Package ‘healthyR.ts’

February 25, 2022

Title The Time Series Modeling Companion to 'healthyR'
Version 0.1.8
Description Hospital time series data analysis workflow tools, modeling, and automations. This library provides many useful tools to review common administrative time series hospital data. Some of these include average length of stay, and readmission rates. The aim is to provide a simple and consistent verb framework that takes the guesswork out of everything.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.2

URL https://github.com/spsanderson/healthyR.ts
BugReports https://github.com/spsanderson/healthyR.ts/issues

Imports magrittr, rlang (>= 0.1.2), tibble, timetk, tidyr, tidyquant, dplyr, purrr, ggplot2, lubridate, plotly, recipes, modeltime, cowplot, graphics, forcats, stringi, parsnip, workflows, earth

Suggests knitr, rmarkdown, roxygen2, scales, rsample, healthyR.data, stringr, forecast, tidymodels, glue, xts, zoo, TSA, tune, dials, workflows, tidyselect

VignetteBuilder knitr
Depends R (>= 2.10)
NeedsCompilation no

Author Steven Sanderson [aut, cre],
 Steven Sanderson [cph]
Maintainer Steven Sanderson <spsanderson@gmail.com>
Repository CRAN
Date/Publication 2022-02-25 15:40:02 UTC
R topics documented:

calibrate_and_plot .. 3
model_extraction_helper ... 5
step_ts_acceleration ... 6
step_ts_velocity ... 8
tidy_fft ... 10
ts_acceleration_augment .. 12
ts_acceleration_vec ... 13
ts_auto_recipe ... 14
ts_calendar_heatmap_plot ... 16
ts_compare_data .. 18
ts_forecast_simulator .. 20
ts_info_tbl .. 22
ts_ma_plot ... 24
ts_model_auto_tune .. 26
ts_model_compare ... 30
ts_model_rank_tbl ... 32
ts_model_spec_tune_template 34
ts_qc_run_chart .. 36
ts_qq_plot .. 37
ts_random_walk .. 39
ts_random_walk_ggplot_layers 40
ts_scedacity_scatter_plot ... 41
ts_sma_plot .. 43
ts_splits_plot .. 45
ts_to_tbl ... 46
ts_velocity_augment ... 47
ts_velocity_vec .. 48
ts_vva_plot .. 49
ts_wfs_arima_boost .. 50
ts_wfs_auto_arima ... 53
ts_wfs_ets_reg ... 54
ts_wfs_lin_reg ... 57
ts_wfs_mars .. 58
ts_wfs_nnetar_reg ... 60
ts_wfs_prophet_reg .. 62
ts_wfs_svm_poly ... 65
ts_wfs_svm_rbf .. 67

Index 69
calibrate_and_plot

Helper function - Calibrate and Plot

Description
This function is a helper function. It will take in a set of workflows and then perform the `modeltime::modeltime_calibrate()` and `modeltime::plot_modeltime_forecast()`.

Usage
```r
calibrate_and_plot(
  ..., .type = "testing", .splits_obj, .data,
  .print_info = TRUE, .interactive = FALSE
)
```

Arguments

- `...` The workflow(s) you want to add to the function.
- `type` Either the training(splits) or testing(splits) data.
- `splits_obj` The splits object.
- `data` The full data set.
- `print_info` The default is TRUE and will print out the calibration accuracy tibble and the resulting plotly plot.
- `interactive` The defaults is FALSE. This controls if a forecast plot is interactive or not via plotly.

Details
This function expects to take in workflows fitted with training data.

Value
The original time series, the simulated values and a some plots

Author(s)
Steven P. Sanderson II, MPH

See Also
Other Utility: `model_extraction_helper()`, `ts_info_tbl()`, `ts_model_compare()`, `ts_model_rank_tbl()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`, `ts_to_tbl()`
Examples

```r
## Not run:
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(healthyR.data))
suppressPackageStartupMessages(library(tidymodels))

data <- healthyR_data %>%
  filter(ip_op_flag == "I") %>%
  select(visit_end_date_time) %>%
  rename(date_col = visit_end_date_time) %>%
  timetk::filter_by_time(
    .date_var = date_col,
    .start_date = "2015",
    .end_date = "2019"
  ) %>%
  timetk::summarise_by_time(
    .date_var = date_col,
    by = "month",
    value = n()
  )

splits <- timetk::time_series_split(
  data,
  date_col,
  assess = 12,
  skip = 3,
  cumulative = TRUE
)

rec_obj <- recipe(value ~ ., data = training(splits))

model_spec <- linear_reg(
  mode = "regression",
  penalty = 0.1,
  mixture = 0.5
) %>%
  set_engine("lm")

wflw <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec) %>%
  fit(training(splits))

output <- calibrate_and_plot(
  wflw,
  .type = "training",
  .splits_obj = splits,
  .data = data,
  .print_info = FALSE,
  .interactive = FALSE
)
```
model_extraction_helper

End(Not run)

model_extraction_helper

Model Method Extraction Helper

Description

This takes in a model fit and returns the method of the fit object.

Usage

```r
model_extraction_helper(.fit_object)
```

Arguments

- `.fit_object` A time-series fitted model

Details

Currently supports forecasting model of one of the following from the `forecast` package:

- `Arima`
- `auto.arima`
- `ets`
- `nnetar`
- `workflow` fitted models.

Value

A model description

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: `calibrate_and_plot()`, `ts_info_tbl()`, `ts_model_compare()`, `ts_model_rank_tbl()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`, `ts_to_tbl()`
Examples

```r
# NOT RUN
## Not run:
suppressPackageStartupMessages(library(forecast))
suppressPackageStartupMessages(library(healthyR.data))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))

data <- healthyR_data %>%
  filter(ip_op_flag == "I") %>%
  select(visit_end_date_time) %>%
  rename(date_col = visit_end_date_time) %>%
  summarise_by_time(
    .date_var = date_col
    , .by = "month"
    , value = n()
  ) %>%
  filter_by_time(
    .date_var = date_col
    , .start_date = "2012"
    , .end_date = "2019"
  )

data_ts <- tk_ts(data = data, frequency = 12)

# Create a model
fit_arima <- auto.arima(data_ts)

model_extraction_helper(fit_arima)
## End(Not run)
```

step_ts_acceleration

Recipes Time Series Acceleration Generator

Description

`step_ts_acceleration` creates a *specification* of a recipe step that will convert numeric data from a time series into its acceleration.

Usage

```r
step_ts_acceleration(
  recipe,
  ..., 
  role = "predictor",
  trained = FALSE,
  columns = NULL,
```
step_ts_acceleration

```r
skip = FALSE,
id = rand_id("ts_acceleration")
)
```

Arguments

- **recipe**
 - A recipe object. The step will be added to the sequence of operations for this recipe.

- **...**
 - One or more selector functions to choose which variables that will be used to create the new variables. The selected variables should have class `numeric`.

- **role**
 - For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.

- **trained**
 - A logical to indicate if the quantities for preprocessing have been estimated.

- **columns**
 - A character string of variables that will be used as inputs. This field is a placeholder and will be populated once `recipes::prep()` is used.

- **skip**
 - A logical. Should the step be skipped when the recipe is baked by `bake.recipe()`? While all operations are baked when `prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

- **id**
 - A character string that is unique to this step to identify it.

Details

Numeric Variables Unlike other steps, `step_ts_acceleration` does not remove the original numeric variables. `recipes::step_rm()` can be used for this purpose.

Value

For `step_ts_acceleration`, an updated version of `recipe` with the new step added to the sequence of existing steps (if any).

Main Recipe Functions:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`

See Also

Other Recipes: `step_ts_velocity()`
step_ts_velocity

Examples

```r
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
  date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
  a = rnorm(len_out),
  b = runif(len_out)
)

# Create a recipe object
rec_obj <- recipe(a ~ ., data = data_tbl) %>%
  step_ts_acceleration(b)

# View the recipe object
rec_obj

# Prepare the recipe object
prep(rec_obj)

# Bake the recipe object - Adds the Time Series Signature
bake(prep(rec_obj), data_tbl)

rec_obj %>% prep() %>% juice()
```

step_ts_velocity
Recipes Time Series velocity Generator

Description

step_ts_velocity creates a specification of a recipe step that will convert numeric data into from a time series into its velocity.

Usage

```r
step_ts_velocity(
  recipe,
  ..., 
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  skip = FALSE,
  id = rand_id("ts_velocity")
)
```
Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose which variables that will be used to create the new variables. The selected variables should have class numeric.
- **role**: For model terms created by this step, what analysis role should they be assigned to? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **columns**: A character string of variables that will be used as inputs. This field is a placeholder and will be populated once `recipes::prep()` is used.
- **skip**: A logical. Should the step be skipped when the recipe is baked by `bake.recipe()`? While all operations are baked when `prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g., processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- **id**: A character string that is unique to this step to identify it.

