Package ‘hddtools’

February 15, 2021

Title Hydrological Data Discovery Tools

Version 0.9.4

Maintainer Claudia Vitolo <cvitolodev@gmail.com>

URL https://docs.ropensci.org/hddtools/,
 https://github.com/ropensci/hddtools

BugReports https://github.com/ropensci/hddtools/issues

Depends R (>= 3.5.0), rgdal

Imports zoo, sp, curl, XML, raster, readxl, tidyr

Suggests testthat, leaflet, rmarkdown, knitr, dplyr

VignetteBuilder knitr

License GPL-3

Repository CRAN

RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation no

Author Claudia Vitolo [aut, cre] (<https://orcid.org/0000-0002-4252-1176>),
 Wouter Buytaert [ctb] (Supervisor),
 Erin Le Dell [ctb] (Erin reviewed the package for rOpenSci, see https://github.com/ropensci/software-review/issues/73),
 Michael Sumner [ctb] (Michael reviewed the package for rOpenSci, see https://github.com/ropensci/software-review/issues/73)

Date/Publication 2021-02-14 23:40:03 UTC
bboxSpatialPolygon

Convert a bounding box to a SpatialPolygons object Bounding box is first created (in lat/lon) then projected if specified

Usage
bboxSpatialPolygon(boundingbox, proj4stringFrom = NULL, proj4stringTo = NULL)

Arguments

boundingbox Bounding box: a 2x2 numerical matrix of lat/lon coordinates
proj4stringFrom Projection string for the current boundingbox coordinates (defaults to lat/lon, WGS84)
proj4stringTo Projection string, or NULL to not project

Value
A SpatialPolygons object of the bounding box

References
https://gis.stackexchange.com/questions/46954/clip-spatial-object-to-bounding-box-in-r
Examples

```r
## Not run:
boundingbox <- raster::extent(-180, +180, -50, +50)
bbSP <- bboxSpatialPolygon(boundingbox = boundingbox)

## End(Not run)
```

catalogueData60UK

Data source: Data60UK catalogue

description

This function interfaces the Data60UK database catalogue listing 61 gauging stations.

Usage

```r
catalogueData60UK(areaBox = NULL)
```

Arguments

- `areaBox`: bounding box, a list made of 4 elements: minimum longitude (lonMin), minimum latitude (latMin), maximum longitude (lonMax), maximum latitude (latMax)

Value

This function returns a data frame containing the following columns:

- id: Station id number.
- River: String describing the river’s name.
- Location: String describing the location.
- Latitude
- Longitude

Author(s)

Claudia Vitolo

Source

http://nrfaapps.ceh.ac.uk/datauk60/data.html
Examples

```r
## Not run:
# Retrieve the whole catalogue
Data60UK_catalogue_all <- catalogueData60UK()

# Filter the catalogue based on a bounding box
areaBox <- raster::extent(-4, -2, +52, +53)
Data60UK_catalogue_bbox <- catalogueData60UK(areaBox)

## End(Not run)
```

catalogueGRDC

Data source: Global Runoff Data Centre catalogue

Description

This function interfaces the Global Runoff Data Centre database which provides river discharge data for almost 1000 sites over 157 countries.

Usage

catalogueGRDC()

Value

This function returns a data frame made with the following columns:

- `grdc_no`: GRDC station number
- `wmo_reg`: WMO region
- `sub_reg`: WMO subregion
- `river`: river name
- `station`: station name
- `country`: 2-letter country code (ISO 3166)
- `lat`: latitude, decimal degree
- `long`: longitude, decimal degree
- `area`: catchment size, km²
- `altitude`: height of gauge zero, m above sea level
- `d_start`: daily data available from year
- `d_end`: daily data available until year
- `d_yrs`: length of time series, daily data
- `d_miss`: percentage of missing values (daily data)
- `m_start`: monthly data available from
• m_end: monthly data available until
• m_yrs: length of time series, monthly data
• m_miss: percentage of missing values (monthly data)
• t_start: earliest data available
• t_end: latest data available
• t_yrs: maximum length of time series, daily and monthly data
• lta_discharge: mean annual streamflow, m3/s
• r_volume_yr: mean annual volume, km3
• r_height_yr: mean annual runoff depth, mm

Author(s)
Claudia Vitolo

Examples

```r
## Not run:
# Retrieve the catalogue
GRDC_catalogue_all <- catalogueGRDC()

## End(Not run)
```

catalogueMOPEX Data source: MOPEX catalogue

Description

This function retrieves the list of the MOPEX basins.

