Package ‘gpboost’

August 17, 2021

Type Package

Title Combining Tree-Boosting with Gaussian Process and Mixed Effects Models

Version 0.6.7

Date 2021-08-17

Encoding UTF-8

License Apache License (== 2.0) | file LICENSE

URL https://github.com/fabsig/GPBoost

BugReports https://github.com/fabsig/GPBoost/issues

NeedsCompilation yes

Biarch true

Suggests testthat

Depends R (>= 3.5), R6 (>= 2.0)

Imports data.table (>= 1.9.6), graphics, RJSONIO, Matrix (>= 1.1-0), methods, utils

SystemRequirements C++11

RoxygenNote 6.0.1

Author Fabio Sigrist [aut, cre],
 Benoit Jacob [cph],
 Gael Guennebaud [cph],
 Nicolas Carre [cph],
 Pierre Zoppitelli [cph],
 Gauthier Brun [cph],
 Jean Ceccato [cph],
R topics documented:

Jitse Niesen [cph],
Other authors of Eigen for the included version of Eigen [ctb, cph],
Timothy A. Davis [cph],
Guolin Ke [ctb],
Damien Soukhavong [ctb],
James Lamb [ctb],
Other authors of LightGBM for the included version of LightGBM [ctb],
Microsoft Corporation [cph],
Dropbox, Inc. [cph],
Jay Loden [cph],
Dave Daeschler [cph],
Giampaolo Rodola [cph],
Alberto Ferreira [ctb],
Daniel Lemire [ctb],
Victor Zverovich [cph],
IBM Corporation [ctb],
Keith O’Hara [cph],
Stephen L. Moshier [cph]

Maintainer Fabio Sigrist <fabiosigrist@gmail.com>
Repository CRAN
Date/Publication 2021-08-17 16:20:10 UTC

R topics documented:

agaricus.test ... 3
agaricus.train ... 4
bank ... 5
coords ... 5
coords_test .. 5
dim.gpb.Dataset .. 6
dimnames.gpb.Dataset .. 7
fit ... 8
fit.GPModel ... 9
fitGPMModel .. 11
getinfo .. 15
gpb.convert_with_rules .. 17
gpb.cv .. 18
gpb.Dataset ... 22
gpb.Dataset.construct .. 23
gpb.Dataset.create.valid .. 24
gpb.Dataset.save .. 24
gpb.Dataset.set.categorical 25
gpb.Dataset.set.reference 26
gpb.dump .. 27
gpb.get.eval.result .. 28
gpb.grid.search.tune.parameters 29
gpb.importance ... 32
Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository. This data set includes the following fields:

- label: the label for each record
- data: a sparse Matrix of dgCMatrix class, with 126 columns.

Usage

data(agaricus.test)
Format

A list containing a label vector, and a dgCMatrix object with 1611 rows and 126 variables

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

agaricus.train

Training part from Mushroom Data Set

Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository. This data set includes the following fields:

- label: the label for each record
- data: a sparse Matrix of dgCMatrix class, with 126 columns.

Usage

data(agaricus.train)

Format

A list containing a label vector, and a dgCMatrix object with 6513 rows and 127 variables

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

bank

Bank Marketing Data Set

Description

This data set is originally from the Bank Marketing data set, UCI Machine Learning Repository. It contains only the following: bank.csv with 10 randomly selected from 3 (older version of this dataset with less inputs).

Usage

data(bank)

Format

A data.table with 4521 rows and 17 variables

References

http://archive.ics.uci.edu/ml/datasets/Bank+Marketing

S. Moro, P. Cortez and P. Rita. (2014) A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems

coords
Example data for the GPBoost package

Description

A matrix with spatial coordinates for the example data of the GPBoost package

Usage

data(GPBoost_data)

coords_test
Example data for the GPBoost package

Description

A matrix with spatial coordinates for predictions for the example data of the GPBoost package

Usage

data(GPBoost_data)
dim.gpb.Dataset
Dimensions of an gpb.Dataset

Description

Returns a vector of numbers of rows and of columns in an gpb.Dataset.

Usage

```r
## S3 method for class 'gpb.Dataset'
dim(x, ...)
```

Arguments

- `x` Object of class gpb.Dataset
- `...` other parameters

Details

Note: since `nrow` and `ncol` internally use `dim`, they can also be directly used with an gpb.Dataset object.

Value

a vector of numbers of rows and of columns

Examples

```r
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

stopifnot(nrow(dtrain) == nrow(train$data))
stopifnot(ncol(dtrain) == ncol(train$data))
stopifnot(all(dim(dtrain) == dim(train$data)))
```
dimnames.gpb.Dataset

Description

Only column names are supported for gpb.Dataset, thus setting of row names would have no effect and returned row names would be NULL.

Usage

```r
## S3 method for class 'gpb.Dataset'
dimnames(x)
```

```r
## S3 replacement method for class 'gpb.Dataset'
dimnames(x) <- value
```

Arguments

- `x`: object of class gpb.Dataset
- `value`: a list of two elements: the first one is ignored and the second one is column names

Details

Generic dimnames methods are used by colnames. Since row names are irrelevant, it is recommended to use colnames directly.

Value

A list with the dimension names of the dataset

Examples

```r
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.construct(dtrain)
dimnames(dtrain)
colnames(dtrain)
colnames(dtrain) <- make.names(seq_len(ncol(train$data)))
print(dtrain, verbose = TRUE)
```
Description

Generic 'fit' method for a GPModel

Usage

```r
fit(gp_model, y, X, params, fixed_effects = NULL)
```

Arguments

- `gp_model`: a GPModel
- `y`: A vector with response variable data
- `X`: A matrix with covariate data for fixed effects (= linear regression term)
- `params`: A list with parameters for the model fitting / optimization
 - `optimizer_cov`: Optimizer used for estimating covariance parameters. Options: "gradient_descent", "fisher_scoring", and "nelder_mead". Default = "gradient_descent"
 - `optimizer_coef`: Optimizer used for estimating linear regression coefficients, if there are any (for the GPBoost algorithm there are usually none). Options: "gradient_descent", "wls", and "nelder_mead". Gradient descent steps are done simultaneously with gradient descent steps for the covariance parameters. "wls" refers to doing coordinate descent for the regression coefficients using weighted least squares. Default="wls" for Gaussian data and "gradient_descent" for other likelihoods.
 - `maxit`: Maximal number of iterations for optimization algorithm. Default=1000.
 - `delta_rel_conv`: Convergence criterion: stop optimization if relative change in parameters is below this value. Default=1E-6.
 - `init_coef`: Initial values for the regression coefficients (if there are any, can be NULL). Default=NULL.
 - `init_cov_pars`: Initial values for covariance parameters of Gaussian process and random effects (can be NULL). Default=NULL.
 - `lr_coef`: Learning rate for fixed effect regression coefficients if gradient descent is used. Default=0.1.
 - `lr_cov`: Learning rate for covariance parameters. If <= 0, internal default values are used. Default value = 0.1 for "gradient_descent" and 1. for "fisher_scoring"
 - `use_nesterov_acc`: If TRUE Nesterov acceleration is used. This is used only for gradient descent. Default=TRUE
 - `acc_rate_coef`: Acceleration rate for regression coefficients (if there are any) for Nesterov acceleration. Default=0.5.
fit.GPModel

- **acc_rate_cov** Acceleration rate for covariance parameters for Nesterov acceleration. Default=0.5.
- **momentum_offset** Number of iterations for which no momentum is applied in the beginning. Default=2.
- **trace** If TRUE, information on the progress of the parameter optimization is printed. Default=FALSE.
- **convergence_criterion** The convergence criterion used for terminating the optimization algorithm. Options: "relative_change_in_log_likelihood" (default) or "relative_change_in_parameters".
- **std_dev** If TRUE, (asymptotic) standard deviations are calculated for the covariance parameters.

fixed_effects A vector of optional external fixed effects which are held fixed during training.

Author(s)

Fabio Sigrist

Description

Estimates the parameters of a GPModel using maximum likelihood estimation

Usage

```r
## S3 method for class 'GPModel'
fit(gp_model, y, X = NULL, params = list(),
    fixed_effects = NULL)
```

Arguments

- **gp_model** a GPModel
- **y** A vector with response variable data
- **X** A matrix with covariate data for fixed effects (= linear regression term)
- **params** A list with parameters for the model fitting / optimization
 - **optimizer_cov** Optimizer used for estimating covariance parameters. Options: "gradient_descent", "fisher_scoring", and "nelder_mead". Default = "gradient_descent"
 - **optimizer_coef** Optimizer used for estimating linear regression coefficients, if there are any (for the GPBoost algorithm there are usually none). Options: "gradient_descent", "wls", and "nelder_mead". Gradient descent steps are done simultaneously with gradient descent steps for the covariance parameters. "wls" refers to doing coordinate descent for the regression coefficients using weighted least squares. Default="wls" for Gaussian data and "gradient_descent" for other likelihoods.
• maxit Maximal number of iterations for optimization algorithm. Default=1000.
• delta_rel_conv Convergence criterion: stop optimization if relative change in parameters is below this value. Default=1E-6.
• init_coef Initial values for the regression coefficients (if there are any, can be NULL). Default=NULL.
• init_cov_pars Initial values for covariance parameters of Gaussian process and random effects (can be NULL). Default=NULL.
• lr_coef Learning rate for fixed effect regression coefficients if gradient descent is used. Default=0.1.
• lr_cov Learning rate for covariance parameters. If <= 0, internal default values are used. Default value = 0.1 for "gradient_descent" and 1. for "fisher_scoring"
• use_nesterov_acc If TRUE Nesterov acceleration is used. This is used only for gradient descent. Default=TRUE
• acc_rate_coef Acceleration rate for regression coefficients (if there are any) for Nesterov acceleration. Default=0.5.
• acc_rate_cov Acceleration rate for covariance parameters for Nesterov acceleration. Default=0.5.
• momentum_offset Number of iterations for which no momentum is applied in the beginning. Default=2.
• trace If TRUE, information on the progress of the parameter optimization is printed. Default=FALSE.
• convergence_criterion The convergence criterion used for terminating the optimization algorithm. Options: "relative_change_in_log_likelihood" (default) or "relative_change_in_parameters".
• std_dev If TRUE, (asymptotic) standard deviations are calculated for the covariance parameters

fixed_effects A vector of optional external fixed effects which are held fixed during training.

Value
A fitted GPModel

Author(s)
Fabio Sigrist

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

#-----------------------------Grouped random effects model: single-level random effect-----------------------------
gp_model <- GPModel(group_data = group_data[,1], likelihood="gaussian")
fit(gp_model, y = y, params = list(std_dev = TRUE))
summary(gp_model)
Make predictions
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_var = TRUE)
pred$mu # Predicted mean
pred$var # Predicted variances
Also predict covariance matrix
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_cov_mat = TRUE)
pred$mu # Predicted mean
pred$cov # Predicted covariance

#------------------------ Gaussian process model ------------------------
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential",
likelihood="gaussian")
fit(gp_model, y = y, params = list(std_dev = TRUE))
summary(gp_model)
Make predictions
pred <- predict(gp_model, gp_coords_pred = coords_test, predict_cov_mat = TRUE)
Predicted (posterior/conditional) mean of GP
pred$mu
Predicted (posterior/conditional) covariance matrix of GP
pred$cov

Description

Estimates the parameters of a GPModel using maximum likelihood estimation

Usage

```r
fitGPModel(group_data = NULL, group_rand_coef_data = NULL, ind_effect_group_rand_coef = NULL, gp_coords = NULL, gp_rand_coef_data = NULL, cov_function = "exponential", cov_fct_shape = 0, cov_fct_taper_range = 1, vecchia_approx = FALSE, num_neighbors = 30L, vecchia_ordering = "none", vecchia_pred_type = "order_obs_first_cond_obs_only", num_neighbors_pred = num_neighbors, cluster_ids = NULL, free_raw_data = FALSE, likelihood = "gaussian", y, X = NULL, params = list())
```

Arguments

- `group_data` A vector or matrix with labels of group levels for grouped random effects
- `group_rand_coef_data` A vector or matrix with covariate data for grouped random coefficients
ind_effect_group_rand_coef

A vector with indices that indicate the corresponding random effects (columns) in 'group_data' for every covariate in 'group_rand_coef_data'. For instance, c(1,1,2) means that the first two covariates (first two columns) in 'group_rand_coef_data' have random coefficients corresponding to the first random effect (first column) in 'group_data', and the third covariate (third column) in 'group_rand_coef_data' has a random coefficient corresponding to the second random effect (second column) in 'group_data'. The length of this index vector must equal the number of covariates in 'group_rand_coef_data'. Counting starts at 1.

gp_coords

A matrix with coordinates (features) for Gaussian process

gp_rand_coef_data

A vector or matrix with covariate data for Gaussian process random coefficients

cov_function

A string specifying the covariance function for the Gaussian process. The following covariance functions are available: "exponential", "gaussian", "matern", "powered_exponential", "wendland", and "exponential_tapered". For "exponential", "gaussian", and "powered_exponential", we follow the notation and parametrization of Diggle and Ribeiro (2007). For "matern", we follow the notation of Rassmusen and Williams (2006). For "wendland", we follow the notation of Bevilacqua et al. (2019). A covariance function with the suffix ".tapered" refers to a covariance function that is multiplied by a compactly supported Wendland covariance function (= tapering)

cov_fct_shape

A numeric specifying the shape parameter of the covariance function (= smoothness parameter for Matern and Wendland covariance). For the Wendland covariance function, we follow the notation of Bevilacqua et al. (2019). This parameter is irrelevant for some covariance functions such as the exponential or Gaussian.