Details

Numeric Variables Unlike other steps, `step_ts_velocity` does not remove the original numeric variables. `recipes::step_rm()` can be used for this purpose.

Value

For `step_ts_velocity`, an updated version of recipe with the new step added to the sequence of existing steps (if any).

Main Recipe Functions:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`

See Also

Other Recipes: `step_ts_acceleration()`

Examples

```r
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))

len_out      = 10
by_unit      = "month"
start_date   = as.Date("2021-01-01")

data_tbl <- tibble(
```
tidy_fft <- function(.data, .date_col, .value_col, .frequency = 12L, .harmonics = 1L, .upsampling = 10L) {

 # Create a recipe object
 rec_obj <- recipe(a ~ ., data = data_tbl) %>%
 step_ts_velocity(b)

 # View the recipe object
 rec_obj

 # Prepare the recipe object
 prep(rec_obj)

 # Bake the recipe object - Adds the Time Series Signature
 bake(prep(rec_obj), data_tbl)

 rec_obj %>% prep() %>% juice()
}

Description
Perform an fft using stats::fft() and return a tidier style output list with plots.

Usage
tidy_fft(
 .data,
 .date_col,
 .value_col,
 .frequency = 12L,
 .harmonics = 1L,
 .upsampling = 10L
)

Arguments
.data The data.frame/tibble you will pass for analysis.
.date_col The column that holds the date.
.value_col The column that holds the data to be analyzed.
.frequency The frequency of the data, 12 = monthly for example.
.harmonics How many harmonic waves do you want to produce.
.upsampling The upsampling of the time series.
Details

This function will perform a few different things, but primarily it will compute the Fast Discrete Fourier Transform (FFT) using \texttt{stats::fft()}. The formula is given as:

\[y[h] = \sum_{k=1}^{n} z[k] * \exp(-2 * \pi * ik * (k - 1) * (h - 1)/n) \]

There are many items returned inside of a list invisibly. There are four primary categories of data returned in the list. Below are the primary categories and the items inside of them.

data:
1. data
2. error_data
3. input_vector
4. maximum_harmonic_tbl
5. differenced_value_tbl
6. dff_tbl
7. ts_tbl

plots:
1. harmonic_plot
2. diff_plot
3. max_har_plot
4. harmonic_plotly
5. max_har_plotly

parameters:
1. harmonics
2. upsampling
3. start_date
4. end_date
5. freq

model:
1. m
2. harmonic_obj
3. harmonic_model
4. model_summary

Value

A list object returned invisibly.
Author(s)

Steven P. Sanderson II, MPH

Examples

```r
library(dplyr)
library(ggplot2)
library(timetk)

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

a <- tidy_fft(
  .data = data,
  .value_col = value,
  .date_col = value,
  .harmonics = 3,
  .frequency = 12
)

e$plots$max_har_plot
a$plots$harmonic_plot
```

ts_acceleration_augment

Augment Function Acceleration

Description

Takes a numeric vector and will return the acceleration of that vector.

Usage

```r
ts_acceleration_augment(.data, .value, .names = "auto")
```

Arguments

- `.data` The data being passed that will be augmented by the function.
- `.value` This is passed `rlang::enquo()` to capture the vectors you want to augment.
- `.names` The default is "auto"

Details

Takes a numeric vector and will return the acceleration of that vector. The acceleration of a time series is computed by taking the second difference, so

\[
(x_t - x_{t1}) - (x_{t1} - x_{t1}^1)
\]

This function is intended to be used on its own in order to add columns to a tibble.
Value
A augmented tibble

Author(s)
Steven P. Sanderson II, MPH

See Also
Other Augment Function: `ts_velocity_augment()`

Examples
```r
suppressPackageStartupMessages(library(dplyr))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
  date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
  a = rnorm(len_out),
  b = runif(len_out)
)

ts_acceleration_augment(data_tbl, b)
```

ts_acceleration_vec

Vector Function Time Series Acceleration

Description
Takes a numeric vector and will return the acceleration of that vector.

Usage
```r
ts_acceleration_vec(.x)
```

Arguments
- `.x` A numeric vector

Details
Takes a numeric vector and will return the acceleration of that vector. The acceleration of a time series is computed by taking the second difference, so

\[
(x_t - x_{t-1}) - (x_t - x_{t-1})_t
\]

This function can be used on its own. It is also the basis for the function `ts_acceleration_augment()`.
Description

Automatically builds generic time series recipe objects from a given tibble.

Usage

```r
ts_auto_recipe(
  .data,
  .date_col,
  .pred_col,
  .step_ts_sig = TRUE,
  .step_ts_rm_misc = TRUE,
  .step_ts_dummy = TRUE,
)```
ts_auto_recipe

```r
.rostep_ts_fourier = TRUE,
.rostep_ts_fourier_period = 365/12,
.K = 1,
.rostep_ts_yeo = TRUE,
.rostep_ts_nzv = TRUE
)
```

Arguments

- `.data` The data that is going to be modeled. You must supply a tibble.
- `.date_col` The column that holds the date for the time series.
- `.pred_col` The column that is to be predicted.
- `.step_ts_sig` A Boolean indicating should the `timetk::step_timeseries_signature()` be added, default is TRUE.
- `.step_ts_rm_misc` A Boolean indicating should the following items be removed from the time series signature, default is TRUE.
  - iso$
  - xts$
  - hour
  - min
  - sec
  - am.pm
- `.step_ts_dummy` A Boolean indicating if all_nominal_predictors() should be dummied and with one hot encoding.
- `.step_ts_fourier` A Boolean indicating if `timetk::step_fourier()` should be added to the recipe.
- `.step_ts_fourier_period` A number such as 365/12, 365/4 or 365 indicting the period of the fourier term. The numeric period for the oscillation frequency.
- `.K` The number of orders to include for each sine/cosine fourier series. More orders increase the number of fourier terms and therefore the variance of the fitted model at the expense of bias. See details for examples of K specification.
- `.step_ts_yeo` A Boolean indicating if the `recipes::step_YeoJohnson()` should be added to the recipe.
- `.step_ts_nzv` A Boolean indicating if the `recipes::step_nzv()` should be run on all predictors.

Details

This will build out a couple of generic recipe objects and return those items in a list.

Author(s)

Steven P. Sanderson II, MPH
Examples

```r
library(healthyR.data)
library(timetk)
library(healthyR.ts)
library(recipes)
library(dplyr)
library(rsample)

data_tbl <- healthyR_data %>%
 filter_by_time(
 .date_var = visit_end_date_time
 , .start_date = "2012"
 , .end_date = "2020"
) %>%
 filter(payer_grouping != "?") %>%
 select(visit_end_date_time, ip_op_flag) %>%
 summarise_by_time(
 .date_var = visit_end_date_time
 , .by = "week"
 , value = n()
)

splits <- rsample::initial_time_split(
 data_tbl
 , prop = 0.8
 , cumulative = TRUE
)

ts_auto_recipe(
 .data = data_tbl
 , .date_col = visit_end_date_time
 , .pred_col = value
)