Usage

catalogueMOPEX(MAP = TRUE)

Arguments

MAP
Boolean, TRUE by default. If FALSE it returns a list of the USGS station ID’s and the gage locations of all 1861 potential MOPEX basins. If TRUE, it return a list of the USGS station ID’s and the gage locations of the 438 MOPEX basins with MAP estimates.
Value

This function returns a data frame containing the following columns:

- **USGS_ID**: Station id number
- **Longitude**: Decimal degrees East
- **Latitude**: Decimal degrees North
- **Drainage_Area**: Square Miles
- **R_gauges**: Required number of precipitation gages to meet MAP accuracy criteria
- **N_gauges**: Number of gages in total gage window used to estimate MAP
- **A_gauges**: Available number of gages in the basin
- **Ratio_AR**: Ratio of Available to Required number of gages in the basin
- **Date_start**: Date when recordings start
- **Date_end**: Date when recordings end
- **State**: State of the basin
- **Name**: Name of the basin

Columns **Date_start**, **Date_end**, **State**, and **Name** are taken from: https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/Basin_Characteristics/usgs431.txt. **Date_start** and **Date_end** are conventionally set to the first of the month here, however actual recordings may differ. Always refer to the recording date obtained as output of `tsMOPEX()`.

Author(s)

Claudia Vitolo

Source

Examples

```r
## Not run:
# Retrieve the MOPEX catalogue
catalogue <- catalogueMOPEX()

## End(Not run)
```
Description
This function provides the official SEPA database catalogue of river level data (from https://www2.sepa.org.uk/waterlevels/CSVs/SEPA_River_Levels_Web.csv) containing info for hundreds of stations. Some are NRFA stations. The function has no input arguments.

Usage
catalogueSEPA()

Value
This function returns a data frame containing the following columns:

- SEPA_HYDROLOGY_OFFICE
- STATION_NAME
- LOCATION_CODE (Station id number)
- NATIONAL_GRID_REFERENCE
- CATCHMENT_NAME
- RIVER_NAME
- GAUGE_DATUM
- CATCHMENT_AREA (in Km2)
- START_DATE
- END_DATE
- SYSTEM_ID
- LOWEST_VALUE
- LOW
- MAX_VALUE
- HIGH
- MAX_DISPLAY
- MEAN
- UNITS
- WEB_MESSAGE
- NRFA_LINK

Author(s)
Claudia Vitolo
Examples

 ## Not run:
 # Retrieve the whole catalogue
 SEPA_catalogue_all <- catalogueSEPA()

 ## End(Not run)

grdcLTMMD

Data set: The grdcLTMMD look-up table

Description

The grdcLTMMD look-up table

Usage

data("grdcLTMMD")

Format

A data frame with 6 rows and 4 columns.

WMO_Region an integer between 1 and 6
Coverage
Number_of_stations
Archive url to spreadsheet

Source

http://www.bafg.de/GRDC

hddtools

hddtools: Hydrological Data Discovery Tools

Description

Many governmental bodies and institutions are currently committed to publish open data as the result of a trend of increasing transparency, based on which a wide variety of information produced at public expense is now becoming open and freely available to improve public involvement in the process of decision and policy making. Discovery, access and retrieval of information is, however, not always a simple task. Especially when access to data APIs is not allowed, downloading a metadata catalogue, selecting the information needed, requesting datasets, de-compression, conversion, manual filtering and parsing can become rather tedious. The R package hddtools is an open source project, designed to make all the above operations more efficient by means of reusable functions. The package facilitate access to various online data sources such as:
• **KGClimateClass** (http://koeppen-geiger.vu-wien.ac.at/): The Koppen Climate Classification map is used for classifying the world’s climates based on the annual and monthly averages of temperature and precipitation.

• **GRDC** (http://www.bafg.de/GRDC/EN/Home/homepage_node.html): The Global Runoff Data Centre (GRDC) provides datasets for all the major rivers in the world.