cov_fct_taper_range

A numeric specifying the range parameter of the Wendland covariance function / taper. We follow the notation of Bevilacqua et al. (2019)

vecchia_approx

A boolean. If TRUE, the Vecchia approximation is used

num_neighbors

An integer specifying the number of neighbors for the Vecchia approximation

vecchia_ordering

A string specifying the ordering used in the Vecchia approximation. "none" means the default ordering is used, "random" uses a random ordering

vecchia_pred_type

A string specifying the type of Vecchia approximation used for making predictions. "order_obs_first_cond_obs_only" = observed data is ordered first and the neighbors are only observed points, "order_obs_first_cond_all" = observed data is ordered first and the neighbors are selected among all points (observed + predicted), "order_pred_first" = predicted data is ordered first for making predictions, "latent_order_obs_first_cond_obs_only" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are only observed points, "latent_order_obs_first_cond_all" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are selected among all points
num_neighbors_pred
an integer specifying the number of neighbors for the Vecchia approximation for making predictions

cluster_ids
A vector with IDs / labels indicating independent realizations of random effects / Gaussian processes (same values = same process realization)

free_raw_data
A boolean. If TRUE, the data (groups, coordinates, covariate data for random coefficients) is freed in R after initialization

likelihood
A string specifying the likelihood function (distribution) of the response variable Default = "gaussian"

y
A vector with response variable data

X
A matrix with covariate data for fixed effects (= linear regression term)

params
A list with parameters for the model fitting / optimization

- optimizer_cov Optimizer used for estimating covariance parameters. Options: "gradient_descent", "fisher_scoring", and "nelder_mead". Default = "gradient_descent"
- optimizer_coef Optimizer used for estimating linear regression coefficients, if there are any (for the GPBoost algorithm there are usually none). Options: "gradient_descent", "wls", and "nelder_mead". Gradient descent steps are done simultaneously with gradient descent steps for the covariance parameters. "wls" refers to doing coordinate descent for the regression coefficients using weighted least squares. Default="wls" for Gaussian data and "gradient_descent" for other likelihoods.
- maxit Maximal number of iterations for optimization algorithm. Default=1000.
- delta_rel_conv Convergence criterion: stop optimization if relative change in parameters is below this value. Default=1E-6.
- init_coef Initial values for the regression coefficients (if there are any, can be NULL). Default=NULL.
- init_cov_pars Initial values for covariance parameters of Gaussian process and random effects (can be NULL). Default=NULL.
- lr_coef Learning rate for fixed effect regression coefficients if gradient descent is used. Default=0.1.
- lr_cov Learning rate for covariance parameters. If <= 0, internal default values are used. Default value = 0.1 for "gradient_descent" and 1. for "fisher_scoring"
- use_nesterov_acc If TRUE Nesterov acceleration is used. This is used only for gradient descent. Default=TRUE
- acc_rate_coef Acceleration rate for regression coefficients (if there are any) for Nesterov acceleration. Default=0.5.
- acc_rate_cov Acceleration rate for covariance parameters for Nesterov acceleration. Default=0.5.
- momentum_offset Number of iterations for which no mometum is applied in the beginning. Default=2.
- trace If TRUE, information on the progress of the parameter optimization is printed. Default=FALSE.
convergence_criterion The convergence criterion used for terminating the optimization algorithm. Options: "relative_change_in_log_likelihood" (default) or "relative_change_in_parameters".

std_dev If TRUE, (asymptotic) standard deviations are calculated for the covariance parameters

Value
A fitted GPModel

Author(s)
Fabio Sigrist

Examples
See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

#-------------------Grouped random effects model: single-level random effect----------------
gp_model <- fitGPModel(group_data = group_data[,1], y = y, likelihood="gaussian",
 params = list(std_dev = TRUE))
summary(gp_model)
Make predictions
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_var = TRUE)
pred$mu # Predicted mean
pred$var # Predicted variances
Also predict covariance matrix
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_cov_mat = TRUE)
pred$mu # Predicted mean
pred$cov # Predicted covariance

#-------------------Mixed effects model: random effects and linear fixed effects----------------
X1 <- cbind(rep(1,length(y)),X) # Add intercept column
gp_model <- fitGPModel(group_data = group_data[,1], likelihood="gaussian",
 y = y, X = X1, params = list(std_dev = TRUE))
summary(gp_model)

#-------------------Two crossed random effects and a random slope----------------
gp_model <- fitGPModel(group_data = group_data, likelihood="gaussian",
 group_rand_coef_data = X[,2],
 ind_effect_group_rand_coef = 1,
 y = y, params = list(std_dev = TRUE))
summary(gp_model)

#-------------------Gaussian process model----------------
```r
gp_model <- fitGPModel(gp_coords = coords, cov_function = "exponential",
                       likelihood = "gaussian", y = y, params = list(std_dev = TRUE))
summary(gp_model)
# Make predictions
pred <- predict(gp_model, gp.coords.pred = coords_test, predict_cov_mat = TRUE)
# Predicted (posterior/conditional) mean of GP
pred$mu
# Predicted (posterior/conditional) covariance matrix of GP
pred$cov

#--------------------Gaussian process model with linear mean function----------------
X1 <- cbind(rep(1, length(y)), X) # Add intercept column
X1 <- fitGPModel(gp_coords = coords, cov_function = "exponential",
                 y = y, X = X1, params = list(std_dev = TRUE))
summary(gp_model)

#--------------------Gaussian process model with Vecchia approximation----------------
gp_model <- fitGPModel(gp_coords = coords, cov_function = "exponential",
                        vecchia_approx = TRUE, num_neighbors = 30,
                        likelihood = "gaussian", y = y)
summary(gp_model)

#--------------------Gaussian process model with random coefficients----------------
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential",
                    gp.rand_coef_data = X[,2], likelihood = "gaussian")
fit(gp_model, y = y, params = list(std_dev = TRUE))
summary(gp_model)
# Alternatively, define and fit model directly using fitGPModel
X1 <- fitGPModel(gp_coords = coords, cov_function = "exponential",
                 gp.rand_coef_data = X[,2], y = y,
                 likelihood = "gaussian", params = list(std_dev = TRUE))
summary(gp_model)

#--------------------Combine Gaussian process with grouped random effects----------------
gp_model <- fitGPModel(group_data = group_data,
                       gp_coords = coords, cov_function = "exponential",
                       likelihood = "gaussian", y = y, params = list(std_dev = TRUE))
summary(gp_model)
```

getinfo

Get information of an gpb.Dataset object

Description

Get one attribute of a gpb.Dataset
Usage

getinfo(dataset, ...)

S3 method for class 'gpb.Dataset'
getinfo(dataset, name, ...)

Arguments

dataset Object of class gpb.Dataset
...
other parameters
name the name of the information field to get (see details)

Details

The name field can be one of the following:

- label: label gpboost learn from;
- weight: to do a weight rescale;
- group: used for learning-to-rank tasks. An integer vector describing how to group rows together as ordered results from the same set of candidate results to be ranked. For example, if you have a 100-document dataset with group = c(10, 20, 40, 10, 10, 10), that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, etc.
- init_score: initial score is the base prediction gpboost will boost from.

Value

info data
info data

Examples

data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.construct(dtrain)

labels <- gpboost::getinfo(dtrain, "label")
gpboost::setinfo(dtrain, "label", 1 - labels)

labels2 <- gpboost::getinfo(dtrain, "label")
stopifnot(all(labels2 == 1 - labels))
Description

Attempts to prepare a clean dataset to prepare to put in a gpb.Dataset. Factor, character, and logical columns are converted to integer. Missing values in factors and characters will be filled with 0L. Missing values in logicals will be filled with -1L.

This function returns and optionally takes in "rules" the describe exactly how to convert values in columns.

Columns that contain only NA values will be converted by this function but will not show up in the returned rules.

Usage

gpb.convert_with_rules(data, rules = NULL)

Arguments

data A data.frame or data.table to prepare.

rules A set of rules from the data preparator, if already used. This should be an R list, where names are column names in data and values are named character vectors whose names are column values and whose values are new values to replace them with.

Value

A list with the cleaned dataset (data) and the rules (rules). Note that the data must be converted to a matrix format (as.matrix) for input in gpb.Dataset.

Examples

data(iris)
str(iris)
new_iris <- gpb.convert_with_rules(data = iris)
str(new_iris$data)
data(iris) # Erase iris dataset
iris$Species[1L] <- "NEW FACTOR" # Introduce junk factor (NA)

Use conversion using known rules
Unknown factors become 0, excellent for sparse datasets
newer_iris <- gpb.convert_with_rules(data = iris, rules = new_iris$rules)
Unknown factor is now zero, perfect for sparse datasets
newer_iris$data[1L,] # Species became 0 as it is an unknown factor

newer_iris$data[1L, 5L] <- 1.0 # Put back real initial value

Is the newly created dataset equal? YES!
all.equal(new_iris$data, newer_iris$data)

Can we test our own rules?
data(iris) # Erase iris dataset

We remapped values differently
personal_rules <- list(
 Species = c(
 "setosa" = 3L,
 "versicolor" = 2L,
 "virginica" = 1L
)
)
newest_iris <- gpb.convert_with_rules(data = iris, rules = personal_rules)
str(newest_iris$data) # SUCCESS!

gpb.cv

CV function for number of boosting iterations

Description

Cross validation function for determining number of boosting iterations

Usage

```r

gpb.cv(params = list(), data, nrounds = 100L, gp_model = NULL,
  use_gp_model_for_validation = TRUE, fit_GP_cov_pars_OOS = FALSE,
  train_gp_model_cov_pars = TRUE, folds = NULL, nfold = 4L,
  label = NULL, weight = NULL, obj = NULL, eval = NULL, verbose = 1L,
  record = TRUE, eval_freq = 1L, showsd = FALSE, stratified = TRUE,
  init_model = NULL, colnames = NULL, categorical_feature = NULL,
  early_stopping_rounds = NULL, callbacks = list(), reset_data = FALSE,
  delete_boosters_folds = FALSE, ...)
```

Arguments

- **params** list of ("tuning") parameters. See the parameter documentation for more information. A few key parameters:
 - **learning_rate** The learning rate, also called shrinkage or damping parameter (default = 0.1). An important tuning parameter for boosting. Lower values usually lead to higher predictive accuracy but more boosting iterations are needed

• **num_leaves** Number of leaves in a tree. Tuning parameter for tree-boosting (default = 31)
• **min_data_in_leaf** Minimal number of samples per leaf. Tuning parameter for tree-boosting (default = 20)
• **max_depth** Maximal depth of a tree. Tuning parameter for tree-boosting (default = no limit)
• **leaves_newton_update** Set this to TRUE to do a Newton update step for the tree leaves after the gradient step. Applies only to Gaussian process boosting (GPBoost algorithm)
• **train_gp_model_cov_pars** If TRUE, the covariance parameters of the Gaussian process are estimated in every boosting iterations, otherwise the gp_model parameters are not estimated. In the latter case, you need to either estimate them beforehand or provide the values via the 'init_cov_pars' parameter when creating the gp_model (default = TRUE).
• **use_gp_model_for_validation** If TRUE, the Gaussian process is also used (in addition to the tree model) for calculating predictions on the validation data (default = TRUE)
• **use_nesterov_acc** Set this to TRUE to do boosting with Nesterov acceleration (default = FALSE). Can currently only be used for tree_learner = "serial" (default option)
• **nesterov_acc_rate** Acceleration rate for momentum step in case Nesterov accelerated boosting is used (default = 0.5)
• **boosting** Boosting type. "gbdt", "rf", "dart" or "goss". Only "gbdt" allows for doing Gaussian process boosting.
• **num_threads** Number of threads. For the best speed, set this to the number of real CPU cores(parallel:::detectCores(logical = FALSE)), not the number of threads (most CPU using hyper-threading to generate 2 threads per CPU core).

data
a gpb.Dataset object, used for training. Some functions, such as gpb.cv, may allow you to pass other types of data like matrix and then separately supply label as a keyword argument.

nrounds
number of boosting iterations (= number of trees). This is the most important tuning parameter for boosting. Default = 100

gp_model
A GPModel object that contains the random effects (Gaussian process and / or grouped random effects) model

use_gp_model_for_validation
Boolean (default = TRUE). If TRUE, the gp_model (Gaussian process and/or random effects) is also used (in addition to the tree model) for calculating predictions on the validation data. If FALSE, the gp_model (random effects part) is ignored for making predictions and only the tree ensemble is used for making predictions for calculating the validation / test error.

fit_GP_cov_pars_OOS
Boolean (default = FALSE). If TRUE, the covariance parameters of the gp_model model are estimated using the out-of-sample (OOS) predictions on the validation data using the optimal number of iterations (after performing the CV). This corresponds to the GPBoostOOS algorithm.
train_gp_model_cov_pars

Boolean (default = TRUE). If TRUE, the covariance parameters of the gp_model
(Gaussian process and/or random effects) are estimated in every boosting it-
erations, otherwise the gp_model parameters are not estimated. In the latter
case, you need to either estimate them beforehand or provide the values via the
init_cov_pars parameter when creating the gp_model.

folds

list provides a possibility to use a list of pre-defined CV folds (each element
must be a vector of test fold’s indices). When folds are supplied, the nfold and
stratified parameters are ignored.

nfold

the original dataset is randomly partitioned into nfold equal size subsamples.

label

Vector of labels, used if data is not an gpb.Dataset.

weight

vector of response values. If not NULL, will set to dataset.

obj

objective function, can be character or custom objective function. Examples in-
clude regression, regression_l1, huber, binary, lambdarank, multiclass, multiclass

eval

evaluation function(s). This can be a character vector, function, or list with a
mixture of strings and functions.