ts_auto_recipe(
 .data = training(splits)
 , .date_col = visit_end_date_time
 , .pred_col = value
)
```

### Description

"Takes in data that has been aggregated to the day level and makes a calendar heatmap."
Usage

ts_calendar_heatmap_plot(
    .data,
    .date_col,
    .value_col,
    .low = "red",
    .high = "green",
    .plt_title = "",
    .interactive = TRUE
)

Arguments

.data The time-series data with a date column and value column.
.date_col The column that has the datetime values
.value_col The column that has the values
.low The color for the low value, must be quoted like "red". The default is "red"
.high The color for the high value, must be quoted like "green". The default is "green"
.plt_title The title of the plot
.interactive Default is TRUE to get an interactive plot using plotly::ggplotly(). It can be set to FALSE to get a ggplot plot.

Details

The data provided must have been aggregated to the day level, if not funky output could result and it is possible nothing will be output but errors. There must be a date column and a value column, those are the only items required for this function to work.

This function is intentionally inflexible, it complains more and does less in order to force the user to supply a clean data-set.

Value

A ggplot2 plot or if interactive a plotly plot

Author(s)

Steven P. Sanderson II, MPH

Examples

suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(lubridate))
suppressPackageStartupMessages(library(zoo))
suppressPackageStartupMessages(library(HealthyR.data))
suppressPackageStartupMessages(library(stringi))
suppressPackageStartupMessages(library(plotly))
suppressPackageStartupMessages(library(purrr))
suppressPackageStartupMessages(library(forcats))

data <- healthyR_data %>%
  filter(ip_op_flag == "O") %>%
  filter(substr(visit_id, 1, 1) == "8") %>%
  select(visit_start_date_time) %>%
  filter_by_time(.date_var = visit_start_date_time,
                 .start_date = "2014",
                 .end_date = "2016") %>%
  summarise_by_time(.date_var = visit_start_date_time,
                    value = n()) %>%
  set_names("date_col","value") %>%
  tk_augment_timeseries_signature(.date_var = date_col) %>%
  select(date_col, value, year, month, week, wday.lbl) %>%
  mutate(yearmonth_fct = as.yearmon(date_col) %>% factor()) %>%
  mutate(wday.lbl = fct_rev(wday.lbl)) %>%
  select(date_col, year, yearmonth_fct, everything()) %>%
  arrange(date_col) %>%
  mutate(week_of_month = stri_datetime_fields(date_col)$WeekOfMonth) %>%
  rename("week_day" = "wday.lbl")

ts_calendar_heatmap_plot(
  .data = data
, .date_col = date_col
, .value_col = value
, .interactive = FALSE
)

---

**ts_compare_data**  
*Compare data over time periods*

**Description**

Given a tibble/data.frame, you can get date from two different but comparative date ranges. Let's say you want to compare visits in one year to visits from 2 years before without also seeing the previous 1 year. You can do that with this function.
ts_compare_data

Usage

    ts_compare_data(.data, .date_col, .start_date, .end_date, .periods_back)

Arguments

    .data            The date.frame/tibble that holds the data
    .date_col        The column with the date value
    .start_date      The start of the period you want to analyze
    .end_date        The end of the period you want to analyze
    .periods_back    How long ago do you want to compare data too. Time units are collapsed using 
                     lubridate::floor_date(). The value can be:
                      • second
                      • minute
                      • hour
                      • day
                      • week
                      • month
                      • bimonth
                      • quarter
                      • season
                      • halfyear
                      • year
                     Arbitrary unique English abbreviations as in the lubridate::period() con-
                     structor are allowed.

Details

    • Uses the timetk::filter_by_time() function in order to filter the date column.
    • Uses the timetk::subtract_time() function to subtract time from the start date.

Value

    A tibble.

Author(s)

    Steven P. Sanderson II, MPH

Examples

    suppressPackageStartupMessages(library(healthyR.data))
    suppressPackageStartupMessages(library(dplyr))
    suppressPackageStartupMessages(library(timetk))
    ts_compare_data(
        .data = healthyR_data
        , .date_col = visit_start_date_time
    )
ts_forecast_simulator

Time-series Forecasting Simulator

Description

Creating different forecast paths for forecast objects (when applicable), by utilizing the underlying model distribution with the simulate function.

Usage

```r
ts_forecast_simulator(
 .model,
 .data,
 .ext_reg = NULL,
 .frequency = NULL,
 .bootstrap = TRUE,
 .horizon = 4,
 .iterations = 25,
 .sim_color = "steelblue",
 .alpha = 0.05
)
```

Arguments

- **.model**: A forecasting model of one of the following from the forecast package:
  - Arima
  - auto.arima
  - ets
• \texttt{nnetar}
• \texttt{Arima()} with \texttt{xreg}

\texttt{.data} The data that is used for the \texttt{.model} parameter. This is used with \texttt{timetk::tk_index()}

\texttt{.ext_reg} A \texttt{tibble} or \texttt{matrix} of future \texttt{xregs} that should be the same length as the horizon you want to forecast.

\texttt{.frequency} This is for the conversion of an internal table and should match the time frequency of the data.

\texttt{.bootstrap} A boolean value of \texttt{TRUE/FALSE}. From \texttt{forecast::simulate.Arima()} Do simulation using resampled errors rather than normally distributed errors.

\texttt{.horizon} An integer defining the forecast horizon.

\texttt{.iterations} An integer, set the number of iterations of the simulation.

\texttt{.sim_color} Set the color of the simulation paths lines.

\texttt{.alpha} Set the opacity level of the simulation path lines.

\section*{Details}
This function expects to take in a model of either \texttt{Arima}, \texttt{auto.arima}, \texttt{ets} or \texttt{nnetar} from the \texttt{forecast} package. You can supply a forecasting horizon, iterations and a few other items. You may also specify an \texttt{Arima()} model using \texttt{xregs}.

\section*{Value}
The original time series, the simulated values and a some plots

\section*{Author(s)}
Steven P. Sanderson II, MPH

\section*{Examples}
\begin{verbatim}
suppressPackageStartupMessages(library(forecast)) suppressPackageStartupMessages(library(healthyR.data)) suppressPackageStartupMessages(library(dplyr)) suppressPackageStartupMessages(library(timetk)) suppressPackageStartupMessages(library(ggplot2)) suppressPackageStartupMessages(library(plotly)) suppressPackageStartupMessages(library(purrr)) suppressPackageStartupMessages(library(tidyquant)) suppressPackageStartupMessages(library(tidyr))

data <- healthyR_data %>%
  filter(ip_op_flag == "I") %>%
  select(visit_end_date_time) %>%
  rename(date_col = visit_end_date_time) %>%
  summarise_by_time(
    .date_var = date_col
    , .by = "month"
    , value = n()

data_forecast <- ts_forecast_simulator(
  .data = data
  , .model = \texttt{Arima()} %>% \texttt{as.numeric()} %>% \texttt{matrix()} %>% \texttt{as.data.frame()}
  , \texttt{.xreg} = NULL
  , \texttt{.frequency} = \texttt{1}
  , \texttt{.horizon} = \texttt{12}
  , \texttt{.iterations} = \texttt{100}
  , \texttt{.sim_color} = \texttt{"blue"}
  , \texttt{.alpha} = \texttt{0.5}
  , \texttt{.bootstrap} = \texttt{TRUE}
)

library(ggplot2)
library(plotly)

ggplot(data_forecast) +
  geom_line(aes(x = date, y = value, color = \texttt{.sim_color}))

plotly(data_forecast) +
  xaxis(title = \texttt{"Date"})
  yaxis(title = \texttt{"Value"})

library(plotly)

plotly(data_forecast) +
  xaxis(title = \texttt{"Date"})
  yaxis(title = \texttt{"Value"})
  layout(title = \texttt{"Forecasted Values"})
\end{verbatim}
```r
data_ts <- tk_ts(data = data, frequency = 12)

Create a model
fit <- auto.arima(data_ts)

Simulate 50 possible forecast paths, with .horizon of 12 months
output <- ts_forecast_simulator(
 .model = fit,
 .horizon = 12,
 .iterations = 50,
 .data = data
)

output$ggplot
```

---

ts_info_tbl  

Get Time Series Information

### Description

This function will take in a data set and return to you a tibble of useful information.

### Usage

```r
ts_info_tbl(.data, .date_col)
```

### Arguments

- `.data`  
The data you are passing to the function

- `.date_col`  
This is only needed if you are passing a tibble.

### Details

This function can accept objects of the following classes:

- `ts`
- `xts`
- `mts`
- `zoo`
- `tibble/data.frame`
The function will return the following pieces of information in a tibble:

- name
- class
- frequency
- start
- end
- var
- length

**Value**

A tibble

**Author(s)**

Steven P. Sanderson II, MPH

**See Also**

Other Utility: `calibrate_and_plot()`, `model_extraction_helper()`, `ts_model_compare()`, `ts_model_rank_tbl()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`, `ts_to_tbl()`

**Examples**

```r
library(healthyR.data)
library(dplyr)
library(timetk)
data_tbl <- healthyR_data%>%
 filter(ip_op_flag == 'I')%>
summarise_by_time(
 .date_var = visit_end_date_time,
 .by = "month",
 value = n())
%>%
filter_by_time(
 .date_var = visit_end_date_time,
 .start_date = "2015",
 .end_date = "2019"
)%>%
rename(date_col = visit_end_date_time)

ts_info_tbl(AirPassengers)
ts_info_tbl(BJsales)
ts_info_tbl(data_tbl, date_col)
```
Description

This function will produce two plots. Both of these are moving average plots. One of the plots is from \texttt{xts::plot.xts()} and the other a \texttt{ggplot2} plot. This is done so that the user can choose which type is best for them. The plots are stacked so each graph is on top of the other.

Usage

\begin{verbatim}
  ts_ma_plot(
    .data,          # The data you want to visualize. This should be pre-processed and the aggregation should match the .frequency argument.
    .date_col,      # The data column from the .data argument.
    .value_col,     # The value column from the .data argument
    .ts_frequency = "monthly",  # The frequency of the aggregation, quoted, ie. "monthly", anything else will default to weekly, so it is very important that the data passed to this function be in either a weekly or monthly aggregation.
    .main_title = NULL,  # The title of the main plot.
    .secondary_title = NULL,  # The title of the second plot.
    .tertiary_title = NULL  # The title of the third plot.
  )
\end{verbatim}

Arguments

- \texttt{.data}
- \texttt{.date_col}
- \texttt{.value_col}
- \texttt{.ts_frequency}
- \texttt{.main_title}
- \texttt{.secondary_title}
- \texttt{.tertiary_title}

Details

This function expects to take in a data.frame/tibble. It will return a list object so it is a good idea to save the output to a variable and extract from there.

Value

A few time series data sets and two plots.
Author(s)

Steven P. Sanderson II, MPH

Examples

