Package ‘hNMF’

November 20, 2020

Title Hierarchical Non-Negative Matrix Factorization
Version 1.0
Author Nicolas Sauwen
Maintainer Nicolas Sauwen <nicolas.sauwen@openanalytics.eu>
Description Hierarchical and single-level non-negative matrix factorization. Several NMF algorithms are available.
Depends R (>= 3.3.0)
License GPL-3
Encoding UTF-8
LazyData true
Imports NMF, oro.nifti, tcltk, nnls, rasterImage, stats, graphics, grDevices, MASS
RoxygenNote 6.0.1.9000
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2020-11-20 13:30:02 UTC

R topics documented:

HALSacc ... 2
hNMF ... 2
imoverlay ... 3
initializeNMF ... 4
initializeSPA ... 4
oneLevelNMF ... 5
PGNMF ... 6
preProcesInputData .. 7
residualNMF .. 7
scaleNMFResult ... 8
semiNMF .. 8

Index 10
HALSacc

Accelerated hierarchical alternating least squares NMF. For a reference to the method, see N. Gillis, Nonnegative matrix factorization: complexity, algorithms and applications [Section 4.2, Algo. 6], PhD thesis, Université catholique de Louvain, February 2011.

Description

Accelerated hierarchical alternating least squares NMF. For a reference to the method, see N. Gillis, Nonnegative matrix factorization: complexity, algorithms and applications [Section 4.2, Algo. 6], PhD thesis, Université catholique de Louvain, February 2011.

Usage

HALSacc(X, nmfMod, alpha = 1, maxiter = 1000, checkDivergence = FALSE)

Arguments

X
Input data matrix, each column represents one observation and the rows correspond to the different features

nmfMod
Valid NMF model, containing initialized factor matrices (in accordance with the NMF package definition)

alpha
Nonnegative parameter of the accelerated method

maxiter
Maximum number of iterations

checkDivergence
currently not in use, to be implemented

Value

Resulting NMF model (in accordance with the NMF package definition)

Author(s)

nsauwen

hNMF
Hierarchical non-negative matrix factorization.

Description

Hierarchical non-negative matrix factorization.

Usage

hNMF(nmfInput, nmfMethod = "HALSacc")
Arguments

nmfInput List with NMF input attributes
nmfMethod String referring to the NMF algorithm to be used.

Value

Resulting NMF model (in accordance with NMF package definition)

Author(s)

Nicolas Sauwen

Examples

create nmfInput object
X <- matrix(runif(10*20), 10,20)
bgImageTensor <- array(0,dim=dim(X))
selectVect <- array(1,dim=dim(X))
nmfInput <- NULL
nmfInput$numRows <- nrow(X)
nmfInput$numCols <- ncol(X)
nmfInput$numSlices <- 1
nmfInput$bgImageTensor <- bgImageTensor
nmfInput$selectVect <- selectVect

run NMF with default algorithm, 5 runs with random initialization
NMFresult1 <- oneLevelNMF(X, rank=2, nruns=5)

run NMF with specified algorithm and with initialized sources
W0 <- initializeSPA(X,3)
NMFresult2 <- oneLevelNMF(X, rank=3, method="HALSacc", initData = W0)

imoverlay

overlay a mask or a color scaled image on top of a background image

Description

Overlay a mask or a color scaled image on top of a background image

Usage

imoverlay(image, overlay, selectVect = NULL, color = c(0, 1, 0))
initializeSPA

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>image</td>
<td>A matrix, background image</td>
</tr>
<tr>
<td>overlay</td>
<td>A matrix, serving as the overlay mask or figure</td>
</tr>
<tr>
<td>selectVect</td>
<td>A matrix (binary values), specifying which matrix elements are to be overlaid</td>
</tr>
<tr>
<td>color</td>
<td>3-element vector, defining the RGB color to be used in case the overlay is a mask</td>
</tr>
</tbody>
</table>

Author(s)

Nicolas Sauwen

initializeNMF

Initialize NMF model with initial spectral data

Usage

initializeNMF(X, initData = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>input matrix</td>
</tr>
<tr>
<td>initData</td>
<td>source or abundance matrix with initial values</td>
</tr>
</tbody>
</table>

initializeSPA

The successive projection algorithm, a useful method for initializing the NMF source matrix