 • **a. character vector**: If you provide a character vector to this argument,
it should contain strings with valid evaluation metrics. See the "metric" section of the parameter documentation for a list of valid metrics.

 • **b. function**: You can provide a custom evaluation function. This should ac-
cept the keyword arguments preds and dtrain and should return a named
list with three elements:

 – name: A string with the name of the metric, used for printing and stor-
ing results.

 – value: A single number indicating the value of the metric for the given
predictions and true values

 – higher_better: A boolean indicating whether higher values indicate
a better fit. For example, this would be FALSE for metrics like MAE or
RMSE.

 • **c. list**: If a list is given, it should only contain character vectors and func-
tions. These should follow the requirements from the descriptions above.

verbose

verbosity for output, if <= 0, also will disable the print of evaluation during training

record

Boolean, TRUE will record iteration message to booster$record_evals

eval_freq

evaluation output frequency, only effect when verbose > 0

showsd

boolean, whether to show standard deviation of cross validation. This parameter
defaults to TRUE.

stratified

a boolean indicating whether sampling of folds should be stratified by the val-
ues of outcome labels.

init_model

path of model file of gpb.Booster object, will continue training from this model

colnames

feature names, if not null, will use this to overwrite the names in dataset
categorical_features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

early_stopping_rounds
int. Activates early stopping. Requires at least one validation data and one
metric. When this parameter is non-null, training will stop if the evaluation of
any metric on any validation set fails to improve for early_stopping_rounds
consecutive boosting rounds. If training stops early, the returned model will
have attribute best_iter set to the iteration number of the best iteration.

callbacks
List of callback functions that are applied at each iteration.

reset_data
Boolean, setting it to TRUE (not the default value) will transform the booster
model into a predictor model which frees up memory and the original datasets
delete_boosters_folds
Boolean, setting it to TRUE (not the default value) will delete the boosters of
the individual folds

Value
a trained model gpb.CVBooster.

Early Stopping
"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

Author(s)
Authors of the LightGBM R package, Fabio Sigrist

Examples
See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

gp_model <- GPMModel(group_data = group_data[,1], likelihood="gaussian")
dtrain <- gpb.Dataset(X, label = y)
params <- list(learning_rate = 0.05,
 max_depth = 6,
 min_data_in_leaf = 5,
 objective = "regression_l2")

Run CV
cvbst <- gpb.cv(params = params,
data = dtrain,
gp_model = gp_model,
nrounds = 100,
nfold = 4,
eval = "l2",
early_stopping_rounds = 5,
use_gp_model_for_validation = TRUE)
print(paste0("Optimal number of iterations: ", cvbst$best_iter,
 ", best test error: ", cvbst$best_score))

gbp.Dataset

Construct gbp.Dataset object

Description

Construct gbp.Dataset object from dense matrix, sparse matrix or local file (that was created previously by saving an gbp.Dataset).

Usage

```r
gbp.Dataset(data, params = list(), reference = NULL, colnames = NULL,
categorical_feature = NULL, free_raw_data = FALSE, info = list(), ...)```

**Arguments**

- **data**
  - A matrix object, a dgCMatrix object or a character representing a filename.

- **params**
  - A list of parameters. See the "Dataset Parameters" section of the parameter documentation for a list of parameters and valid values.

- **reference**
  - Reference dataset. When GPBoost creates a Dataset, it does some preprocessing like binning continuous features into histograms. If you want to apply the same bin boundaries from an existing dataset to new data, pass that existing Dataset to this argument.

- **colnames**
  - Names of columns.

- **categorical_feature**
  - Categorical features. This can either be a character vector of feature names or an integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first and tenth columns").

- **free_raw_data**
  - GPBoost constructs its data format, called a "Dataset", from tabular data. By default, this Dataset object on the R side does keep a copy of the raw data. If you set `free_raw_data = TRUE`, no copy of the raw data is kept (this reduces memory usage).

- **info**
  - A list of information of the `gbp.Dataset` object.

- **...**
  - Other information to pass to `info` or parameters pass to `params`.
**gpb.Dataset.construct**

**Value**

constructed dataset

**Examples**

```r
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data_file <- tempfile(fileext = ".data")
gpb.Dataset.save(dtrain, data_file)
dtrain <- gpb.Dataset(data_file)
gpb.Dataset.construct(dtrain)
```

---

**gpb.Dataset.construct**  *Construct Dataset explicitly*

**Description**

Construct Dataset explicitly

**Usage**

```r
gpb.Dataset.construct(dataset)
```

**Arguments**

- `dataset`  Object of class `gpb.Dataset`

**Value**

constructed dataset

**Examples**

```r
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.construct(dtrain)
```
**gpb.Dataset.create.valid**

*Construct validation data*

**Description**

Construct validation data according to training data

**Usage**

```r
gpb.Dataset.create.valid(dataset, data, info = list(), ...)
```

**Arguments**

- `dataset` *gpb.Dataset* object, training data
- `data` a matrix object, a `dgCMatrix` object or a character representing a filename
- `info` a list of information of the `gpb.Dataset` object
- `...` other information to pass to `info`.

**Value**

constructed dataset

**Examples**

```r
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")
test <- agaricus.test
dtest <- gpb.Dataset.create.valid(dtrain, test$data, label = test$label)
```

---

**gpb.Dataset.save**

*Save gpb.Dataset to a binary file*

**Description**

Please note that `init_score` is not saved in binary file. If you need it, please set it again after loading `Dataset`.

**Usage**

```r
gpb.Dataset.save(dataset, fname)
```
### gpb.Dataset.set.categorical

**Arguments**

- **dataset**: object of class `gpb.Dataset`
- **fname**: object filename of output file

**Value**

the dataset you passed in

**Examples**

```r
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.save(dtrain, tempfile(fileext = ".bin"))
```

### gpb.Dataset.set.categorical

*Set categorical feature of gpb.Dataset*

**Description**

Set the categorical features of an `gpb.Dataset` object. Use this function to tell GPBoost which features should be treated as categorical.

**Usage**

```
gpb.Dataset.set.categorical(dataset, categorical_feature)
```

**Arguments**

- **dataset**: object of class `gpb.Dataset`
- **categorical_feature**: categorical features. This can either be a character vector of feature names or an integer vector with the indices of the features (e.g. `c(1L,10L)` to say "the first and tenth columns").

**Value**

the dataset you passed in
Examples

data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data_file <- tempfile(fileext = ".data")
gpb.Dataset.save(dtrain, data_file)
dtrain <- gpb.Dataset(data_file)
gpb.Dataset.set.categorical(dtrain, 1L:2L)

gpb.Dataset.set.reference

  Set reference of gpb.Dataset

Description

If you want to use validation data, you should set reference to training data

Usage

  gpb.Dataset.set.reference(dataset, reference)

Arguments

dataset          object of class gpb.Dataset
reference        object of class gpb.Dataset

Value

the dataset you passed in

Examples

data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")
test <- agaricus.test
dtest <- gpb.Dataset(test$data, test = train$label)
gpb.Dataset.set.reference(dtest, dtrain)
**Description**

Dump GPBoost model to json

**Usage**

```r
gpb.dump(booster, num_iteration = NULL)
```

**Arguments**

- `booster`: Object of class `gpb.Booster`
- `num_iteration`: number of iteration want to predict with, NULL or <= 0 means use best iteration

**Value**

json format of model

**Examples**

```r
library(gboost)
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")
test <- agaricus.test
dtest <- gpb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(objective = "regression", metric = "l2")
valids <- list(test = dtest)
model <- gpb.train(
 params = params,
 data = dtrain,
 nrounds = 10L,
 valids = valids,
 min_data = 1L,
 learning_rate = 1.0,
 early_stopping_rounds = 5L
)
json_model <- gpb.dump(model)
```
### gpb.get.eval.result

**Get record evaluation result from booster**

**Description**

Given a `gpb.Booster`, return evaluation results for a particular metric on a particular dataset.

**Usage**

```r
gpb.get.eval.result(booster, data_name, eval_name, iters = NULL, is_err = FALSE)
```

**Arguments**

- **booster**: Object of class `gpb.Booster`
- **data_name**: Name of the dataset to return evaluation results for.
- **eval_name**: Name of the evaluation metric to return results for.
- **iters**: An integer vector of iterations you want to get evaluation results for. If NULL (the default), evaluation results for all iterations will be returned.
- **is_err**: TRUE will return evaluation error instead

**Value**

numeric vector of evaluation result

**Examples**

```r
train a regression model
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")
test <- agaricus.test
dtest <- gpb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(objective = "regression", metric = "l2")
valids <- list(test = dtest)
model <- gpb.train(
 params = params
 , data = dtrain
 , nrounds = 5L
 , valids = valids
 , min_data = 1L
 , learning_rate = 1.0
)

Examine valid data_name values
print(setdiff(names(model$record_evals), "start_iter"))
```
```r
Examine valid eval_name values for dataset "test"
print(names(model$record_evals[['test']]))

Get L2 values for "test" dataset
gpb.get.eval.result(model, "test", "l2")
```

---

**gpb.grid.search.tune.parameters**

*Function for choosing tuning parameters*

**Description**

Function that allows for choosing tuning parameters from a grid in a deterministic or random way using cross validation or validation data sets.

**Usage**

```r
gpb.grid.search.tune.parameters(param_grid, data, params = list(),
num_try_random = NULL, nrounds = 100L, gp_model = NULL,
use_gp_model_for_validation = TRUE, train_gp_model_cov_pars = TRUE,
folds = NULL, nfold = 4L, label = NULL, weight = NULL, obj = NULL,
eval = NULL, verbose_eval = 1L, stratified = TRUE, init_model = NULL,
colnames = NULL, categorical_feature = NULL,
early_stopping_rounds = NULL, callbacks = list(), ...)
```

**Arguments**

- `param_grid` list with candidate parameters defining the grid over which a search is done
- `data` a `gpb.Dataset` object, used for training. Some functions, such as `gpb.cv`, may allow you to pass other types of data like matrix and then separately supply `label` as a keyword argument.
- `params` list with other parameters not included in `param_grid`
- `num_try_random` integer with number of random trial on parameter grid. If NULL, a deterministic search is done
- `nrounds` number of boosting iterations (= number of trees). This is the most important tuning parameter for boosting. Default = 100
- `gp_model` A GPMModel object that contains the random effects (Gaussian process and/or grouped random effects) model
- `use_gp_model_for_validation` Boolean (default = TRUE). If TRUE, the gp_model (Gaussian process and/or random effects) is also used (in addition to the tree model) for calculating predictions on the validation data. If FALSE, the gp_model (random effects part) is ignored for making predictions and only the tree ensemble is used for making predictions for calculating the validation / test error.
train_gp_model_cov_pars
Boolean (default = TRUE). If TRUE, the covariance parameters of the gp_model (Gaussian process and/or random effects) are estimated in every boosting iterations, otherwise the gp_model parameters are not estimated. In the latter case, you need to either estimate them beforehand or provide the values via the init_cov_pars parameter when creating the gp_model.

folds
The folds list provides a possibility to use a list of pre-defined CV folds (each element must be a vector of test fold’s indices). When folds are supplied, the nfold and stratified parameters are ignored.

nfold
the original dataset is randomly partitioned into nfold equal size subsamples.

label
Vector of labels, used if data is not an gpb.Dataset

weight
vector of response values. If not NULL, will set to dataset

obj
objective function, can be character or custom objective function. Examples include regression, regression_l1, huber, binary, lambdarank, multiclass, multiclass

eval
evaluation function(s). This can be a character vector, function, or list with a mixture of strings and functions.

• **a. character vector:** If you provide a character vector to this argument, it should contain strings with valid evaluation metrics. See the "metric" section of the parameter documentation for a list of valid metrics.

• **b. function:** You can provide a custom evaluation function. This should accept the keyword arguments preds and dtrain and should return a named list with three elements:
  – name: A string with the name of the metric, used for printing and storing results.
  – value: A single number indicating the value of the metric for the given predictions and true values
  – higher_better: A boolean indicating whether higher values indicate a better fit. For example, this would be FALSE for metrics like MAE or RMSE.

• **c. list:** If a list is given, it should only contain character vectors and functions. These should follow the requirements from the descriptions above.

verbose_eval
integer. Whether to display information on the progress of tuning parameter choice. If None or 0, verbose is off. If = 1, summary progress information is displayed for every parameter combination. If >= 2, detailed progress is displayed at every boosting stage for every parameter combination.

stratified
a boolean indicating whether sampling of folds should be stratified by the values of outcome labels.

init_model
path of model file of gpb.Booster object, will continue training from this model

colnames
feature names, if not null, will use this to overwrite the names in dataset
categorical_feature
categorical features. This can either be a character vector of feature names or an integer vector with the indices of the features (e.g. c(1L,10L) to say "the first and tenth columns").
early_stopping_rounds
int. Activates early stopping. Requires at least one validation data and one metric. When this parameter is non-null, training will stop if the evaluation of any metric on any validation set fails to improve for early_stopping_rounds consecutive boosting rounds. If training stops early, the returned model will have attribute best_iter set to the iteration number of the best iteration.

callbacks
List of callback functions that are applied at each iteration.
... other parameters, see Parameters.rst for more information.

Value

- A list with the best parameter combination and score. The list has the following format: list("best_params" = best_params, "best_iter" = best_iter, "best_score" = best_score)

Early Stopping

"early stopping" refers to stopping the training process if the model's performance on a given validation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping by setting early_stopping_rounds in params, by default all metrics will be considered for early stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in params. Note that if you also specify metric in params, that metric will be considered the "first" one. If you omit metric, a default metric will be used based on your choice for the parameter obj (keyword argument) or objective (passed into params).

Author(s)

Fabio Sigrist

Examples

# See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

# Create random effects model, dataset, and define parameter grid
gp_model <- GPMModel(group_data = group_data[,1], likelihood="gaussian")
dtrain <- gpb.Dataset(X, label = y)
params <- list(objective = "regression_l2")
param_grid = list("learning_rate" = c(0.1,0.01), "min_data_in_leaf" = c(20),
"max_depth" = c(5,10), "num_leaves" = 2^17, "max_bin" = c(255,1000))
# Parameter tuning using cross-validation and deterministic grid search
set.seed(1)
opt_params <- gpb.grid.search.tune.parameters(param_grid = param_grid, params = params,
num_try_random = NULL,
nfold = 4,
# Parameter tuning using cross-validation and random grid search