```r
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(purrr))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(tidyquant))
suppressPackageStartupMessages(library(xts))
suppressPackageStartupMessages(library(cowplot))
suppressPackageStartupMessages(library(healthyR.data))

data_tbl <- healthyR_data %>%
 select(visit_end_date_time) %>%
 summarise_by_time(
 .date_var = visit_end_date_time,
 .by = "month",
 value = n()
) %>%
 set_names("date_col","value") %>%
 filter_by_time(
 .date_var = date_col,
 .start_date = "2013",
 .end_date = "2020"
)

output <- ts_ma_plot(
 .data = data_tbl,
 .date_col = date_col,
 .value_col = value
)

output$pgrid
output$xts_plt
output$data_summary_tbl %>% head()

data_tbl <- healthyR_data %>%
 select(visit_end_date_time) %>%
 summarise_by_time(
 .date_var = visit_end_date_time,
 .by = "week",
 value = n()
) %>%
 set_names("date_col","value") %>%
 filter_by_time(
 .date_var = date_col,
 .start_date = "2013",
 .end_date = "2020"
)
```
output <- ts_ma_plot(
  .data = data_tbl,
  .date_col = date_col,
  .value_col = value,
  .ts_frequency = "week"
)

output$pgrid
output$xts_plt
output$data_summary_tbl %>% head()

---

ts_model_auto_tune  Time Series Model Tuner

**Description**

This function will create a tuned model. It uses the `ts_model_spec_tune_template()` under the hood to get the generic template that is used in the grid search.

**Usage**

```r
ts_model_auto_tune(
 .modeltime_model_id,
 .calibration_tbl,
 .splits_obj,
 .drop_training_na = TRUE,
 .date_col,
 .value_col,
 .tscv_assess = "12 months",
 .tscv_skip = "6 months",
 .slice_limit = 6,
 .facet_ncol = 2,
 .grid_size = 30,
 .num_cores = 1,
 .best_metric = "rmse"
)
```

**Arguments**

- `.modeltime_model_id`
  The .model_id from a calibrated modetime table.
- `.calibration_tbl`
  A calibrated modetime table.
- `.splits_obj`
  The time_series_split object.
- `.drop_training_na`
  A boolean that will drop NA values from the training(splits) data.
The column that holds the date values.

- **value_col**
  The column that holds the time series values.

- **tscv_assess**
  A character expression like "12 months". This gets passed to `timetk::time_series_cv()`.

- **tscv_skip**
  A character expression like "6 months". This gets passed to `timetk::time_series_cv()`.

- **slice_limit**
  An integer that gets passed to `timetk::time_series_cv()`.

- **facet_ncol**
  The number of faceted columns to be passed to `plot_time_series_cv_plan`.

- **grid_size**
  An integer that gets passed to the `dials::grid_latin_hypercube()` function.

- **num_cores**
  The default is 1, you can set this to any integer value as long as it is equal to or less than the available cores on your machine.

- **best_metric**
  The default is "rmse" and this can be set to any default dials metric. This must be passed as a character.

### Details

This function can work with the following parsnip/modelframe engines:

- "auto_arima"
- "auto_arima_xgboost"
- "ets"
- "croston"
- "theta"
- "stlm_ets"
- "tbats"
- "stlm_arima"
- "nnetar"
- "prophet"
- "prophet_xgboost"
- "lm"
- "glmnet"
- "stan"
- "spark"
- "keras"
- "earth"
- "xgboost"

This function returns a list object with several items inside of it. There are three categories of items that are inside of the list.

- **data**
- **model_info**
- **plots**
The data section has the following items:

- `calibration_tbl` This is the calibration data passed into the function.
- `calibration_tuned_tbl` This is a calibration tibble that has used the tuned workflow.
- `tscv_data_tbl` This is the tibble of the time series cross validation.
- `tuned_results` This is a tuning results tibble with all slices from the time series cross validation.
- `best_tuned_results_tbl` This is a tibble of the parameters for the best test set with the chosen metric.
- `tscv_obj` This is the actual time series cross validation object returned from `timetk::time_series_cv()`.  

The model_info section has the following items:

- `model_spec` This is the original modeltime/parsnip model specification.
- `model_spec_engine` This is the engine used for the model specification.
- `model_spec_tuner` This is the tuning model template returned from `ts_model_spec_tune_template()`.
- `plucked_model` This is the model that we have plucked from the calibration tibble for tuning.
- `wflw_tune_spec` This is a new workflow with the `model_spec_tuner` attached.
- `grid_spec` This is the grid search specification for the tuning process.
- `tuned_tscv_wflw_spec` This is the final tuned model where the workflow and model have been finalized. This would be the model that you would want to pull out if you are going to work with it further.

The plots section has the following items:

- `tune_results_plt` This is a static ggplot of the grid search.
- `tscv_pl` This is the time series cross validation plan plot.

Value

A list object with multiple items.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Model Tuning: `ts_model_spec_tune_template()`

Examples

```r
Not run:
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(healthyR.data))
suppressPackageStartupMessages(library(tidymodels))
```
```r
data <- healthyR_data %>%
 filter(ip_op_flag == "I") %>%
 select(visit_end_date_time) %>%
 rename(date_col = visit_end_date_time) %>%
 summarise_by_time(
 .date_var = date_col,
 .by = "month",
 visits = n()
) %>%
 mutate(date_col = as.Date(date_col)) %>%
 filter(date_col %>% filter_by_time(
 .date_var = date_col,
 .start_date = "2012",
 .end_date = "2019"
))

splits <- time_series_split(
 data,
 date_col,
 assess = 12,
 skip = 3,
 cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = data,
 .date_col = date_col,
 .pred_col = visits
)

wfsets <- healthyR.ts::ts_wfs_mars(
 .model_type = "earth",
 .recipe_list = rec_objs
)

wf_fits <- wfsets %>%
 modeltime_fit_workflowset(
 data = training(splits),
 control = control_fit_workflowset(
 allow_par = TRUE,
 verbose = TRUE
)
)

models_tbl <- wf_fits %>%
 filter(.model != "NULL")

calibration_tbl <- models_tbl %>%
 modeltime_calibrate(new_data = testing(splits))

output <- healthyR.ts::ts_model_auto_tune(
 .modeltime_model_id = 1,
)
The `ts_model_compare` function is used to compare two time series models. It expects to take in two models that will be used for comparison. This function is useful after appropriately following the modeltime workflow and getting two models to compare. It is an extension of the `calibrate` and `plot` functions, but it only takes two models and is most likely better suited to be used after running a model through the `ts_model_auto_tune()` function to see the difference in performance after a base model has been tuned.

Usage

```r
ts_model_compare(
  .model_1,
  .model_2,
  .type = "testing",
  .splits_obj,
  .data,
  .print_info = TRUE,
  .metric = "rmse"
)
```

Arguments

- `.model_1`: The model being compared to the base, this can also be a hyperparameter tuned model.
- `.model_2`: The base model.
- `.type`: The default is the testing tibble, can be set to training as well.
- `.splits_obj`: The splits object.
- `.data`: The original data that was passed to splits.
- `.print_info`: This is a boolean, the default is TRUE.
- `.metric`: This should be one of the following character strings:
ts_model_compare

- "mae"
- "mape"
- "mase"
- "smape"
- "rmse"
- "rsq"

Details

This function expects to take two models. You must tell it if it will be assessing the training or testing data, where the testing data is the default. You must therefore supply the splits object to this function along with the original dataset. You must also tell it which default modeltime accuracy metric should be printed on the graph itself. You can also tell this function to print information to the console or not. A static ggplot2 plot and an interactive plotly plot will be returned inside of the output list.

Value

The function outputs a list invisibly.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: calibrate_and_plot(), model_extraction_helper(), ts_info_tbl(), ts_model_rank_tbl(), ts_qq_plot(), ts_scedacity_scatter_plot(), ts_to_tbl()

Examples

```r
## Not run:
suppressPackageStartupMessages(library(healthyR.ts))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(dplyr))

data_tbl <- ts_to_tbl(AirPassengers) %>%
  select(-index)

splits <- time_series_split(
  data = data_tbl,
  date_var = date_col,
  assess = "12 months",
  cumulative = TRUE
)

rec_obj <- ts_auto_recipe(
  .data = data_tbl,
```
ts_model_rank_tbl

Model Rank

Description
This takes in a calibration tibble and computes the ranks of the models inside of it.

