
 0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
 0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(gdpdef, p=2, M=2, params=params22s, structural_pars=list(W=W_22))
mod22s
uncond_moments(mod22s)

update_numtols

Update the stationarity and positive definiteness numerical tolerances of an existing class ‘gsmvar’ model.

Description

update_numtols updates the stationarity and positive definiteness numerical tolerances of an existing class ‘gsmvar’ model.

Usage

update_numtols(gsmvar, stat_tol = 0.001, posdef_tol = 1e-08, df_tol = 1e-08)

Arguments

gsmvar an object of class ‘gsmvar’, typically created with fitGSMVAR or GSMVAR.

stat_tol numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime has eigenvalues larger that 1 - stat_tol the model is classified as non-stationary. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.
Details

All signs in any column of W can be swapped without changing the implied reduced form model. Consequently, also the signs in the columns of the B-matrix are swapped. Note that the sign constraints imposed on W (or the B-matrix) are also swapped in the corresponding columns accordingly.

Also the order of the columns of W can be changed (without changing the implied reduced form model) as long as the order of lambda parameters is also changed accordingly. This can be done with the function `reorder_W_columns`.

Value

Returns an object of class ‘gsmvar’ defining a structural GSMVAR model with the modified structural parameters and constraints.

References

@keywords internal

See Also

`fitGSMVAR, GSMVAR, GIRF, reorder_W_columns, gsmvar_to_sgsmvar, stmvar_to_gstmvar`

Examples

```r
# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
               0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
               0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(p=2, M=2, d=2, params=params22s, structural_pars=list(W=W_22))
mod22s

# Update numerical tolerances:
mod22s <- update_numtols(mod22s, stat_tol=1e-4, posdef_tol=1e-9, df_tol=1e-10)
mod22s # The same model
```
Wald_test

Perform Wald test for a GMVAR, StMVAR, or G-StMVAR model

Description

Wald_test performs a Wald test for a GMVAR, StMVAR, or G-StMVAR model

Usage

```r
Wald_test(gsmvar, A, c, h = 6e-06)
```

Arguments

- `gsmvar`: an object of class 'gsmvar', typically created with fitGSMVAR or GSMVAR.
- `A`: a size \(k \times n_{params}\) matrix with full row rank specifying part of the null hypothesis where \(n_{params}\) is the number of parameters in the (unconstrained) model. See details for more information.
- `c`: a length \(k\) vector specifying part of the null hypothesis. See details for more information.
- `h`: difference used to approximate the derivatives.

Details

Denoting the true parameter value by \(\theta_0\), we test the null hypothesis \(A\theta_0 = c\). Under the null, the test statistic is asymptotically \(\chi^2\)-distributed with \(k (=\text{row}(A))\) degrees of freedom. The parameter \(\theta_0\) is assumed to have the same form as in the model supplied in the argument gsmvar and it is presented in the documentation of the argument params in the function GSMVAR (see ?GSMVAR).

Finally, note that this function does not check whether the specified constraints are feasible (e.g. whether the implied constrained model would be stationary or have positive definite error term covariance matrices).

Value

A list with class "htest" containing the following components:

- `statistic`: the value of the Wald statistics.
- `parameter`: the degrees of freedom of the Wald statistic.
- `p.value`: the p-value of the test.
- `alternative`: a character string describing the alternative hypothesis.
- `method`: a character string indicating the type of the test (Wald test).
- `data.name`: a character string giving the names of the supplied model, constraint matrix A, and vector c.
- `gsmvar`: the supplied argument gsmvar.
- `A`: the supplied argument A.
- `c`: the supplied argument c.
- `h`: the supplied argument h.
References

@keywords internal

See Also

`LR_test`, `fitGSMVAR`, `GSMVAR`, `diagnostic_plot`, `profile_logliks`, `quantile_residual_tests`, `cond_moment_plot`