```r
set.seed(1)
opt_params <- gpb.grid.search.tune.parameters(param_grid = param_grid,
params = params,
num_try_random = 4,
nfold = 4,
data = dtrain,
gp_model = gp_model,
verbose_eval = 1,
nrounds = 1000,
early_stopping_rounds = 5,
eval = "l2")
```

---

**gpb.importance**  
*Compute feature importance in a model*

## Description

Creates a `data.table` of feature importances in a model.

## Usage

```r
gpb.importance(model, percentage = TRUE)
```

## Arguments

- **model**: object of class `gpb.Booster`.
- **percentage**: whether to show importance in relative percentage.

## Value

For a tree model, a `data.table` with the following columns:

- **Feature**: Feature names in the model.
- **Gain**: The total gain of this feature’s splits.
- **Cover**: The number of observation related to this feature.
- **Frequency**: The number of times a feature split in trees.
Examples

```r
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

params <- list(
 objective = "binary",
 learning_rate = 0.1,
 max_depth = -1L,
 min_data_in_leaf = 1L,
 min_sum_hessian_in_leaf = 1.0
)
model <- gpb.train(
 params = params,
 data = dtrain,
 nrounds = 5L
)

```

```r
tree_imp1 <- gpb.importance(model, percentage = TRUE)
tree_imp2 <- gpb.importance(model, percentage = FALSE)
```

---

### gpb.interprete

**Compute feature contribution of prediction**

**Description**

Computes feature contribution components of rawscore prediction.

**Usage**

```r
gpb.interprete(model, data, idxset, num_iteration = NULL)
```

**Arguments**

- `model`: object of class `gpb.Booster`.
- `data`: a matrix object or a dgCMatrix object.
- `idxset`: an integer vector of indices of rows needed.
- `num_iteration`: number of iteration want to predict with, NULL or <= 0 means use best iteration.

**Value**

For regression, binary classification and lambdarank model, a list of data.table with the following columns:

- **Feature**: Feature names in the model.
- **Contribution**: The total contribution of this feature’s splits.

For multiclass classification, a list of data.table with the Feature column and Contribution columns to each class.
Examples

Logit <- function(x) log(x / (1.0 - x))
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
setinfo(dtrain, "init_score", rep(Logit(mean(train$label)), length(train$label)))
data(agaricus.test, package = "gpboost")
test <- agaricus.test

params <- list(
  objective = "binary",
  learning_rate = 0.1,
  max_depth = -1L,
  min_data_in_leaf = 1L,
  min_sum_hessian_in_leaf = 1.0
)
model <- gpb.train(
  params = params,
  data = dtrain,
  nrounds = 3L
)
tree_interpretation <- gpb.interpret(model, test$data, 1L:5L)

---

gpb.load  Load GPBoost model

Description

Load GPBoost takes in either a file path or model string. If both are provided, Load will default to loading from file Boosters with gp_models can only be loaded from file.

Usage

gpb.load(filename = NULL, model_str = NULL)

Arguments

filename  path of model file
model_str  a str containing the model

Value

gpb.Booster

Author(s)

Authors of the LightGBM R package, Fabio Sigrist
### Examples

```r
library(gpboost)
data(GPBoost_data, package = "gpboost")

Train model and make prediction
gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
bst <- gpboost(data = X,
 label = y,
 gp_model = gp_model,
 nrounds = 16,
 learning_rate = 0.05,
 max_depth = 6,
 min_data_in_leaf = 5,
 objective = "regression_l2",
 verbose = 0)
pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
 predict_var = TRUE)

Save model to file
filename <- tempfile(fileext = ".json")
gpb.save(bst, filename = filename)
Load from file and make predictions again
bst_loaded <- gpb.load(filename = filename)
pred_loaded <- predict(bst_loaded, data = X_test, group_data_pred = group_data_test[,1],
 predict_var = TRUE)

Check equality
pred$fixed_effect - pred_loaded$fixed_effect
pred$random_effect_mean - pred_loaded$random_effect_mean
pred$random_effect_cov - pred_loaded$random_effect_cov
```

---

gpb.model.dt.tree  Parse a GPBoost model json dump

---

### Description

Parse a GPBoost model json dump into a `data.table` structure.

### Usage

```r
gpb.model.dt.tree(model, num_iteration = NULL)
```

### Arguments

- **model**: object of class `gpboost.Booster`
- **num_iteration**: number of iterations you want to predict with. `NULL` or `<= 0` means use best iteration
Value

A data.table with detailed information about model trees’ nodes and leaves.

The columns of the data.table are:

- `tree_index`: ID of a tree in a model (integer)
- `split_index`: ID of a node in a tree (integer)
- `split_feature`: for a node, it’s a feature name (character); for a leaf, it simply labels it as "NA"
- `node_parent`: ID of the parent node for current node (integer)
- `leaf_index`: ID of a leaf in a tree (integer)
- `leaf_parent`: ID of the parent node for current leaf (integer)
- `split_gain`: Split gain of a node
- `threshold`: Splitting threshold value of a node
- `decision_type`: Decision type of a node
- `default_left`: Determine how to handle NA value, TRUE -> Left, FALSE -> Right
- `internal_value`: Node value
- `internal_count`: The number of observation collected by a node
- `leaf_value`: Leaf value
- `leaf_count`: The number of observation collected by a leaf

Examples

data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

params <- list(
  objective = "binary",
  learning_rate = 0.01,
  num_leaves = 63L,
  max_depth = -1L,
  min_data_in_leaf = 1L,
  min_sum_hessian_in_leaf = 1.0
)
model <- gpb.train(params, dtrain, 10L)

tree_dt <- gpb.model.dt.tree(model)
**gpb.plot.importance**

**Plot feature importance as a bar graph**

**Description**

Plot previously calculated feature importance: Gain, Cover and Frequency, as a bar graph.

**Usage**

```r
gpb.plot.importance(tree_imp, top_n = 10L, measure = "Gain", left_margin = 10L, cex = NULL)
```

**Arguments**

- `tree_imp`: a data.table returned by `gpb.importance`.
- `top_n`: maximal number of top features to include into the plot.
- `measure`: the name of importance measure to plot, can be "Gain", "Cover" or "Frequency".
- `left_margin`: (base R barplot) allows to adjust the left margin size to fit feature names.
- `cex`: (base R barplot) passed as `cex.names` parameter to `barplot`. Set a number smaller than 1.0 to make the bar labels smaller than R’s default and values greater than 1.0 to make them larger.

**Details**

The graph represents each feature as a horizontal bar of length proportional to the defined importance of a feature. Features are shown ranked in a decreasing importance order.

**Value**

The `gpb.plot.importance` function creates a barplot and silently returns a processed data.table with `top_n` features sorted by defined importance.

**Examples**

```r
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

params <- list(
 objective = "binary",
 learning_rate = 0.1,
 min_data_in_leaf = 1L,
 min_sum_hessian_in_leaf = 1.0
)

model <- gpb.train(
 params = params
)```
gpb.plot.interpretation

Plot feature contribution as a bar graph

Description
Plot previously calculated feature contribution as a bar graph.

Usage

gpb.plot.interpretation(tree_interpretation_dt, top_n = 10L, cols = 1L,
 left_margin = 10L, cex = NULL)

Arguments

tree_interpretation_dt
 a data.table returned by \texttt{gpb.interpret}.
top_n
 maximal number of top features to include into the plot.
cols
 the column numbers of layout, will be used only for multiclass classification feature contribution.
left_margin
 (base R barplot) allows to adjust the left margin size to fit feature names.
cex
 (base R barplot) passed as cex.names parameter to \texttt{barplot}.

Details
The graph represents each feature as a horizontal bar of length proportional to the defined contribution of a feature. Features are shown ranked in a decreasing contribution order.

Value
The \texttt{gpb.plot.interpretation} function creates a barplot.

Examples

Logit <- function(x) {
 log(x / (1.0 - x))
}
data(agaricus.train, package = "gpboost")
labels <- agaricus.train$label
dtrain <- gpb.Dataset(
 , data = dtrain
 , nrounds = 5L
)

 tree_imp <- gpb.importance(model, percentage = TRUE)
gpb.plot.importance(tree_imp, top_n = 5L, measure = "Gain")
agricus.train$data
 , label = labels
)
setinfo(dtrain, "init_score", rep(Logit(mean(labels)), length(labels)))
data(agaricus.test, package = "gpboost")

params <- list(
 objective = "binary"
 , learning_rate = 0.1
 , max_depth = -1L
 , min_data_in_leaf = 1L
 , min_sum_hessian_in_leaf = 1.0
)
model <- gpb.train(
 params = params
 , data = dtrain
 , nrounds = 5L
)

tree_interpretation <- gpb.interpret(
 model = model
 , data = agaricus.test$data
 , idxset = 1L:5L
)
gpb.plot.interpretation(
 tree_interpretation_dt = tree_interpretation[[1L]]
 , top_n = 3L
)

gpb.plot.partial.dependence

Plot partial dependence plots

Description

Plot partial dependence plots

Usage

```r
?plot.gpb.partial.dependence
```
Arguments

model A gpb.Booster model object
data A matrix with data for creating partial dependence plots
variable A string with a name of the column or an integer with an index of the column in data for which a dependence plot is created
n.pt Evaluation grid size (used only if x is not discrete)
subsample Fraction of random samples in data to be used for calculating the partial dependence plot
discrete.x A boolean. If TRUE, the evaluation grid is set to the unique values of x
which.class An integer indicating the class in multi-class classification (value from 0 to num_class - 1)
xlab Parameter passed to plot
ylab Parameter passed to plot
type Parameter passed to plot
main Parameter passed to plot
return_plot_data A boolean. If TRUE, the data for creating the partial dependence plot is returned
... Additional parameters passed to plot

Value

A two-dimensional matrix with data for creating the partial dependence plot. This is only returned if return_plot_data==TRUE

Author(s)

Fabio Sigrist (adapted from a version by Michael Mayer)

Examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

gp_model <- GPM MODEL(group_data = group_data[,1], likelihood = "gaussian")
gpboost_model <- gpboost(data = X,
 label = y,
 gp_model = gp_model,
 nrounds = 16,
 learning_rate = 0.05,
 max_depth = 6,
 min_data_in_leaf = 5,
 objective = "regression_l2",
 verbose = 0)
gpb.plot.partial.dependence(gpboost_model, X, variable = 1)
Save GPBoost model

Usage

gpb.save(booster, filename, start_iteration = NULL, num_iteration = NULL,
 save_raw_data = FALSE, ...)