Usage
ts_model_rank_tbl(.calibration_tbl)

Arguments
.calibration_tbl
A calibrated modeltime table.
Details

This takes in a calibration tibble and computes the ranks of the models inside of it. It computes for now only the default yardstick metrics from `modeltime` These are the following using the `dplyr` `min_rank()` function with `desc` use on `rsq`:

- "rmse"
- "mae"
- "mape"
- "smape"
- "rsq"

Value

A tibble with models ranked by metric performance order

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: `calibrate_and_plot()`, `model_extraction_helper()`, `ts_info_tbl()`, `ts_model_compare()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`, `ts_to_tbl()`

Examples

```r
# NOT RUN
## Not run:
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))

data_tbl <- ts_to_tbl(AirPassengers) %>%
  select(-index)

splits <- time_series_split(
  data_tbl,
  date_var = date_col,
  assess = "12 months",
  cumulative = TRUE
)

rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
  set_engine(engine = "auto_arima")
```
model_spec_mars <- mars(mode = "regression") %>%
 set_engine("earth")

wflw_fit_arima <- workflow() %>%
 add_recipe(rec_obj) %>%
 add_model(model_spec_arima) %>%
 fit(training(splits))

wflw_fit_mars <- workflow() %>%
 add_recipe(rec_obj) %>%
 add_model(model_spec_mars) %>%
 fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)

calibration_tbl <- model_tbl %>%
 modeltime_calibrate(new_data = testing(splits))

ts_model_rank_tbl(calibration_tbl)

End(Not run)
Value

A tuneable parsnip model specification.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Model Tuning: `ts_model_auto_tune()`

Examples

```r
ts_model_spec_tune_template("ets")
ts_model_spec_tune_template("prophet")
```
Quality Control Run Chart

Description

A control chart is a specific type of graph that shows data points between upper and lower limits over a period of time. You can use it to understand if the process is in control or not. These charts commonly have three types of lines such as upper and lower specification limits, upper and lower limits and planned value. By the help of these lines, Control Charts show the process behavior over time.

Usage

```r
ts_qc_run_chart(
  .data,
  .date_col,
  .value_col,
  .interactive = FALSE,
  .median = TRUE,
  .cl = TRUE,
  .mcl = TRUE,
  .ucl = TRUE,
  .lc = FALSE,
  .lmcl = FALSE,
  .llcl = FALSE
)
```

Arguments

- `.data` The data.frame/tibble to be passed.
- `.date_col` The column holding the timestamp.
- `.value_col` The column with the values to be analyzed.
- `.interactive` Default is FALSE, TRUE for an interactive plotly plot.
- `.median` Default is TRUE. This will show the median line of the data.
- `.cl` This is the first upper control line
- `.mcl` This is the second sigma control line positive
- `.ucl` This is the third sigma control line positive
- `.lc` This is the first negative control line
- `.lmcl` This is the second sigma negative control line
- `.llcl` This is the third sigma negative control line

Details

- Expects a time-series tibble/data.frame
- Expects a date column and a value column
ts_qq_plot

Value

A static ggplot2 graph or if .interactive is set to TRUE a plotly plot

Author(s)

Steven P. Sanderson II, MPH

Examples

```r
library(healthyR.data)
library(timetk)
library(dplyr)
library(stringr)

df <- healthyR_data

df_monthly_tbl <- df %>%
mutate(ip_op_flag = str_squish(ip_op_flag)) %>%
filter(ip_op_flag == "I") %>%
select(visit_end_date_time, length_of_stay) %>%
arrange(visit_end_date_time) %>%
summarise_by_time(
  .date_var = visit_end_date_time
 , .by = "month"
 , alos = round(mean(length_of_stay, na.rm = TRUE), 2)
 , .type = "ceiling"
) %>%
mutate(
  visit_end_date_time = visit_end_date_time %>%
  subtract_time("1 day")
)

df_monthly_tbl %>%
ts_qc_run_chart(
  .date_col = visit_end_date_time
 , .value_col = alos
 , .llcl = TRUE
)
```

Time Series Model QQ Plot

Description

This takes in a calibration tibble and will produce a QQ plot.

Usage

```r
ts_qq_plot(.calibration_tbl, .model_id = NULL, .interactive = FALSE)
```
Arguments

- `.calibration_tbl`
 A calibrated modeltime table.

- `.model_id`
 The id of a particular model from a calibration tibble. If there are multiple models in the tibble and this remains NULL then the plot will be returned using `ggplot2::facet_grid(~ .model_id)`

- `.interactive`
 A boolean with a default value of FALSE. TRUE will produce an interactive plotly plot.

Details

This takes in a calibration tibble and will create a QQ plot. You can also pass in a model_id and a boolean for interactive which will return a plotly::ggplotly interactive plot.

Value

A QQ plot.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot

Other Plot: `ts_scedacity_scatter_plot()`

Other Utility: `calibrate_and_plot()`, `model_extraction_helper()`, `ts_info_tbl()`, `ts_model_compare()`, `ts_model_rank_tbl()`, `ts_scedacity_scatter_plot()`, `ts_to_tbl()`

Examples

```r
# NOT RUN
## Not run:
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))

data_tbl <- ts_to_tbl(AirPassengers) %>%
  select(-index)

splits <- time_series_split(
  data_tbl,
  date_var = date_col,
  assess = "12 months",
  cumulative = TRUE
)```
rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
  set_engine(engine = "auto_arima")

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_fit_arima <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec_arima) %>%
  fit(training(splits))

wflw_fit_mars <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec_mars) %>%
  fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)

calibration_tbl <- model_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

ts_qq_plot(calibration_tbl)

## End(Not run)

---

ts_random_walk

### Random Walk Function

**Description**

This function takes in four arguments and returns a tibble of random walks.

**Usage**

```r

ts_random_walk(
 .mean = 0,
 .sd = 0.1,
 .num_walks = 100,
 .periods = 100,
 .initial_value = 1000
)
```
Arguments

- `.mean`  The desired mean of the random walks
- `.sd`    The standard deviation of the random walks
- `.num_walks`  The number of random walks you want generated
- `.periods`  The length of the random walk(s) you want generated
- `.initial_value`  The initial value where the random walks should start

Details

Monte Carlo simulations were first formally designed in the 1940’s while developing nuclear weapons, and since have been heavily used in various fields to use randomness solve problems that are potentially deterministic in nature. In finance, Monte Carlo simulations can be a useful tool to give a sense of how assets with certain characteristics might behave in the future. While there are more complex and sophisticated financial forecasting methods such as ARIMA (Auto-Regressive Integrated Moving Average) and GARCH (Generalised Auto-Regressive Conditional Heteroskedasticity) which attempt to model not only the randomness but underlying macro factors such as seasonality and volatility clustering, Monte Carlo random walks work surprisingly well in illustrating market volatility as long as the results are not taken too seriously.

Value

A tibble

Author(s)

Steven P. Sanderson II, MPH

Examples

```r
 ts_random_walk(
 .mean = 6,
 .sd = 1,
 .num_walks = 25,
 .periods = 180,
 .initial_value = 6
)
```

---

`ts_random_walk_ggplot_layers`  
*Get Random Walk ggplot2 layers*

Description

Get layers to add to a ggplot graph from the `ts_random_walk()` function.
Usage

```r
ts_random_walk_ggplot_layers(.data)
```

Arguments

- `.data` The data passed to the function.

Details

- Set the intercept of the initial value from the random walk
- Set the max and min of the cumulative sum of the random walks

Value

A ggplot2 layers object

Author(s)

Steven P. Sanderson II, MPH

Examples

```r
library(ggplot2)

df <- ts_random_walk()

df %>%
 ggplot(
 mapping = aes(
 x = x,
 y = cum_y,
 color = factor(run),
 group = factor(run)
)
) +
 geom_line(alpha = 0.8) +
 ts_random_walk_ggplot_layers(df)
```

---

**ts_scedacity_scatter_plot**

*Time Series Model Scedacity Plot*

Description

This takes in a calibration tibble and will produce a scedacity plot.
ts_scedacity_scatter_plot

Usage