Examples

```r
# Structural GMVAR(2, 2), d=2 model with recursive identification
W22 <- matrix(c(1, NA, 0, 1), nrow=2, byrow=FALSE)
fit22s <- fitGSMVAR(gdpdef, p=2, M=2, structural_pars=list(W=W22),
                      ncalls=1, seeds=2)
fit22s

# Test whether the lambda parameters (of the second regime) are identical
# (due to the zero constraint, the model is identified under the null):
# fit22s has parameter vector of length 26 with the lambda parameters
# in elements 24 and 25.
A <- matrix(c(rep(0, times=23), 1, -1, 0), nrow=1, ncol=26)
c <- 0
Wald_test(fit22s, A=A, c=c)

# Test whether the off-diagonal elements of the first regime's first
# AR coefficient matrix (A_11) are both zero:
# fit22s has parameter vector of length 26 and the off-diagonal elements
# of the 1st regime's 1st AR coefficient matrix are in the elements 6 and 7.
A <- rbind(c(rep(0, times=5), 1, rep(0, times=20)),
           c(rep(0, times=6), 1, rep(0, times=19)))
c <- c(0, 0)
Wald_test(fit22s, A=A, c=c)
```
Index

* datasets
 gdpdef, 36
* moment functions
 cond_moments, 12
 get_regime_autocovs, 38
 get_regime_means, 39
 uncond_moments, 105
acf, 19
add_data, 3, 58
alt_gmvar, 4
alt_gsmvar, 5, 6
calc_gradient, 7, 72
calc_hessian(calc_gradient), 7
check_parameters, 9
cond_moment_plot, 17, 19, 28, 74, 78, 88, 109
cond_moments, 12, 39, 40, 106
density, 19
diag_Omegas, 20
diagnostic_plot, 17, 18, 74, 78, 88, 89, 97, 109

fitGMVAR, 21
fitGSMVAR, 4, 7, 17, 19, 24, 28, 43, 47, 51, 54, 60, 68, 69, 72, 74, 78, 85, 88, 89, 95, 97, 101, 102, 104, 107, 109
gsmvar_to_sgsmvar, 28, 43, 47, 54, 58, 59, 95, 101, 104, 107

in_paramspace, 61
in_paramspace_int, 64
iterate_more, 4, 7, 28, 67, 102

logLik.gmvar (print.gmvar), 82
logLik.gsmvar (GSMVAR), 54
loglikelihood, 69
LR_test, 17, 19, 28, 47, 73, 78, 88, 109

optim, 68

plot.gfevd (GFEVD), 40
plot.girf (GIRF), 44
plot.gmvar (print.gmvar), 82
plot.gmvarpred, 74
plot.gsmvar (GSMVAR), 54
plot.gsmvarpred, 75
plot.qrtest, 76
predict.gmvar, 78
predict.gsmvar, 19, 28, 47, 73, 78, 80, 89, 97
print.gfevd (GFEVD), 40
print.girf (GIRF), 44
print.gmvar, 82
print.gmvarpred (plot.gmvarpred), 74
print.gmvarsum, 83
print.gsmvar, 85
print.gsmvar (GSMVAR), 54
INDEX

print.gsmvarpred, 83
print.gsmvarsum, 84
print.qrtest(plot.qrtest), 76
print.std_errors, 28, 85
profile_logliks, 8, 17, 19, 28, 47, 68, 74, 78, 85, 86, 89, 97, 109
quantile_residual_tests, 17, 19, 28, 47, 74, 89, 97, 109
quantile_residual_tests(plot.qrtest), 76
quantile_residuals, 78, 88
random_ind2, 90
redecompose_Omegas, 93
reorder_W_columns, 28, 43, 47, 58, 60, 94, 101, 104, 107
residuals.gmvar(print.gmvar), 82
residuals.gsmvar(GSMVAR), 54
simulate.gsmvar, 28, 43, 47, 81, 96, 100
simulateGMVAR, 98
stmvar_to_gstmvar, 28, 58, 60, 95, 100, 104, 107
summary.gmvar(print.gmvar), 82
summary.gsmvar(GSMVAR), 54
swap_parametrization, 28, 58, 85, 102
swap_W_signs, 28, 43, 47, 58, 60, 95, 101, 103
uncond_moments, 16, 39, 40, 105
update_numtols, 4, 7, 28, 58, 68, 78, 102, 106
Wald_test, 17, 19, 28, 47, 74, 78, 88, 108