Arguments

- booster: Object of class gpb.Booster
- filename: saved filename
- start_iteration: int or None, optional (default=None) Start index of the iteration to predict. If None or <= 0, starts from the first iteration.
- num_iteration: int or None, optional (default=None) Limit number of iterations in the prediction. If None, if the best iteration exists and start_iteration is None or <= 0, the best iteration is used; otherwise, all iterations from start_iteration are used. If <= 0, all iterations from start_iteration are used (no limits).
- save_raw_data: If TRUE, the raw data (predictor / covariate data) for the Booster is also saved. Enable this option if you want to change start_iteration or num_iteration at prediction time after loading.
- ...: Additional named arguments passed to the predict() method of the gpb.Booster object passed to object. This is only used when there is a gp_model and when save_raw_data=FALSE

Value

gpb.Booster

Author(s)
Authors of the LightGBM R package, Fabio Sigrist

Examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

Train model and make prediction
gp_model <- GPMModel(group_data = group_data[,1], likelihood = "gaussian")
bst <- gpboost(data = X,
gpb.train

Main training logic for GBPoost

Description

Logic to train with GBPoost

Usage

gpb.train(params = list(), data, nrounds = 100L, gp_model = NULL,
use_gp_model_for_validation = TRUE, train_gp_model_cov_pars = TRUE,
valids = list(), obj = NULL, eval = NULL, verbose = 1L,
record = TRUE, eval_freq = 1L, init_model = NULL, colnames = NULL,
categorical_feature = NULL, early_stopping_rounds = NULL,
callbacks = list(), reset_data = FALSE, ...)

Arguments

params list of ("tuning") parameters. See the parameter documentation for more information. A few key parameters:

- learning_rate The learning rate, also called shrinkage or damping parameter (default = 0.1). An important tuning parameter for boosting. Lower values usually lead to higher predictive accuracy but more boosting iterations are needed
- num_leaves Number of leaves in a tree. Tuning parameter for tree-boosting (default = 31)
gpb.train

- **min_data_in_leaf** Minimal number of samples per leaf. Tuning parameter for tree-boosting (default = 20)
- **max_depth** Maximal depth of a tree. Tuning parameter for tree-boosting (default = no limit)
- **leaves_newton_update** Set this to TRUE to do a Newton update step for the tree leaves after the gradient step. Applies only to Gaussian process boosting (GPBoost algorithm)
- **train_gp_model_cov_pars** If TRUE, the covariance parameters of the Gaussian process are estimated in every boosting iterations, otherwise the gp_model parameters are not estimated. In the latter case, you need to either estimate them beforehand or provide the values via the 'init_cov_pars' parameter when creating the gp_model (default = TRUE).
- **use_gp_model_for_validation** If TRUE, the Gaussian process is also used (in addition to the tree model) for calculating predictions on the validation data (default = TRUE)
- **use_nesterov_acc** Set this to TRUE to do boosting with Nesterov acceleration (default = FALSE). Can currently only be used for tree_learner = "serial" (default option)
- **nesterov_acc_rate** Acceleration rate for momentum step in case Nesterov accelerated boosting is used (default = 0.5)
- **boosting** Boosting type. "gbdt", "rf", "dart" or "goss". Only "gbdt" allows for doing Gaussian process boosting.
- **num_threads** Number of threads. For the best speed, set this to the number of real CPU cores(parallel::detectCores(logical = FALSE)), not the number of threads (most CPU using hyper-threading to generate 2 threads per CPU core).

data

A gpb.Dataset object, used for training. Some functions, such as **gpb.cv**, may allow you to pass other types of data like matrix and then separately supply label as a keyword argument.

nrounds

Number of boosting iterations (= number of trees). This is the most important tuning parameter for boosting. Default = 100

gp_model

A GPModel object that contains the random effects (Gaussian process and / or grouped random effects) model

use_gp_model_for_validation

Boolean (default = TRUE). If TRUE, the gp_model (Gaussian process and/or random effects) is also used (in addition to the tree model) for calculating predictions on the validation data. If FALSE, the gp_model (random effects part) is ignored for making predictions and only the tree ensemble is used for making predictions for calculating the validation / test error.

train_gp_model_cov_pars

Boolean (default = TRUE). If TRUE, the covariance parameters of the gp_model (Gaussian process and/or random effects) are estimated in every boosting iterations, otherwise the gp_model parameters are not estimated. In the latter case, you need to either estimate them beforehand or provide the values via the init_cov_pars parameter when creating the gp_model

valids

A list of gpb.Dataset objects, used for validation
obj

Objective function, can be character or custom objective function. Examples include regression, regression_l1, huber, binary, lambdarank, multiclass, multiclass

eval

Evaluation function(s). This can be a character vector, function, or list with a mixture of strings and functions.

- **a. character vector**: If you provide a character vector to this argument, it should contain strings with valid evaluation metrics. See the "metric" section of the parameter documentation for a list of valid metrics.

- **b. function**: You can provide a custom evaluation function. This should accept the keyword arguments `preds` and `dtrain` and should return a named list with three elements:
 - name: A string with the name of the metric, used for printing and storing results.
 - value: A single number indicating the value of the metric for the given predictions and true values
 - higher_better: A boolean indicating whether higher values indicate a better fit. For example, this would be `FALSE` for metrics like MAE or RMSE.

- **c. list**: If a list is given, it should only contain character vectors and functions. These should follow the requirements from the descriptions above.

verbose

Verbosity for output, if <= 0, also will disable the print of evaluation during training

record

Boolean, TRUE will record iteration message to `booster$record_evals`

eval_freq

Evaluation output frequency, only effect when verbose > 0

init_model

Path of model file of `gpb.Booster` object, will continue training from this model

colnames

Feature names, if not null, will use this to overwrite the names in dataset

categorical_feature

Categorical features. This can either be a character vector of feature names or an integer vector with the indices of the features (e.g. `c(1L, 10L)` to say "the first and tenth columns").

early_stopping_rounds

Int. Activates early stopping. Requires at least one validation data and one metric. When this parameter is non-null, training will stop if the evaluation of any metric on any validation set fails to improve for `early_stopping_rounds` consecutive boosting rounds. If training stops early, the returned model will have attribute `best_iter` set to the iteration number of the best iteration.

callbacks

List of callback functions that are applied at each iteration.

reset_data

Boolean, setting it to TRUE (not the default value) will transform the booster model into a predictor model which frees up memory and the original datasets

... other parameters, see the parameter documentation for more information.

Value

A trained booster model `gpb.Booster`.
Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given validation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping by setting early_stopping_rounds in params, by default all metrics will be considered for early stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in params. Note that if you also specify metric in params, that metric will be considered the "first" one. If you omit metric, a default metric will be used based on your choice for the parameter obj (keyword argument) or objective (passed into params).

Author(s)

Authors of the LightGBM R package, Fabio Sigrist

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

#-------------------------Combine tree-boosting and grouped random effects model-------------------------
Create random effects model
gp_model <- GPMModel(group_data = group_data[,1], likelihood = "gaussian")
The default optimizer for covariance parameters (hyperparameters) is
Nesterov-accelerated gradient descent.
This can be changed to, e.g., Nelder-Mead as follows:
re_params <- list(optimizer_cov = "nelder_mead")
gp_model$set_optim_params(params=re_params)
Use trace = TRUE to monitor convergence:
re_params <- list(trace = TRUE)
gp_model$set_optim_params(params=re_params)
dtrain <- gpb.Dataset(data = X, label = y)
Train model
bst <- gpb.train(data = dtrain,
 gp_model = gp_model,
 nrounds = 16,
 learning_rate = 0.05,
 max_depth = 6,
 min_data_in_leaf = 5,
 objective = "regression_l2",
 verbose = 0)

Estimated random effects model
summary(gp_model)
Make predictions
pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
 predict_var = TRUE)
pred$random_effect.mean # Predicted mean
pred$random_effect_cov # Predicted variances
pred$fixed_effect # Predicted fixed effect from tree ensemble
Sum them up to obtain a single prediction
pred$random_effect_mean + pred$fixed_effect

#--------------------------Combine tree-boosting and Gaussian process model--------------------------
Create Gaussian process model
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential",
likelihood = "gaussian")
Train model
dtrain <- gpb.Dataset(data = X, label = y)
bst <- gpb.train(data = dtrain,
gp_model = gp_model,
nrounds = 16,
learning_rate = 0.05,
max_depth = 6,
min_data_in_leaf = 5,
objective = "regression_l2",
verbose = 0)

Estimated random effects model
summary(gp_model)

Make predictions
pred <- predict(bst, data = X_test, gp_coords_pred = coords_test,
predict_cov_mat = TRUE)
pred$random_effect_mean # Predicted (posterior) mean of GP
pred$random_effect_cov # Predicted (posterior) covariance matrix of GP
pred$fixed_effect # Predicted fixed effect from tree ensemble
Sum them up to obtain a single prediction
pred$random_effect_mean + pred$fixed_effect

#-------------------------Using validation data-------------------------
set.seed(1)
train_ind <- sample.int(length(y), size = 250)
dtrain <- gpb.Dataset(data = X[train_ind,], label = y[train_ind])
dtest <- gpb.Dataset.create.valid(dtrain, data = X[-train_ind,], label = y[-train_ind])
valids <- list(test = dtest)
kp_model <- GPModel(group_data = group_data[train_ind,1], likelihood = "gaussian")
Need to set prediction data for gp_model
gp_model$set_prediction_data(group_data_pred = group_data[-train_ind,1])
Training with validation data and use_gp_model_for_validation = TRUE
bst <- gpb.train(data = dtrain,
gp_model = gp_model,
nrounds = 100,
learning_rate = 0.05,
max_depth = 6,
min_data_in_leaf = 5,
objective = "regression_l2",
verbose = 1,
valids = valids,
early_stopping_rounds = 10,
use_gp_model_for_validation = TRUE)
print(paste0("Optimal number of iterations: ", bst$best_iter,
", best test error: ", bst$best_score))
Plot validation error
val_error <- unlist(bst$record_evals$test$l2$eval)
plot(1:length(val_error), val_error, type="l", lwd=2, col="blue",
 xlab="iteration", ylab="Validation error", main="Validation error vs. boosting iteration")

#--------------------Do Newton updates for tree leaves-------------------
Note: run the above examples first
bst <- gpb.train(data = dtrain,
 gp_model = gp_model,
 nrounds = 100,
 learning_rate = 0.05,
 max_depth = 6,
 min_data_in_leaf = 5,
 objective = "regression_l2",
 verbose = 1,
 valids = valids,
 early_stopping_rounds = 5,
 use_gp_model_for_validation = FALSE,
 leaves_newton_update = TRUE)
print(paste0("Optimal number of iterations: ", bst$best_iter,
 ", best test error: ", bst$best_score))

Plot validation error
val_error <- unlist(bst$record_evals$test$l2$eval)
plot(1:length(val_error), val_error, type="l", lwd=2, col="blue",
 xlab="iteration", ylab="Validation error", main="Validation error vs. boosting iteration")

#--------------------GPBoostOOS algorithm: GP parameters estimated out-of-sample----------------
Create random effects model and dataset
gp_model <- GPModel(group_data = group_data[,1], likelihood="gaussian")
dtrain <- gpb.Dataset(X, label = y)
params <- list(learning_rate = 0.05,
 max_depth = 6,
 min_data_in_leaf = 5,
 objective = "regression_l2")
Stage 1: run cross-validation to (i) determine to optimal number of iterations
and (ii) to estimate the GPModel on the out-of-sample data
cvbst <- gpb.cv(params = params,
 data = dtrain,
 gp_model = gp_model,
 nrounds = 100,
 nfold = 4,
 eval = "l2",
 early_stopping_rounds = 5,
 use_gp_model_for_validation = TRUE,
 fit_GP_cov_pars_OOS = TRUE)
print(paste0("Optimal number of iterations: ", cvbst$best_iter))
Estimated random effects model
Note: ideally, one would have to find the optimal combination of
other tuning parameters such as the learning rate, tree depth, etc.)
summary(gp_model)
Stage 2: Train tree-boosting model while holding the GPModel fix
bst <- gpb.train(data = dtrain,
gp_model = gp_model,
nrounds = cvbst$best_iter,
learning_rate = 0.05,
max_depth = 6,
min_data_in_leaf = 5,
objective = "regression_l2",
verbose = 0,
train_gp_model_cov_pars = FALSE)

The GPModel has not changed:
summary(gp_model)
• **max_depth** Maximal depth of a tree. Tuning parameter for tree-boosting (default = no limit)

• **leaves_newton_update** Set this to TRUE to do a Newton update step for the tree leaves after the gradient step. Applies only to Gaussian process boosting (GPBoost algorithm)

• **train_gp_model_cov_pars** If TRUE, the covariance parameters of the Gaussian process are estimated in every boosting iterations, otherwise the gp_model parameters are not estimated. In the latter case, you need to either estimate them beforehand or provide the values via the 'init_cov_pars' parameter when creating the gp_model (default = TRUE).

• **use_gp_model_for_validation** If TRUE, the Gaussian process is also used (in addition to the tree model) for calculating predictions on the validation data (default = TRUE)

• **use_nesterov_acc** Set this to TRUE to do boosting with Nesterov acceleration (default = FALSE). Can currently only be used for tree_learner = "serial" (default option)

• **nesterov_acc_rate** Acceleration rate for momentum step in case Nesterov accelerated boosting is used (default = 0.5)

• **boosting** Boosting type. "gbdt", "rf", "dart" or "goss". Only "gbdt" allows for doing Gaussian process boosting.

• **num_threads** Number of threads. For the best speed, set this to the number of real CPU cores(parallel::detectCores(logical = FALSE)), not the number of threads (most CPU using hyper-threading to generate 2 threads per CPU core).