```r
ts_scedacity_scatter_plot(
 .calibration_tbl,
 .model_id = NULL,
 .interactive = FALSE
)
```

Arguments

- `.calibration_tbl` A calibrated modeltime table.
- `.model_id` The id of a particular model from a calibration tibble. If there are multiple models in the tibble and this remains `NULL` then the plot will be returned using `ggplot2::facet_grid(~ .model_id)`
- `.interactive` A boolean with a default value of `FALSE`. `TRUE` will produce an interactive `plotly` plot.

Details

This takes in a calibration tibble and will create a scedacity plot. You can also pass in a `model_id` and a boolean for `interactive` which will return a `plotly::ggplotly` interactive plot.

Value

A QQ plot.

Author(s)

Steven P. Sanderson II, MPH

See Also

- Other Plot: `ts_qq_plot()`
- Other Utility: `calibrate_and_plot()`, `model_extraction_helper()`, `ts_info_tbl()`, `ts_model_compare()`, `ts_model_rank_tbl()`, `ts_qq_plot()`, `ts_to_tbl()`

Examples

```r
NOT RUN
Not run:
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))
```
data_tbl <- ts_to_tbl(AirPassengers) %>%
  select(-index)

splits <- time_series_split(
  data_tbl, 
  date_var = date_col, 
  assess = "12 months", 
  cumulative = TRUE
)

rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
  set_engine(engine = "auto_arima")

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_fit_arima <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec_arima) %>%
  fit(training(splits))

wflw_fit_mars <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec_mars) %>%
  fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)

calibration_tbl <- model_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

ts_scedacity_scatter_plot(calibration_tbl)

## End(Not run)
.date_col = NULL,  
.sma_order = 2,  
.func = mean,  
.align = "center",  
.partial = FALSE
)

Arguments

.data The data that you are passing, this can be either a ts object or a tibble
.date_col This is used if you know the name of the datetime column. The function ts_to_tbl() will make a column called date_col only if a ts object is passed, if a tibble is passed then the .date_col parameter is needed or the function will error out.
.sma_order This will default to 1. This can be a vector like c(2,4,6,12)
.func The unquoted function you want to pass, mean, median, etc
.align This can be either "left", "center", "right"
.partial This is a bool value of TRUE/FALSE, the default is TRUE

Details

This function will accept a time series object or a tibble/data.frame. This is a simple wrapper around timetk::slidify_vec(). It uses that function to do the underlying moving average work. Since the function ts_to_tbl() is called there is no need to supply a value column. This function will only work on a single value column

It can only handle a single moving average at a time and therefore if multiple are called for, it will loop through and append data to a tibble or ts object.

Value

Will invisibly return a list object.

Author(s)

Steven P. Sanderson II, MPH

Examples

out <- ts_sma_plot(AirPassengers, .sma_order = c(3,6))

out$data

out$plots$static_plot
Description

Sometimes we want to see the training and testing data in a plot. This is a simple wrapper around a couple of functions from the timetk package.

Usage

```r
ts_splits_plot(.splits_obj, .date_col, .value_col)
```

Arguments

- `.splits_obj` The predefined splits object.
- `.date_col` The date column for the time series.
- `.value_col` The value column of the time series.

Details

You should already have a splits object defined. This function takes in three parameters, the splits object, a date column and the value column.

Value

A time series cv plan plot

Author(s)

Steven P. Sanderson II, MPH

See Also

- [https://business-science.github.io/timetk/reference/plot_time_series_cv_plan. html(tk_time_sers_cv_plan)
- [https://business-science.github.io/timetk/reference/plot_time_series_cv_plan. html(plot_time_series_cv_plan)
Examples

```r
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(healthyR.data))

data <- healthyR_data %>%
 filter(ip_op_flag == "I") %>%
 select(visit_end_date_time) %>%
 rename(date_col = visit_end_date_time) %>%
 summarise_by_time(
 .date_var = date_col,
 , by = "month",
 , value = n()
) %>%
 filter_by_time(
 .date_var = date_col,
 , start_date = "2012",
 , end_date = "2019"
)

splits <- time_series_split(
 data, date_col,
 , assess = 12,
 , skip = 3,
 , cumulative = TRUE
)

ts_splits_plot(
 .splits_obj = splits, .date_col = date_col, .value_col = value
)
```

---

ts_to_tbl  

Coerce a time-series object to a tibble

Description

This function takes in a time-series object and returns it in a tibble format.

Usage

```r
ts_to_tbl(.data)
```

Arguments

- `.data` The time-series object you want transformed into a tibble
**ts_velocity_augment**

**Augment Function Velocity**

**Description**
Takes a numeric vector and will return the velocity of that vector.

**Usage**

```r
ts_velocity_augment(.data, .value, .names = "auto")
```

**Arguments**
- `.data` The data being passed that will be augmented by the function.
- `.value` This is passed `rlang::enquo()` to capture the vectors you want to augment.
- `.names` The default is "auto"

**Details**
Takes a numeric vector and will return the velocity of that vector. The velocity of a time series is computed by taking the first difference, so

\[ x_t - x_{t-1} \]

This function is intended to be used on its own in order to add columns to a tibble.

---

**Details**
This function makes use of `timetk::tk_tbl()` under the hood to obtain the initial tibble object. After the initial object is obtained a new column called `date_col` is constructed from the index column using `lubridate` if an index column is returned.

**Value**
A tibble

**Author(s)**
Steven P. Sanderson II, MPH

**See Also**
Other Utility: `calibrate_and_plot()`, `model_extraction_helper()`, `ts_info_tbl()`, `ts_model_compare()`, `ts_model_rank_tbl()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`

**Examples**

```r
ts_to_tbl(BJsales)
ts_to_tbl(AirPassengers)
```
Value
A augmented tibble

Author(s)
Steven P. Sanderson II, MPH

See Also
Other Augment Function: ts_acceleration_augment()

Examples

suppressPackageStartupMessages(library(dplyr))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")
data_tbl <- tibble(
  date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
  a = rnorm(len_out),
  b = runif(len_out)
)
ts_velocity_augment(data_tbl, b)

---

**ts_velocity_vec**  
Vector Function Time Series Acceleration

Description
Takes a numeric vector and will return the velocity of that vector.

Usage

`ts_velocity_vec(.x)`

Arguments

`.x`  
A numeric vector

Details
Takes a numeric vector and will return the velocity of that vector. The velocity of a time series is computed by taking the first difference, so

\[ x_t - x_{t-1} \]

This function can be used on its own. It is also the basis for the function `ts_velocity_augment()`.
Value

A numeric vector

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Vector Function: ts_acceleration_vec()

Examples

suppressPackageStartupMessages(library(dplyr))

len_out = 25
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
  date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
  a = rnorm(len_out),
  b = runif(len_out)
)

vec_1 <- ts_velocity_vec(data_tbl$b)

plot(data_tbl$b)
lines(data_tbl$b)
lines(vec_1, col = "blue")
ts_wfs_arima_boost

Arguments
.data The data you want to visualize. This should be pre-processed and the aggregation should match the .frequency argument.
.date_col The data column from the .data argument.
.value_col The value column from the .data argument

Details
This function expects to take in a data.frame/tibble. It will return a list object that contains the augmented data along with a static plot and an interactive plotly plot. It is important that the data be prepared and have at minimum a date column and the value column as they need to be supplied to the function. If your data is a ts, xts, zoo or mts then use ts_to_tbl() to convert it to a tibble.

Value
The original time series augmented with the differenced data, a static plot and a plotly plot of the ggplot object. The output is a list that gets returned invisibly.

Author(s)
Steven P. Sanderson II, MPH

Examples
suppressPackageStartupMessages(library(dplyr))
data_tbl <- ts_to_tbl(AirPassengers) %>%
    select(-index)
ts_vva_plot(data_tbl, date_col, value)$plots$static_plot

---

ts_wfs_arima_boost Auto Arima XGBoost Workflowset Function

Description
This function is used to quickly create a workflowsets object.

Usage
ts_wfs_arima_boost(
  .model_type = "all_engines",
  .recipe_list,
  .trees = 10,
  .min_node = 2,
  .tree_depth = 6,
Arguments

.model_type This is where you will set your engine. It uses `modeltime::arima_boost()` under the hood and can take one of the following:
  - "arima_xgboost"
  - "auto_arima_xgboost"
  - "all_engines" - This will make a model spec for all available engines.

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

trees An integer for the number of trees contained in the ensemble.

.min_node An integer for the minimum number of data points in a node that is required for the node to be split further.

tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific engines only).

.learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-iteration (specific engines only).

.stop_iter The number of iterations without improvement before stopping (xgboost only).

.seasonal_period Set to 0,

.non_seasonal_ar Set to 0,

.non_seasonal_differences Set to 0,

.non_seasonal_ma Set to 0,

.seasonal_ar Set to 0,

.seasonal_differences Set to 0,

.seasonal_ma Set to 0,

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This uses the option set_engine("auto_arima_xgboost") or set_engine("arima_xgboost")