Description

The successive projection algorithm, a useful method for initializing the NMF source matrix

Usage

initializeSPA(data, nSources)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Input data matrix. The columns correspond to the data points, each row represents one feature</td>
</tr>
<tr>
<td>nSources</td>
<td>Number of sources to be obtained</td>
</tr>
</tbody>
</table>
oneLevelNMF

Value
Matrix with initialized sources as its columns

Author(s)
Nicolas Sauwen

Examples

random data
X <- matrix(runif(10*20), 10,20)

Create initial source matrix for 3 sources
W0 <- initializeSPA(X,3)

oneLevelNMF
Perform Non-Negative Matrix factorization

Description
Perform Non-Negative Matrix factorization

Usage
oneLevelNMF(X, rank, initData = NULL, method = "PGNMF", nruns = 10,
 checkDivergence = TRUE)

Arguments
 X input matrix. Each column represents one observation and the rows correspond
to the different features
 rank number of NMF components to be found
 initData either of the NMF factor matrices, with initial values
 method name of the NMF method to be used. "PGNMF" (default) and "HALSacc" are
 available by default. Any method from the NMF package can also be specified
 nruns number of NMF runs. It is recommended to run the NMF analyses multiple
times when random seeding is used, to avoid a suboptimal solution
 checkDivergence Boolean indicating whether divergence checking should be performed

Value
Scaled NMF model (in accordance with the NMF package definition)
Author(s)
Nicolas Sauwen

Examples

random data
X <- matrix(runif(10*20), 10,20)

run NMF with default algorithm, 5 runs with random initialization
NMFresult1 <- oneLevelNMF(X, rank=2, nruns=5)

run NMF with specified algorithm and with initialized sources
W0 <- initializeSPA(X,3)
NMFresult2 <- oneLevelNMF(X, rank=3, method="HALSacc", initData = W0)

PGNMF

Description

Usage

PGNMF(X, nmfMod, tol = 1e-05, maxIter = 500, timeLimit = 300, checkDivergence = TRUE)

Arguments

X Input data matrix, each column represents one data point and the rows correspond to the different features
nmfMod Valid NMF model, containing initialized factor matrices (in accordance with the NMF package definition)
tol Tolerance for a relative stopping condition
maxIter Maximum number of iterations
timeLimit Limit of time duration NMF analysis
checkDivergence Boolean indicating whether divergence checking should be performed Default is TRUE, but it should be set to FALSE when using random initialization
preProcesInputData

Value
Resulting NMF model (in accordance with the NMF package definition)

Author(s)
nauwen

preProcesInputData
Condition input data matrix properly for NMF

Description
Condition input data matrix properly for NMF

Usage
preProcesInputData(X)

Arguments
- **X**: input matrix

Value
matrix with non-zero elements

residualNMF
Computation of relative NMF residual per observation

Description
Computation of relative NMF residual per observation

Usage
residualNMF(X, nmfFit)

Arguments
- **X**: Input data matrix, each column represents one observation
- **nmfFit**: NMF model fitted to the input data in X

Value
Relative residual per observation, returned as a vector

Author(s)
nauwen
scaleNMFResult

Apply fixed scaling to NMF model matrices by normalizing the basis vectors

Description

Apply fixed scaling to NMF model matrices by normalizing the basis vectors

Usage

scaleNMFResult(NMFResult)

Arguments

NMFResult Fitted NMF model

Value

NMFResult Rescaled NMF model

Author(s)

Nicolas Sauwen

semiNMF

Description

Usage

semiNMF(X, nmfMod, maxiter = 2000, checkDivergence = FALSE)
Arguments

- **X**: Input data matrix, each column represents one observation and the rows correspond to the different features.
- **nmfMod**: Valid NMF model, containing initialized factor matrices (in accordance with the NMF package definition).
- **maxiter**: Maximum number of iterations.
- **checkDivergence**: Currently not in use, to be implemented.

Value

Resulting NMF model (in accordance with the NMF package definition).

Author(s)

nsauwen
Index

HALSacc, 2
hNMF, 2
imoverlay, 3
initializeNMF, 4
initializeSPA, 4
oneLevelNMF, 5
PGNMF, 6
preProcesInputData, 7
residualNMF, 7
scaleNMFResult, 8
semiNMF, 8