Package ‘gnorm’

January 30, 2018

Version 1.0.0
Date 2018-01-29
Title Generalized Normal/Exponential Power Distribution
Author Maryclare Griffin
Maintainer Maryclare Griffin <maryclaregriffin@gmail.com>
Suggests knitr, rmarkdown
Description Functions for obtaining generalized normal/exponential power distribution probabilities, quantiles, densities and random deviates. The generalized normal/exponential power distribution was introduced by Subbotin (1923) and rediscovered by Nadarajah (2005). The parametrization given by Nadarajah (2005) <doi:10.1080/02664760500079464> is used.
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
VignetteBuilder knitr
Type Package

URL http://github.com/maryclare/gnorm
NeedsCompilation no
Repository CRAN
Date/Publication 2018-01-30 10:46:25 UTC

R topics documented:

 gnorm ... 2

Index 4
The generalized normal distribution

Description

Density, distribution function and random generation for the generalized normal/exponential power distribution.

A generalized normal random variable \(x \) with parameters \(\mu, \alpha > 0 \) and \(\beta > 0 \) has density:

\[
p(x) = \beta \exp\left(\frac{|x - \mu|}{\alpha}\gamma\right) / (2\alpha\Gamma(1/\beta)).
\]

The mean and variance of \(x \) are \(\mu \) and \(\alpha^2\Gamma(3/\beta)/\Gamma(1/\beta) \), respectively.

Usage

- \texttt{dgnorm}(x, mu = 0L, alpha = 1L, beta = 1L, log = FALSE)
- \texttt{pgnorm}(q, mu = 0L, alpha = 1L, beta = 1L, lower.tail = TRUE, log.p = FALSE)
- \texttt{qgnorm}(p, mu = 0L, alpha = 1L, beta = 1L, lower.tail = TRUE, log.p = FALSE)
- \texttt{rgnorm}(n, mu = 0L, alpha = 1L, beta = 1L)

Arguments

- \texttt{x, q} vector of quantiles
- \texttt{mu} location parameter
- \texttt{alpha} scale parameter
- \texttt{beta} shape parameter
- \texttt{log, log.p} logical; if TRUE, probabilities \(p \) are given as \(\log(p) \)
- \texttt{p} vector of probabilities
- \texttt{n} number of observations
- \texttt{lower.tail} logical; if TRUE (default), probabilities are \(P[X \leq x] \), otherwise \(P[X > x] \)

Source

\texttt{dgnorm}, \texttt{pgnorm}, \texttt{qgnorm} and \texttt{rgnorm} are all parametrized as in Version 1 of the Generalized Normal Distribution Wikipedia page, which uses the parametrization given by in Nadarajah (2005). The same distribution was described much earlier by Subbotin (1923) and named the exponential power distribution by Box and Tiao (1973).

Examples

```r
# Plot generalized normal/exponential power density
# that corresponds to the standard normal density
xs <- seq(-1, 1, length.out = 100)
plot(xs, dgnorm(xs, mu = 0, alpha = sqrt(2), beta = 2), type = "l",
    xlab = "x", ylab = expression(p(x)))

# Plot the generalized normal/exponential power CDF
# that corresponds to the standard normal CDF
s <- seq(-1, 1, length.out = 100)
plot(xs, qnorm(xs, 0, sqrt(2)), type = "l", xlab = "q",
    ylab = expression(paste("Pr("L x<=qL ", ", sep = "(")))

# Plot the generalized normal/exponential power inverse CDF
# that corresponds to the standard normal inverse CDF
xs <- seq(0, 1, length.out = 100)
plot(xs, qnorm(xs, 0, sqrt(2)), type = "l", xlab = "p",
    ylab = expression(paste("q: p = Pr("L x<=qL ", ", sep = "(")))

# Make a histogram of draws from the generalized normal/exponential
# power distribution that corresponds to a standard normal distribution
xs <- rgnorm(100, 0, sqrt(2), 2)
```
Index

dgnorm (gnorm), 2

gnorm, 2

pgnorm (gnorm), 2

qgnorm (gnorm), 2

rgnorm (gnorm), 2