```r
modtime::arima_boost() arima_boost() is a way to generate a specification of a time series model that uses boosting to improve modeling errors (residuals) on Exogenous Regressors. It works with both "automated" ARIMA (auto.arima) and standard ARIMA (arima). The main algorithms are:

- Auto ARIMA + XGBoost Errors (engine = auto_arima_xgboost, default)
- ARIMA + XGBoost Errors (engine = arima_xgboost)
```

**Value**

Returns a workflowsets object.

**Author(s)**

Steven P. Sanderson II, MPH

**See Also**

https://workflowsets.tidymodels.org/


**Examples**

```r
suppressPackageStartupMessages(library(modtime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tidymodels))

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
data,
 date_col,
 assess = 12,
 skip = 3,
 cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits),
 .date_col = date_col,
 .pred_col = value
)
ts_wfs_auto_arima

```r
wf_sets <- ts_wfs_arima_boost("all_engines", rec_objs)
wf_sets
```

ts_wfs_auto_arima

Auto Arima (Forecast auto_arima) Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

```r
ts_wfs_auto_arima(.model_type = "auto_arima", .recipe_list)
```

Arguments

- `.model_type` This is where you will set your engine. It uses `modeltime::arima_reg()` under the hood and can take one of the following:
 - "auto_arima"

- `.recipe_list` You must supply a list of recipes. `list(rec_1, rec_2, ...)`

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This only uses the option `set_engine("auto_arima")` and therefore the `.model_type` is not needed. The parameter is kept because it is possible in the future that this could change, and it keeps with the framework of how other functions are written.

`modeltime::arima_reg()` is a way to generate a specification of an ARIMA model before fitting and allows the model to be created using different packages. Currently the only package is `forecast`.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH
See Also

https://workflowsets.tidymodels.org/

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tidymodels))

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits)
 , .date_col = date_col
 , .pred_col = value
)

wf_sets <- ts_wfs_auto_arima("auto_arima", rec_objs)

wf_sets

ts_wfs_ets_reg

Auto ETS Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_ets_reg(
 .model_type = "all_engines",
 .recipe_list,
 .seasonal_period = "auto",
)
Arguments

.model_type
This is where you will set your engine. It uses `modeltime::exp_smoothing()` under the hood and can take one of the following:
- "ets"
- "croston"
- "theta"
- "smooth_es"
- "all_engines" - This will make a model spec for all available engines.

.recipe_list
You must supply a list of recipes. `list(rec_1, rec_2, ...)`

.seasonal_period
A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "$2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

.error
The form of the error term: "auto", "additive", or "multiplicative". If the error is multiplicative, the data must be non-negative.

trend
The form of the trend term: "auto", "additive", "multiplicative" or "none".

.season
The form of the seasonal term: "auto", "additive", "multiplicative" or "none".

damping
Apply damping to a trend: "auto", "damped", or "none".

.smooth_level
This is often called the "alpha" parameter used as the base level smoothing factor for exponential smoothing models.

.smooth_trend
This is often called the "beta" parameter used as the trend smoothing factor for exponential smoothing models.

.smooth_seasonal
This is often called the "gamma" parameter used as the seasonal smoothing factor for exponential smoothing models.

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This uses the following engines:

`modeltime::exp_smoothing()` `exp_smoothing()` is a way to generate a specification of an Exponential Smoothing model before fitting and allows the model to be created using different packages. Currently the only package is forecast. Several algorithms are implemented:
- "ets"
- "croston"
- "theta"
- "smooth_es"

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf()

Examples

```r
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tidymodels))

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
  .data = training(splits)
  , .date_col = date_col
  , .pred_col = value
)

wf_sets <- ts_wfs_ets_reg("all_engines", rec_objs)
wf_sets
```
ts_wfs_lin_reg

Auto Linear Regression Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_lin_reg(.model_type, .recipe_list, .penalty = 1, .mixture = 0.5)

Arguments

.model_type This is where you will set your engine. It uses \texttt{parsnip::linear_reg()} under the hood and can take one of the following:
 • "lm"
 • "glmnet"
 • "all_engines" - This will make a model spec for all available engines.

.penalty The penalty parameter of the \texttt{glmnet}. The default is 1

.mixture The mixture parameter of the \texttt{glmnet}. The default is 0.5

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the \texttt{glmnet} model specification, but if you choose you can set them yourself if you have a good understanding of what they should be.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

\url{https://workflowsets.tidymodels.org/}

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf()}
Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tidymodels))

data <- AirPassengers %>%
 ts_to_tbl() %>
 select(-index)

splits <- time_series_split(
 data,
 date_col,
 assess = 12,
 skip = 3,
 cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits),
 .date_col = date_col,
 .pred_col = value
)

wf_sets <- ts_wfs_lin_reg("all_engines", rec_objs)
wf_sets

ts_wfs_mars Auto MARS (Earth) Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_mars(
 .model_type = "earth",
 .recipe_list,
 .num_terms = 200,
 .prod_degree = 1,
 .prune_method = "backward"
)

Arguments

.model_type This is where you will set your engine. It uses `parsnip::mars()` under the hood and can take one of the following:
ts_wfs_mars

- "earth"

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

.num_terms The number of features that will be retained in the final model, including the intercept.

.prod_degree The highest possible interaction degree.

.prune_method The pruning method. This is a character, the default is "backward". You can choose from one of the following:
 - "backward"
 - "none"
 - "exhaustive"
 - "forward"
 - "seqrep"
 - "cv"

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This only uses the option set_engine("earth") and therefore the .model_type is not needed. The parameter is kept because it is possible in the future that this could change, and it keeps with the framework of how other functions are written.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/mars.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tidymodels))

data <- AirPassengers %>%
ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits)
 , .date_col = date_col
 , .pred_col = value
)

wf_sets <- ts_wfs_mars("earth", rec_objs)
wf_sets

ts_wfs_nnetar_reg Auto NNETAR Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

```r
ls_wfs_nnetar_reg(
  .model_type = "nnetar",
  .recipe_list,
  .non_seasonal_ar = 0,
  .seasonal_ar = 0,
  .hidden_units = 5,
  .num_networks = 10,
  .penalty = 0.1,
  .epochs = 10
)
```

Arguments

- **.model_type** This is where you will set your engine. It uses `modeltime::nnetar_reg()` under the hood and can take one of the following:
 - "nnetar"
- **.recipe_list** You must supply a list of recipes. list(rec_1, rec_2, ...)

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This uses the following engines:

```r
modellime::nnetar_reg()
```

`nnetar_reg()` is a way to generate a specification of an NNETAR model before fitting and allows the model to be created using different packages. Currently the only package is `forecast`.

- "nnetar"

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

- https://workflowsets.tidymodels.org/

Examples

```r
data %<-% AirPassengers %>%
  ts_to_tbl()
```
select(-index)

splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits)
 , .date_col = date_col
 , .pred_col = value
)

wf_sets <- ts_wfs_nnetar_reg("nnetar", rec_objs)
wf_sets

ts_wfs_prophet_reg
Auto PROPHET Regression Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

```r
ls_wfs_prophet_reg(
  .model_type = \"all_engines\",
  .recipe_list,
  .growth = NULL,
  .changepoint_num = 25,
  .changepoint_range = 0.8,
  .seasonality_yearly = \"auto\",
  .seasonality_weekly = \"auto\",
  .seasonality_daily = \"auto\",
  .season = \"additive\",
  .prior_scale_changepoints = 25,
  .prior_scale_seasonality = 1,
  .prior_scale_holidays = 1,
  .logistic_cap = NULL,
  .logistic_floor = NULL,
  .trees = 50,
  .min_n = 10,
  .tree_depth = 5,
  .learn_rate = 0.01,
)```
`ts_wfs_prophet_reg`