• **Data60UK** (http://tdwg.catchment.org/datasets.html): The Data60UK initiative collated datasets of areal precipitation and streamflow discharge across 61 gauging sites in England and Wales (UK).

• **MOPEX** (https://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm): This dataset contains historical hydrometeorological data and river basin characteristics for hundreds of river basins in the US.

• **SEPA** (https://www2.sepa.org.uk/WaterLevels/): The Scottish Environment Protection Agency (SEPA) provides river level data for hundreds of gauging stations in the UK.

This package complements R’s growing functionality in environmental web technologies by bridging the gap between data providers and data consumers. It is designed to be an initial building block of scientific workflows for linking data and models in a seamless fashion.

References

| KGClimateClass | Function to identify the updated Koppen-Greiger climate zone (on a 0.1 x 0.1 degrees resolution map). |

Description

Given a bounding box, the function identifies the overlapping climate zones.

Usage

```r
KGClimateClass(areaBox = NULL, updatedBy = "Peel", verbose = FALSE)
```

Arguments

- **areaBox**: bounding box, a list made of 4 elements: minimum longitude (lonMin), minimum latitude (latMin), maximum longitude (lonMax), maximum latitude (latMax)
- **updatedBy**: this can either be "Kottek" or "Peel"
- **verbose**: if TRUE more info are printed on the screen

Value

List of overlapping climate zones.
Author(s)

Claudia Vitolo

References

Examples

```r
## Not run:
# Define a bounding box
areaBox <- raster::extent(-3.82, -3.63, 52.41, 52.52)
# Get climate classes
KGClimateClass(areaBox = areaBox)
## End(Not run)
```

tsData60UK

Interface for the Data60UK database of Daily Time Series

Description

This function extract the dataset containing daily rainfall and streamflow discharge at one of the Data60UK locations.

Usage

tsData60UK(id)

Arguments

- **id** String which identifies the station ID number

Value

The function returns a data frame containing 2 time series (as zoo objects): "P" (precipitation) and "Q" (discharge).

Author(s)

Claudia Vitolo
Examples

```r
## Not run:
Morwick <- tsData60UK(id = "22001")
## End(Not run)
```

tsMOPEX

Interface for the MOPEX database of Daily Time Series

Description

This function extracts the dataset containing daily rainfall and streamflow discharge at one of the MOPEX locations.

Usage

```r
tsMOPEX(id, MAP = TRUE)
```

Arguments

- `id` String for the station ID number (USGS_ID)
- `MAP` Boolean, TRUE by default. If FALSE it looks for data through all the 1861 potential MOPEX basins. If TRUE, it looks for data through the 438 MOPEX basins with MAP estimates.

Value

If MAP = FALSE, this function returns a time series of daily streamflow discharge (Q, in mm). If MAP = TRUE, this function returns a data frame containing the following columns (as zoo object):

- `Date` Format is "yyyymmd" (YYYYMMDD)
- `P` Mean areal precipitation (mm)
- `E` Climatic potential evaporation (mm, based NOAA Freewater Evaporation Atlas)
- `Q` Daily streamflow discharge (mm)
- `T_max` Daily maximum air temperature (Celsius)
- `T_min` Daily minimum air temperature (Celsius)

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
BroadRiver <- tsMOPEX(id = "01048000")
## End(Not run)
```
tsSEPA

Interface for the MOPEX database of Daily Time Series

Description

This function extract the dataset containing daily rainfall and streamflow discharge at one of the
MOPEX locations.

Usage

```
    tsSEPA(id)
```

Arguments

```
    id
```

 hydrometric reference number (string)

Value

The function returns river level data in metres, as a zoo object.

Author(s)

Claudia Vitolo

Examples

```
## Not run:
sampleTS <- tsSEPA(id = "10048")

## End(Not run)
```
Index

* datasets
 - grdcLTMMD, 8
 - bboxSpatialPolygon, 2
 - catalogueData60UK, 3
 - catalogueGRDC, 4
 - catalogueMOPEX, 5
 - catalogueSEPA, 7
 - grdcLTMMD, 8
 - hddtools, 8
 - KGClimateClass, 9
 - tsData60UK, 10
 - tsMOPEX, 11
 - tsSEPA, 12