• **nrounds** number of boosting iterations (= number of trees). This is the most important tuning parameter for boosting. Default = 100

• **gp_model** A GPModel object that contains the random effects (Gaussian process and / or grouped random effects) model

• **use_gp_model_for_validation** Boolean (default = TRUE). If TRUE, the gp_model (Gaussian process and/or random effects) is also used (in addition to the tree model) for calculating predictions on the validation data. If FALSE, the gp_model (random effects part) is ignored for making predictions and only the tree ensemble is used for making predictions for calculating the validation / test error.

• **train_gp_model_cov_pars** Boolean (default = TRUE). If TRUE, the covariance parameters of the gp_model (Gaussian process and/or random effects) are estimated in every boosting iterations, otherwise the gp_model parameters are not estimated. In the latter case, you need to either estimate them beforehand or provide the values via the init_cov_pars parameter when creating the gp_model

• **valids** a list of gpb.Dataset objects, used for validation

• **obj** objective function, can be character or custom objective function. Examples include regression, regression_l1, huber, binary, lambdarank, multiclass, multiclass

• **eval** evaluation function(s). This can be a character vector, function, or list with a mixture of strings and functions.
• **a. character vector**: If you provide a character vector to this argument, it should contain strings with valid evaluation metrics. See the "metric" section of the parameter documentation for a list of valid metrics.

• **b. function**: You can provide a custom evaluation function. This should accept the keyword arguments `preds` and `dtrain` and should return a named list with three elements:
 - `name`: A string with the name of the metric, used for printing and storing results.
 - `value`: A single number indicating the value of the metric for the given predictions and true values.
 - `higher_better`: A boolean indicating whether higher values indicate a better fit. For example, this would be `FALSE` for metrics like MAE or RMSE.

• **c. list**: If a list is given, it should only contain character vectors and functions. These should follow the requirements from the descriptions above.

 - `verbose`: verbosity for output, if <= 0, also will disable the print of evaluation during training.
 - `record`: Boolean, TRUE will record iteration message to `booster$record_evals`.
 - `eval_freq`: evaluation output frequency, only effect when `verbose` > 0.
 - `early_stopping_rounds`: int. Activates early stopping. Requires at least one validation data and one metric. When this parameter is non-null, training will stop if the evaluation of any metric on any validation set fails to improve for `early_stopping_rounds` consecutive boosting rounds. If training stops early, the returned model will have attribute `best_iter` set to the iteration number of the best iteration.
 - `init_model`: path of model file of `gpb.Booster` object, will continue training from this model.
 - `colnames`: feature names, if not null, will use this to overwrite the names in dataset.
 - `categorical_feature`: categorical features. This can either be a character vector of feature names or an integer vector with the indices of the features (e.g. `c(1L, 10L)` to say "the first and tenth columns").
 - `callbacks`: List of callback functions that are applied at each iteration.

... Additional arguments passed to `gpb.train`. For example:

 - `valids`: a list of `gpb.Dataset` objects, used for validation.
 - `obj`: objective function, can be character or custom objective function. Examples include `regression, regression_l1, huber, binary, lambdarank, multiclass, multiclass`.
 - `eval`: evaluation function, can be (a list of) character or custom eval function.
 - `record`: Boolean, TRUE will record iteration message to `booster$record_evals`.
 - `colnames`: feature names, if not null, will use this to overwrite the names in dataset.
 - `categorical_feature`: categorical features. This can either be a character vector of feature names or an integer vector with the indices of the features (e.g. `c(1L, 10L)` to say "the first and tenth columns").
reset_data: Boolean, setting it to TRUE (not the default value) will transform the booster model into a predictor model which frees up memory and the original datasets

Value

a trained gpb.Booster

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given validation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping by setting early_stopping_rounds in params, by default all metrics will be considered for early stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in params. Note that if you also specify metric in params, that metric will be considered the “first” one. If you omit metric, a default metric will be used based on your choice for the parameter obj (keyword argument) or objective (passed into params).

Author(s)

Authors of the LightGBM R package, Fabio Sigrist

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

#-------------------Combine tree-boosting and grouped random effects model-------------------
Create random effects model
gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
The default optimizer for covariance parameters (hyperparameters) is
Nesterov-accelerated gradient descent.
This can be changed to, e.g., Nelder-Mead as follows:
re_params <- list(optimizer_cov = "nelder_mead")
gp_model$set_optim_params(params=re_params)
Use trace = TRUE to monitor convergence:
re_params <- list(trace = TRUE)
gp_model$set_optim_params(params=re_params)

Train model
bst <- gpboost(data = X,
 label = y,
 gp_model = gp_model,
 nrounds = 16,
 learning_rate = 0.05,
 max_depth = 6,
 min_data_in_leaf = 5,
```
objective = "regression_l2",
verbose = 0)
# Estimated random effects model
summary(gp_model)

# Make predictions
pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
    predict_var= TRUE)
pred$random_effect_mean # Predicted mean
pred$random_effect_cov # Predicted variances
pred$fixed_effect # Predicted fixed effect from tree ensemble
# Sum them up to obtain a single prediction
pred$random_effect_mean + pred$fixed_effect

#-------------------------Combine tree-boosting and Gaussian process model----------------
# Create Gaussian process model
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential",
    likelihood = "gaussian")
# Train model
bst <- gpboost(data = X,
    label = y,
    gp_model = gp_model,
    nrounds = 8,
    learning_rate = 0.1,
    max_depth = 6,
    min_data_in_leaf = 5,
    objective = "regression_l2",
    verbose = 0)
# Estimated random effects model
summary(gp_model)
# Make predictions
pred <- predict(bst, data = X_test, gp_coords_pred = coords_test,
    predict_cov_mat = TRUE)
pred$random_effect_mean # Predicted (posterior) mean of GP
pred$random_effect_cov # Predicted (posterior) covariance matrix of GP
pred$fixed_effect # Predicted fixed effect from tree ensemble
# Sum them up to obtain a single prediction
pred$random_effect_mean + pred$fixed_effect
```

Description

Simulated example data for the GPBoost package This data set includes the following fields:

- y: response variable
- X: a matrix with covariate information
• group_data: a matrix with categorical grouping variables
• coords: a matrix with spatial coordinates
• X_test: a matrix with covariate information for predictions
• group_data_test: a matrix with categorical grouping variables for predictions
• coords_test: a matrix with spatial coordinates for predictions

Usage

data(GPBoost_data)

GPModel

Create a GPModel object

Description

Create a GPModel which contains a Gaussian process and / or mixed effects model with grouped random effects

Usage

GPModel(group_data = NULL, group_rand_coef_data = NULL,
ind_effect_group_rand_coef = NULL, gp_coords = NULL,
gp_rand_coef_data = NULL, cov_function = "exponential",
cov_fct_shape = 0, cov_fct_taper_range = 1, vecchia_approx = FALSE,
num_neighbors = 30L, vecchia_ordering = "none",
vecchia_pred_type = "order_obs_first_cond_obs_only",
num_neighbors_pred = num_neighbors, cluster_ids = NULL,
free_raw_data = FALSE, likelihood = "gaussian")

Arguments

group_data A vector or matrix with labels of group levels for grouped random effects
group_rand_coef_data A vector or matrix with covariate data for grouped random coefficients
ind_effect_group_rand_coef A vector with indices that indicate the corresponding random effects (=columns) in 'group_data' for every covariate in 'group_rand_coef_data'. For instance, c(1,1,2) means that the first two covariates (=first two columns) in 'group_rand_coef_data' have random coefficients corresponding to the first random effect (=first column) in 'group_data', and the third covariate (=third column) in 'group_rand_coef_data' has a random coefficient corresponding to the second random effect (=second column) in 'group_data'. The length of this index vector must equal the number of covariates in 'group_rand_coef_data'. Counting starts at 1.
gp_coords A matrix with coordinates (features) for Gaussian process
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp_rand_coef_data</td>
<td>A vector or matrix with covariate data for Gaussian process random coefficients</td>
</tr>
<tr>
<td>cov_function</td>
<td>A string specifying the covariance function for the Gaussian process. The following covariance functions are available: "exponential", "gaussian", "matern", "powered_exponential", "wendland", and "exponential_tapered". For "exponential", "gaussian", and "powered_exponential", we follow the notation and parametrization of Diggle and Ribeiro (2007). For "matern", we follow the notation of Rassmusen and Williams (2006). For "wendland", we follow the notation of Bevilacqua et al. (2019). A covariance function with the suffix "_tapered" refers to a covariance function that is multiplied by a compactly supported Wendland covariance function (= tapering)</td>
</tr>
<tr>
<td>cov_fct_shape</td>
<td>A numeric specifying the shape parameter of the covariance function (=smoothness parameter for Matern and Wendland covariance). For the Wendland covariance function, we follow the notation of Bevilacqua et al. (2019). This parameter is irrelevant for some covariance functions such as the exponential or Gaussian.</td>
</tr>
<tr>
<td>cov_fct_taper_range</td>
<td>A numeric specifying the range parameter of the Wendland covariance function / taper. We follow the notation of Bevilacqua et al. (2019)</td>
</tr>
<tr>
<td>vecchia_approx</td>
<td>A boolean. If TRUE, the Vecchia approximation is used</td>
</tr>
<tr>
<td>num_neighbors</td>
<td>An integer specifying the number of neighbors for the Vecchia approximation</td>
</tr>
<tr>
<td>vecchia_ordering</td>
<td>A string specifying the ordering used in the Vecchia approximation. "none" means the default ordering is used, "random" uses a random ordering</td>
</tr>
<tr>
<td>vecchia_pred_type</td>
<td>A string specifying the type of Vecchia approximation used for making predictions. "order_obs_first_cond_obs_only" = observed data is ordered first and the neighbors are only observed points, "order_obs_first_cond_all" = observed data is ordered first and the neighbors are selected among all points (observed + predicted), "order_pred_first" = predicted data is ordered first for making predictions, "latent_order_obs_first_cond_obs_only" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are only observed points, "latent_order_obs_first_cond_all" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are selected among all points</td>
</tr>
<tr>
<td>num_neighbors_pred</td>
<td>An integer specifying the number of neighbors for the Vecchia approximation for making predictions</td>
</tr>
<tr>
<td>cluster_ids</td>
<td>A vector with IDs / labels indicating independent realizations of random effects / Gaussian processes (same values = same process realization)</td>
</tr>
<tr>
<td>free_raw_data</td>
<td>A boolean. If TRUE, the data (groups, coordinates, covariate data for random coefficients) is freed in R after initialization</td>
</tr>
<tr>
<td>likelihood</td>
<td>A string specifying the likelihood function (distribution) of the response variable Default = "gaussian"</td>
</tr>
</tbody>
</table>
Value

A GPMModel containing ontains a Gaussian process and / or mixed effects model with grouped random effects

Author(s)

Fabio Sigrist

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

#--------------------Grouped random effects model: single-level random effect----------------
gp_model <- GPMModel(group_data = group_data[,1], likelihood="gaussian")

#--------------------Gaussian process model----------------
gp_model <- GPMModel(gp_coords = coords, cov_function = "exponential", likelihood="gaussian")

#--------------------Combine Gaussian process with grouped random effects----------------
gp_model <- GPMModel(group_data = group_data, gp_coords = coords, cov_function = "exponential", likelihood="gaussian")

GPMModel_shared_params Shared parameter docs

Description

Parameter docs shared by GPMModel, gpb.cv, and gpboost

Arguments

likelihood A string specifying the likelihood function (distribution) of the response variable Default = "gaussian"

group_data A vector or matrix with labels of group levels for grouped random effects

group_rand_coef_data A vector or matrix with covariate data for grouped random coefficients

ind_effect_group_rand_coef A vector with indices that indicate the corresponding random effects (=columns) in 'group_data' for every covariate in 'group_rand_coef_data'. For instance, c(1,1,2) means that the first two covariates (=first two columns) in 'group_rand_coef_data' have random coefficients corresponding to the first random effect (=first column) in 'group_data', and the third covariate (=third column) in 'group_rand_coef_data'
GPModel_shared_params

has a random coefficient corresponding to the second random effect (=second column) in 'group_data'. The length of this index vector must equal the number of covariates in 'group_rand_coef_data'. Counting starts at 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp_coords</td>
<td>A matrix with coordinates (features) for Gaussian process</td>
</tr>
<tr>
<td>gp_rand_coef_data</td>
<td>A vector or matrix with covariate data for Gaussian process random coefficients</td>
</tr>
<tr>
<td>cov_function</td>
<td>A string specifying the covariance function for the Gaussian process. The following covariance functions are available: "exponential", "gaussian", "matern", "powered_exponential", "wendland", and "exponential_tapered". For "exponential", "gaussian", and "powered_exponential", we follow the notation and parametrization of Diggle and Ribeiro (2007). For "matern", we follow the notation of Rasmussen and Williams (2006). For "wendland", we follow the notation of Bevilacqua et al. (2019). A covariance function with the suffix "_tapered" refers to a covariance function that is multiplied by a compactly supported Wendland covariance function (= tapering)</td>
</tr>
<tr>
<td>cov_fct_shape</td>
<td>A numeric specifying the shape parameter of the covariance function (=smoothness parameter for Matern and Wendland covariance). For the Wendland covariance function, we follow the notation of Bevilacqua et al. (2019)). This parameter is irrelevant for some covariance functions such as the exponential or Gaussian.</td>
</tr>
<tr>
<td>cov_fct_taper_range</td>
<td>A numeric specifying the range parameter of the Wendland covariance function / taper. We follow the notation of Bevilacqua et al. (2019)</td>
</tr>
<tr>
<td>vecchia_approx</td>
<td>A boolean. If TRUE, the Vecchia approximation is used</td>
</tr>
<tr>
<td>num_neighbors</td>
<td>An integer specifying the number of neighbors for the Vecchia approximation</td>
</tr>
<tr>
<td>vecchia_ordering</td>
<td>A string specifying the ordering used in the Vecchia approximation. "none" means the default ordering is used, "random" uses a random ordering</td>
</tr>
<tr>
<td>vecchia_pred_type</td>
<td>A string specifying the type of Vecchia approximation used for making predictions. "order_obs_first_cond_obs_only" = observed data is ordered first and the neighbors are only observed points, "order_obs_first_cond_all" = observed data is ordered first and the neighbors are selected among all points (observed + predicted), "order_pred_first" = predicted data is ordered first for making predictions, "latent_order_obs_first_cond_obs_only" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are only observed points, "latent_order_obs_first_cond_all" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are selected among all points</td>
</tr>
<tr>
<td>num_neighbors_pred</td>
<td>An integer specifying the number of neighbors for the Vecchia approximation for making predictions</td>
</tr>
<tr>
<td>cluster_ids</td>
<td>A vector with IDs / labels indicating independent realizations of random effects / Gaussian processes (same values = same process realization)</td>
</tr>
</tbody>
</table>
free_raw_data A boolean. If TRUE, the data (groups, coordinates, covariate data for random coefficients) is freed in R after initialization

y A vector with response variable data

X A matrix with covariate data for fixed effects (= linear regression term)

params A list with parameters for the model fitting / optimization

 - **optimizer_cov** Optimizer used for estimating covariance parameters. Options: "gradient_descent", "fisher_scoring", and "nelder_mead". Default = "gradient_descent"

 - **optimizer_coef** Optimizer used for estimating linear regression coefficients, if there are any (for the GPBoost algorithm there are usually none). Options: "gradient_descent", "wls", and "nelder_mead". Gradient descent steps are done simultaneously with gradient descent steps for the covariance parameters. "wls" refers to doing coordinate descent for the regression coefficients using weighted least squares. Default= "wls" for Gaussian data and "gradient_descent" for other likelihoods.

 - **maxit** Maximal number of iterations for optimization algorithm. Default=1000.

 - **delta_rel_conv** Convergence criterion: stop optimization if relative change in parameters is below this value. Default=1E-6.

 - **init_coef** Initial values for the regression coefficients (if there are any, can be NULL). Default=NULL.

 - **init_cov_pars** Initial values for covariance parameters of Gaussian process and random effects (can be NULL). Default=NULL.

 - **lr_coef** Learning rate for fixed effect regression coefficients if gradient descent is used. Default=0.1.

 - **lr_cov** Learning rate for covariance parameters. If <= 0, internal default values are used. Default value = 0.1 for "gradient_descent" and 1. for "fisher_scoring"

 - **use_nesterov_acc** If TRUE Nesterov acceleration is used. This is used only for gradient descent. Default=TRUE

 - **acc_rate_coef** Acceleration rate for regression coefficients (if there are any) for Nesterov acceleration. Default=0.5.

 - **acc_rate_cov** Acceleration rate for covariance parameters for Nesterov acceleration. Default=0.5.

 - **momentum_offset** Number of iterations for which no momentum is applied in the beginning. Default=2.

 - **trace** If TRUE, information on the progress of the parameter optimization is printed. Default=FALSE.

 - **convergence_criterion** The convergence criterion used for terminating the optimization algorithm. Options: "relative_change_in_log_likelihood" (default) or "relative_change_in_parameters".

 - **std_dev** If TRUE, (asymptotic) standard deviations are calculated for the covariance parameters

fixed_effects A vector of optional external fixed effects which are held fixed during training.

group_data_pred A vector or matrix with labels of group levels for which predictions are made (if there are grouped random effects in the GPModel)
group_rand_coef_data_pred
A vector or matrix with covariate data for grouped random coefficients (if there are some in the GPModel)

gp_coords_pred
A matrix with prediction coordinates (features) for Gaussian process (if there is a GP in the GPModel)

gp_rand_coef_data_pred
A vector or matrix with covariate data for Gaussian process random coefficients (if there are some in the GPModel)

cluster_ids_pred
A vector with IDs / labels indicating the realizations of random effects / Gaussian processes for which predictions are made (set to NULL if you have not specified this when creating the GPModel)

predict_cov_mat
A boolean. If TRUE, the (posterior / conditional) predictive covariance is calculated in addition to the (posterior / conditional) predictive mean

predict_var
A boolean. If TRUE, the (posterior / conditional) predictive variances are calculated

group_data
Example data for the GPBoost package

Description
A matrix with categorical grouping variables for the example data of the GPBoost package

Usage
data(GPBoost_data)

group_data_test
Example data for the GPBoost package

Description
A matrix with categorical grouping variables for predictions for the example data of the GPBoost package

Usage
data(GPBoost_data)
loadGPModel

Load a GPModel from a file

Description

Load a GPModel from a file

Usage

loadGPModel(filename)

Arguments

filename filename for loading

Value

A GPModel

Author(s)

Fabio Sigrist

Examples

```r
library(gpboost)
data(GPBoost_data, package = "gpboost")

gp_model <- fitGPModel(group_data = group_data[,1], y = y, likelihood="gaussian")
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_var = TRUE)
# Save model to file
filename <- tempfile(fileext = ".json")
saveGPModel(gp_model,filename = filename)
# Load from file and make predictions again
gp_model_loaded <- loadGPModel(filename = filename)
pred_loaded <- predict(gp_model_loaded, group_data_pred = group_data_test[,1], predict_var = TRUE)
# Check equality
pred$mu - pred_loaded$mu
pred$var - pred_loaded$var
```
predict.gpb.Booster
Predict method for GPBoost model

Description

Predicted values based on class gpb.Booster

Usage

```r
## S3 method for class 'gpb.Booster'
predict(object, data, start_iteration = NULL, 
        num_iteration = NULL, rawscore = FALSE, predleaf = FALSE, 
        predcontrib = FALSE, header = FALSE, reshape = FALSE, 
        group_data_pred = NULL, group_rand_coef_data_pred = NULL, 
        gp_coords_pred = NULL, gp_rand_coef_data_pred = NULL, 
        cluster_ids_pred = NULL, vecchia_pred_type = NULL, 
        num_neighbors_pred = -1, predict_cov_mat = FALSE, predict_var = FALSE, 
        ignore_gp_model = FALSE, ...)
```

Arguments

- `object`: Object of class gpb.Booster
- `data`: a matrix object, a dgCMatrix object or a character representing a filename
- `start_iteration`: int or None, optional (default=None) Start index of the iteration to predict. If None or <= 0, starts from the first iteration.
- `num_iteration`: int or None, optional (default=None) Limit number of iterations in the prediction. If None, if the best iteration exists and start_iteration is None or <= 0, the best iteration is used; otherwise, all iterations from start_iteration are used. If <= 0, all iterations from start_iteration are used (no limits).
- `rawscore`: whether the prediction should be returned in the for of original untransformed sum of predictions from boosting iterations' results. E.g., setting rawscore=TRUE for logistic regression would result in predictions for log-odds instead of probabilities.
- `predleaf`: whether predict leaf index instead.
- `predcontrib`: return per-feature contributions for each record.
- `header`: only used for prediction for text file. True if text file has header
- `reshape`: whether to reshape the vector of predictions to a matrix form when there are several prediction outputs per case.
- `group_data_pred`: A vector or matrix with labels of group levels for which predictions are made (if there are grouped random effects in the GPMmodel)
- `group_rand_coef_data_pred`: A vector or matrix with covariate data for grouped random coefficients (if there are some in the GPMmodel)
predict.gpb.Booster

- **gp_coords_pred** A matrix with prediction coordinates (features) for Gaussian process (if there is a GP in the GPModel)
- **gp_rand_coef_data_pred** A vector or matrix with covariate data for Gaussian process random coefficients (if there are some in the GPModel)
- **cluster_ids_pred** A vector with IDs/labels indicating the realizations of random effects/Gaussian processes for which predictions are made (set to NULL if you have not specified this when creating the GPModel)
- **vecchia_pred_type** A string specifying the type of Vecchia approximation used for making predictions. "order_obs_first_cond_obs_only" = observed data is ordered first and the neighbors are only observed points, "order_obs_firstCond_all" = observed data is ordered first and the neighbors are selected among all points (observed + predicted), "order_pred_first" = predicted data is ordered first for making predictions, "latent_order_obs_firstCond_obs_only" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are only observed points, "latent_order_obs_firstCond_all" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are selected among all points
- **num_neighbors_pred** an integer specifying the number of neighbors for the Vecchia approximation for making predictions
- **predict_cov_mat** A boolean. If TRUE, the (posterior/conditional) predictive covariance is calculated in addition to the (posterior/conditional) predictive mean
- **predict_var** A boolean. If TRUE, the (posterior/conditional) predictive variances are calculated
- **ignore_gp_model** A boolean. If TRUE, predictions are only made for the tree ensemble part and the gp_model is ignored
- **...** Additional named arguments passed to the predict() method of the gpb.Booster object passed to object.

Value

For regression or binary classification, it returns a vector of length nrows(data). For multiclass classification, either a num_class * nrows(data) vector or a (nrows(data),num_class) dimension matrix is returned, depending on the reshape value.

When predleaf = TRUE, the output is a matrix object with the number of columns corresponding to the number of trees.

Author(s)

Authors of the LightGBM R package, Fabio Sigrist
Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

#--------------------Combine tree-boosting and grouped random effects model----------------
Create random effects model
gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
The default optimizer for covariance parameters (hyperparameters) is
Nesterov-accelerated gradient descent.
This can be changed to, e.g., Nelder-Mead as follows:
re_params <- list(optimizer_cov = "nelder_mead")
gp_model$set_optim_params(params=re_params)
Use trace = TRUE to monitor convergence:
re_params <- list(trace = TRUE)
gp_model$set_optim_params(params=re_params)

Train model
bst <- gpboost(data = X,
 label = y,
 gp_model = gp_model,
 nrounds = 16,
 learning_rate = 0.05,
 max_depth = 6,
 min_data_in_leaf = 5,
 objective = "regression_l2",
 verbose = 0)

Estimated random effects model
summary(gp_model)

Make predictions
pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
 predict_var= TRUE)
pred$random_effect_mean # Predicted mean
pred$random_effect_cov # Predicted variances
pred$fixed_effect # Predicted fixed effect from tree ensemble
Sum them up to obtain a single prediction
pred$random_effect_mean + pred$fixed_effect

#--------------------Combine tree-boosting and Gaussian process model----------------
Create Gaussian process model
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential",
 likelihood = "gaussian")

Train model
bst <- gpboost(data = X,
 label = y,
 gp_model = gp_model,
 nrounds = 8,
 learning_rate = 0.1,
 max_depth = 6,
min_data_in_leaf = 5,
objective = "regression_l2",
verbose = 0)

Estimated random effects model
summary(gp_model)
Make predictions
pred <- predict(bst, data = X_test, gp_coords_pred = coords_test,
predict_cov_mat = TRUE)
pred$random_effect_mean # Predicted (posterior) mean of GP
pred$random_effect_cov # Predicted (posterior) covariance matrix of GP
pred$fixed_effect # Predicted fixed effect from tree ensemble
Sum them up to obtain a single prediction
pred$random_effect_mean + pred$fixed_effect

predict.GPModel Make predictions for a GPModel

Description
Make predictions for a GPModel

Usage
S3 method for class 'GPModel'
predict(object, y = NULL, group_data_pred = NULL,
group_rand_coef_data_pred = NULL, gp_coords_pred = NULL,
gp_rand_coef_data_pred = NULL, cluster_ids_pred = NULL,
predict_cov_mat = FALSE, predict_var = FALSE, cov_pars = NULL,
X_pred = NULL, use_saved_data = FALSE, vecchia_pred_type = NULL,
num_neighbors_pred = -1, predict_response = FALSE, ...)

Arguments

object a GPModel

y Observed data (can be NULL, e.g. when the model has been estimated already
and the same data is used for making predictions)#' @param cov_pars A vector
containing covariance parameters (used if the GPModel has not been trained or
if predictions should be made for other parameters than the estimated ones)

group_data_pred A vector or matrix with labels of group levels for which predictions are made
(if there are grouped random effects in the GPModel)

group_rand_coef_data_pred A vector or matrix with covariate data for grouped random coefficients (if
there are some in the GPModel)

gp_coords_pred A matrix with prediction coordinates (features) for Gaussian process (if there
is a GP in the GPModel)
predict.GPModel

`gp_rand_coef_data_pred`
A vector or matrix with covariate data for Gaussian process random coefficients (if there are some in the GPModel)

`cluster_ids_pred`
A vector with IDs / labels indicating the realizations of random effects / Gaussian processes for which predictions are made (set to NULL if you have not specified this when creating the GPModel)

`predict_cov_mat`
A boolean. If TRUE, the (posterior / conditional) predictive covariance is calculated in addition to the (posterior / conditional) predictive mean

`predict_var`
A boolean. If TRUE, the (posterior / conditional) predictive variances are calculated

`cov_pars`
A vector containing covariance parameters (used if the GPModel has not been trained or if predictions should be made for other parameters than the trained ones

`X_pred`
A matrix with covariate data for the linear regression term (if there is one in the GPModel)

`use_saved_data`
A boolean. If TRUE, predictions are done using a priori set data via the function `$set_prediction_data` (this option is not used by users directly)

`vecchia_pred_type`
A string specifying the type of Vecchia approximation used for making predictions. "order_obs_first_cond_obs_only" = observed data is ordered first and the neighbors are only observed points, "order_obs_first_cond_all" = observed data is ordered first and the neighbors are selected among all points (observed + predicted), "order_pred_first" = predicted data is ordered first for making predictions, "latent_order_obs_first_cond_obs_only" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are only observed points, "latent_order_obs_first_cond_all" = Vecchia approximation for the latent process and observed data is ordered first and neighbors are selected among all points

`num_neighbors_pred`
an integer specifying the number of neighbors for the Vecchia approximation for making predictions

`predict_response`
A boolean. If TRUE, the response variable (label) is predicted, otherwise the latent random effects (this is only relevant for non-Gaussian data)

Value

Predictions made using a GPModel. It returns a list of length three. The first entry ("mu") is the predicted mean, the second entry ("cov") is the predicted covariance matrix (=NULL if 'predict_cov_mat=FALSE'), and the third entry ("var") are predicted variances (=NULL if 'predict_var=FALSE')

Author(s)

Fabio Sigrist
Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

#--------------------------Grouped random effects model: single-level random effect--------------------------
gp_model <- fitGPModel(group_data = group_data[,1], y = y, likelihood="gaussian",
 params = list(std_dev = TRUE))
summary(gp_model)
Make predictions
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_var = TRUE)
pred$mu # Predicted mean
pred$var # Predicted variances
Also predict covariance matrix
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_cov_mat = TRUE)
pred$mu # Predicted mean
pred$cov # Predicted covariance

#--------------------------Gaussian process model--------------------------
gp_model <- fitGPModel(gp_coords = coords, cov_function = "exponential",
 likelihood="gaussian", y = y, params = list(std_dev = TRUE))
summary(gp_model)
Make predictions
pred <- predict(gp_model, gp_coords_pred = coords_test, predict_cov_mat = TRUE)
Predicted (posterior/conditional) mean of GP
pred$mu
Predicted (posterior/conditional) covariance matrix of GP
pred$cov

readRDS.gpb.Booster readRDS for gpb.Booster models

Description

Attempts to load a model stored in a .rds file, using readRDS

Usage

readRDS.gpb.Booster(file, refhook = NULL)

Arguments

file a connection or the name of the file where the R object is saved to or read from.
refhook a hook function for handling reference objects.
saveGPModel

Save a GPModel

Description
Save a GPModel

Usage
saveGPModel(gp_model, filename)

Arguments
- gp_model: a GPModel
- filename: filename for saving

Value
A GPModel
saveRDS.gpb.Booster

Author(s)
Fabio Sigrist

Examples

```r
library(gpboost)
data(GPBoost_data, package = "gpboost")

gp_model <- fitGPModel(group_data = group_data[,1], y = y, likelihood="gaussian")
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_var = TRUE)

# Save model to file
filename <- tempfile(fileext = ".json")
saveGPModel(gp_model, filename = filename)

# Load from file and make predictions again
gp_model_loaded <- loadGPModel(filename = filename)
pred_loaded <- predict(gp_model_loaded, group_data_pred = group_data_test[,1], predict_var = TRUE)

# Check equality
pred$mu - pred_loaded$mu
pred$var - pred_loaded$var
```

saveRDS.gpb.Booster saveRDS for gpb.Booster models

Description
Attempts to save a model using RDS. Has an additional parameter (raw) which decides whether to save the raw model or not.

Usage
```r
saveRDS.gpb.Booster(object, file, ascii = FALSE, version = NULL, compress = TRUE, refhook = NULL, raw = TRUE)
```

Arguments

- **object**: R object to serialize.
- **file**: a connection or the name of the file where the R object is saved to or read from.
- **ascii**: a logical. If TRUE or NA, an ASCII representation is written; otherwise (default), a binary one is used. See the comments in the help for save.
- **version**: the workspace format version to use. NULL specifies the current default version (2). Versions prior to 2 are not supported, so this will only be relevant when there are later versions.
- **compress**: a logical specifying whether saving to a named file is to use "gzip" compression, or one of "gzip", "bzip2" or "xz" to indicate the type of compression to be used. Ignored if file is a connection.
refhook a hook function for handling reference objects.
raw whether to save the model in a raw variable or not, recommended to leave it to TRUE.

Value

NULL invisibly.

Examples

library(gpboost)
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")
test <- agaricus.test
dtest <- gpb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(objective = "regression", metric = "l2")
valids <- list(test = dtest)
model <- gpb.train(
 params = params
 , data = dtrain
 , nrounds = 10L
 , valids = valids
 , min_data = 1L
 , learning_rate = 1.0
 , early_stopping_rounds = 5L
)
model_file <- tempfile(fileext = ".rds")
saveRDS.gpb.Booster(model, model_file)
Arguments

dataset Object of class gpb.Dataset
...
name the name of the field to get
info the specific field of information to set

Details

The name field can be one of the following:

- label: vector of labels to use as the target variable
- weight: to do a weight rescale
- init_score: initial score is the base prediction gpboost will boost from
- group: used for learning-to-rank tasks. An integer vector describing how to group rows together as ordered results from the same set of candidate results to be ranked. For example, if you have a 100-document dataset with group = c(10, 20, 40, 10, 10, 10), that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, etc.

Value

the dataset you passed in

the dataset you passed in

Examples

data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.construct(dtrain)

labels <- gpboost::getinfo(dtrain, "label")
gboost::setinfo(dtrain, "label", 1 - labels)

labels2 <- gpboost::getinfo(dtrain, "label")
stopifnot(all.equal(labels2, 1 - labels))
Description

Generic 'set_prediction_data' method for a GPModel

Usage

```r
define$lfunction
set_prediction_data(gp_model, group_data_pred = NULL,
group_rand_coef_data_pred = NULL, gp_coords_pred = NULL,
gp_rand_coef_data_pred = NULL, cluster_ids_pred = NULL, X_pred = NULL)
```

Arguments

- `gp_model`: A GPModel
- `group_data_pred`: A vector or matrix with labels of group levels for which predictions are made (if there are grouped random effects in the GPModel)
- `group_rand_coef_data_pred`: A vector or matrix with covariate data for grouped random coefficients (if there are some in the GPModel)
- `gp_coords_pred`: A matrix with prediction coordinates (features) for Gaussian process (if there is a GP in the GPModel)
- `gp_rand_coef_data_pred`: A vector or matrix with covariate data for Gaussian process random coefficients (if there are some in the GPModel)
- `cluster_ids_pred`: A vector with IDs / labels indicating the realizations of random effects / Gaussian processes for which predictions are made (set to NULL if you have not specified this when creating the GPModel)
- `X_pred`: A matrix with covariate data for the linear regression term (if there is one in the GPModel)

Author(s)

Fabio Sigrist

Examples

```r
library(gpboost)
data(GPBoost_data, package = "gpboost")
set.seed(1)
train_ind <- sample.int(length(y), size = 250)
gp_model <- GPModel(group_data = group_data[train_ind,1], likelihood="gaussian")
```
set_prediction_data.GPModel

set_prediction_data(gp_model, group_data_pred = group_data[-train_ind,1])

Description

Set the data required for making predictions with a GPModel

Usage

```r
## S3 method for class 'GPModel'
set_prediction_data(gp_model, group_data_pred = NULL,
group_rand_coef_data_pred = NULL, gp_coords_pred = NULL,
gp_rand_coef_data_pred = NULL, cluster_ids_pred = NULL, X_pred = NULL)
```

Arguments

- `gp_model` A GPModel
- `group_data_pred` A vector or matrix with labels of group levels for which predictions are made (if there are grouped random effects in the GPModel)
- `group_rand_coef_data_pred` A vector or matrix with covariate data for grouped random coefficients (if there are some in the GPModel)
- `gp_coords_pred` A matrix with prediction coordinates (features) for Gaussian process (if there is a GP in the GPModel)
- `gp_rand_coef_data_pred` A vector or matrix with covariate data for Gaussian process random coefficients (if there are some in the GPModel)
- `cluster_ids_pred` A vector with IDs / labels indicating the realizations of random effects / Gaussian processes for which predictions are made (set to NULL if you have not specified this when creating the GPModel)
- `X_pred` A matrix with covariate data for the linear regression term (if there is one in the GPModel)

Value

A GPModel

Author(s)

Fabio Sigrist
Examples

```r
library(gpboost)
data(GPBoost_data, package = "gpboost")
set.seed(1)
train_ind <- sample.int(length(y), size=250)
gp_model <- GPModel(group_data = group_data[train_ind,1], likelihood="gaussian")
set_prediction_data(gp_model, group_data_pred = group_data[-train_ind,1])
```

slice

Slice a dataset

Description

Get a new gpb.Dataset containing the specified rows of original gpb.Dataset object

Usage

```r
slice(dataset, ...)
```

S3 method for class 'gpb.Dataset'
```r
slice(dataset, idxset, ...)
```

Arguments

- **dataset**: Object of class gpb.Dataset
- **...**: other parameters (currently not used)
- **idxset**: an integer vector of indices of rows needed

Value

constructed sub dataset

Examples

```r
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

dsub <- gpboost::slice(dtrain, seq_len(42L))
gpb.Dataset.construct(dsub)
labels <- gpboost::getinfo(dsub, "label")
```
summary.GPModel

Description

Summary for a GPModel

Usage

```r
## S3 method for class 'GPModel'
summary(object, ...)
```

Arguments

- `object`: a GPModel
- `...`: (not used, ignore this, simply here that there is no CRAN warning)

Value

Summary of a (fitted) GPModel

Author(s)

Fabio Sigrist

Examples

```
# See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

#--------------------Grouped random effects model: single-level random effect----------------
gp_model <- fitGPModel(group_data = group_data[,1], y = y, likelihood="gaussian",
                       params = list(std_dev = TRUE))
summary(gp_model)

#--------------------Gaussian process model----------------
gp_model <- fitGPModel(gp_coords = coords, cov_function = "exponential",
                        likelihood="gaussian", y = y, params = list(std_dev = TRUE))
summary(gp_model)
```
X
Example data for the GPBoost package

Description
A matrix with covariate data for the example data of the GPBoost package

Usage
```r
data(GPBoost_data)
```

X_test
Example data for the GPBoost package

Description
A matrix with covariate information for the predictions for the example data of the GPBoost package

Usage
```r
data(GPBoost_data)
```

y
Example data for the GPBoost package

Description
Response variable for the example data of the GPBoost package

Usage
```r
data(GPBoost_data)
```
Index

* datasets
 agaricus.test, 3
 agaricus.train, 4
 bank, 5
 coords, 5
 coords_test, 5
 GPBoost_data, 52
 group_data, 58
 group_data_test, 58
 X, 74
 X_test, 74
 y, 74
 agaricus.test, 3
 agaricus.train, 4
 bank, 5
 barplot, 37
 coords, 5
 coords_test, 5
 dim.gpb.Dataset, 6
 dimnames.gpb.Dataset, 7
 dimnames<-.gpb.Dataset
 (dimnames.gpb.Dataset), 7
 fit, 8
 fit.GPModel, 9
 fitGPModel, 11
 getinfo, 15
 gpb.convert_with_rules, 17
 gpb.cv, 18, 19, 29, 43, 48
 gpb.Dataset, 20, 22, 30, 48
 gpb.Dataset.construct, 23
 gpb.Dataset.create.valid, 24
 gpb.Dataset.save, 24
 gpb.Dataset.set.categorical, 25
 gpb.Dataset.set.reference, 26
 gpb.dump, 27
 gpb.get.eval.result, 28
 gpb.grid.search.tune.parameters, 29
 gpb.importance, 32, 37
 gpb.interp, 33, 38
 gpb.load, 34
 gpb.model.dt.tree, 35
 gpb.plot.importance, 37
 gpb.plot.interpretation, 38
 gpb.plot.partial.dependence, 39
 gpb.save, 41
 gpb.train, 42, 50
 gboost, 48
 GPBoost_data, 52
 GPM, 53
 GPM_shared_params, 55
 group_data, 58
 group_data_test, 58
 loadGPModel, 59
 predict.gpb.Booster, 60
 predict.GPModel, 63
 readRDS, 65
 readRDS.gpb.Booster, 65
 saveGPModel, 66
 saveRDS.gpb.Booster, 67
 set_prediction_data, 70
 set_prediction_data.GPModel, 71
 setinfo, 68
 slice, 72
 summary.GPModel, 73

 X, 74
 X_test, 74
 y, 74