```r
.loss_reduction = NULL,
.stop_iter = NULL
)
```

### Arguments

**.model_type**  
This is where you will set your engine. It uses `modeltime::prophet_reg()` under the hood and can take one of the following:
- "prophet" Or `modeltime::prophet_boost()` under the hood and can take one of the following:
- "prophet_xgboost" You can also choose:
- "all_engines" - This will make a model spec for all available engines.

**.recipe_list**  
You must supply a list of recipes. `list(rec_1, rec_2, ...)`

**.growth**  
String 'linear' or 'logistic' to specify a linear or logistic trend.

**.changepoint_num**  
Number of potential changepoints to include for modeling trend.

**.changepoint_range**  
Adjusts the flexibility of the trend component by limiting to a percentage of data before the end of the time series. 0.80 means that a changepoint cannot exist after the first 80% of the data.

**.seasonality_yearly**  
One of "auto", TRUE or FALSE. Set to FALSE for `prophet_xgboost`. Toggles on/off a seasonal component that models year-over-year seasonality.

**.seasonality_weekly**  
One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models week-over-week seasonality. Set to FALSE for `prophet_xgboost`

**.seasonality_daily**  
One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models day-over-day seasonality. Set to FALSE for `prophet_xgboost`

**.season**  
'additive' (default) or 'multiplicative'.

**.prior_scale_changepoints**  
Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.

**.prior_scale_seasonality**  
Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality.

**.prior_scale_holidays**  
Parameter modulating the strength of the holiday components model, unless overridden in the holidays input.

**.logistic_cap**  
When growth is logistic, the upper-bound for "saturation".

**.logistic_floor**  
When growth is logistic, the lower-bound for "saturation"

**.trees**  
An integer for the number of trees contained in the ensemble.
.min_n An integer for the minimum number of data points in a node that is required for the node to be split further.
.tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific engines only).
.learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-iteration (specific engines only).
.loss_reduction A number for the reduction in the loss function required to split further (specific engines only).
.stop_iter The number of iterations without improvement before stopping (xgboost only).

Details
This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the prophet and prophet_xgboost model specification, but if you choose you can set them yourself if you have a good understanding of what they should be.

Value
Returns a workflowsets object.

Author(s)
Steven P. Sanderson II, MPH

See Also
https://workflowsets.tidymodels.org/(workflowsets)
https://business-science.github.io/modeltimereference/prophet_reg.html
https://business-science.github.io/modeltimereference/prophet_boost.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf()

Examples
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tidymodels))

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data
  , date_col
  , assess = 12
ts_wfs_svm_poly

, skip = 3
, cumulative = TRUE

rec_objs <- ts_auto_recipe(
  .data = training(splits)
  , .date_col = date_col
  , .pred_col = value
)

wf_sets <- ts_wfs_prophet_reg("all_engines", rec_objs)
wf_sets

---

ts_wfs_svm_poly    Auto SVM Poly (Kernlab) Workflowset Function

Description
This function is used to quickly create a workflowsets object.

Usage
ts_wfs_svm_poly(
  .model_type = "kernlab",
  .recipe_list,
  .cost = 1,
  .degree = 1,
  .scale_factor = 1,
  .margin = 0.1
)

Arguments
.model_type This is where you will set your engine. It uses `parsnip::svm_poly()` under the hood and can take one of the following:
  • "kernlab"
.recipe_list You must supply a list of recipes. `list(rec_1, rec_2, ...)`
.cost A positive number for the cost of predicting a sample within or on the wrong side of the margin.
degree A positive number for polynomial degree.
scale_factor A positive number for the polynomial scaling factor.
.margin A positive number for the epsilon in the SVM insensitive loss function (regression only.)
Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This only uses the option set_engine("kernlab") and therefore the .model_type is not needed. The parameter is kept because it is possible in the future that this could change, and it keeps with the framework of how other functions are written.

`parsnip::svm_poly()` defines a support vector machine model. For classification, the model tries to maximize the width of the margin between classes. For regression, the model optimizes a robust loss function that is only affected by very large model residuals.

This SVM model uses a nonlinear function, specifically a polynomial function, to create the decision boundary or regression line.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/svm_poly.html


Examples

```r
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tidymodels))

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(

```
ts_wfs_svm_rbf

.data = training(splits)
, .date_col = date_col
, .pred_col = value
)

wf_sets <- ts_wfs_svm_poly("kernlab", rec_objs)
wf_sets

---

Auto SVM RBF (Kernlab) Workflowset Function

Description
This function is used to quickly create a workflowsets object.

Usage

```
ts_wfs_svm_rbf(
 .model_type = "kernlab",
 .recipe_list,
 .cost = 1,
 .rbf_sigma = 0.01,
 .margin = 0.1
)
```

Arguments

- `.model_type` This is where you will set your engine. It uses `parsnip::svm_rbf()` under the hood and can take one of the following:
  - "kernlab"
- `.recipe_list` You must supply a list of recipes. list(rec_1, rec_2, ...)
- `.cost` A positive number for the cost of predicting a sample within or on the wrong side of the margin.
- `.rbf_sigma` A positive number for the radial basis function.
- `.margin` A positive number for the epsilon in the SVM insensitive loss function (regression only).

Details
This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This only uses the option `set_engine("kernlab")` and therefore the `.model_type` is not needed. The parameter is kept because it is possible in the future that this could change, and it keeps with the framework of how other functions are written.
parsnip::svm_rbf() defines a support vector machine model. For classification, the model tries to maximize the width of the margin between classes. For regression, the model optimizes a robust loss function that is only affected by very large model residuals.

This SVM model uses a nonlinear function, specifically a polynomial function, to create the decision boundary or regression line.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/svm_rbf.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tidymodels))

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(  
data  
  , date_col  
  , assess = 12  
  , skip = 3  
  , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(  
  .data = training(splits)  
  , .date_col = date_col  
  , .pred_col = value
)

wf_sets <- ts_wfs_svm_rbf("kernlab", rec_objs)
wf_sets
Index

* **Augment Function**
  - ts_acceleration_augment, 12
  - ts_velocity_augment, 47

* **Auto Workflowsets**
  - ts_wfs_arima_boost, 50
  - ts_wfs_auto_arima, 53
  - ts_wfs_ets_reg, 54
  - ts_wfs_lin_reg, 57
  - ts_wfs_mars, 58
  - ts_wfs_nnetar_reg, 60
  - ts_wfs_prophet_reg, 62
  - ts_wfs_svm_poly, 65
  - ts_wfs_svm_rbf, 67

* **Helper**
  - ts_model_spec_tune_template, 34

* **Model Tuning**
  - ts_model_auto_tune, 26
  - ts_model_spec_tune_template, 34

* **Plot**
  - ts_qq_plot, 37
  - ts_scedacity_scatter_plot, 41

* **Recipes**
  - step_ts_acceleration, 6
  - step_ts_velocity, 8

* **Utility**
  - calibrate_and_plot, 3
  - model_extraction_helper, 5
  - ts_info_tbl, 22
  - ts_model_compare, 30
  - ts_model_rank_tbl, 32
  - ts_qq_plot, 37
  - ts_scedacity_scatter_plot, 41
  - ts_to_tbl, 46

* **Vector Function**
  - ts_acceleration_vec, 13
  - ts_velocity_vec, 48

Arima, 5, 20
auto.arima, 5, 20

calibrate_and_plot, 3, 5, 23, 31, 33, 38, 42, 47
dials::grid_latin_hypercube(), 27
els, 5, 20
forecast::simulate.Arima(), 21
model_extraction_helper, 3, 5, 23, 31, 33, 38, 42, 47
modeltime::arima_boost(), 51, 52
modeltime::arima_reg(), 53
modeltime::exp_smoothing(), 55
modeltime::modeltime_calibrate(), 3
modeltime::nnetar_reg(), 60, 61
modeltime::plot_modeltime_forecast(), 3
modeltime::prophet_boost(), 63
modeltime::prophet_reg(), 63

nnetar, 5, 21
parsnip::linear_reg(), 57
parsnip::mars(), 58
parsnip::set_engine(), 34
parsnip::svm_poly(), 65, 66
parsnip::svm_rbf(), 67, 68
plotly::ggplotly(), 17
recipes::step_nzv(), 15
recipes::step_rm(), 7, 9
recipes::step_YeoJohnson(), 15
rlang::enquo(), 12, 47

simulate, 20
stats::fft(), 10, 11
step_ts_acceleration, 6, 9
step_ts_velocity, 7, 8
tidy_fft, 10
timetk::slidify_vec(), 44
timetk::step_fourier(), 15
timetk::step_timeseries_signature(), 15
timetk::time_series_cv(), 27, 28
timetk::tk_index(), 21
timetk::tk_tbl(), 47
ts_acceleration_augment(), 12, 48
ts_acceleration_augment(), 13
ts_acceleration_vec(), 13, 49
ts_auto_recipe, 14
ts_forecast_simulator, 20
ts_info_tbl, 3, 5, 22, 31, 33, 38, 42, 47
ts_ma_plot, 24
ts_model_auto_tune, 26, 35
ts_model_auto_tune(), 34

ts_model_compare, 3, 5, 23, 30, 33, 38, 42, 47
ts_model_rank_tbl, 3, 5, 23, 31, 32, 38, 42, 47

ts_model_spec_tune_template, 5, 28, 34

ts_model_spec_tune_template(), 26, 28
ts_qc_run_chart, 36
ts_qq_plot, 3, 5, 23, 31, 33, 37, 42, 47
ts_random_walk, 39
ts_random_walk(), 40
ts_random_walk_ggplot_layers, 40
t_scedacity_scatter_plot, 3, 5, 23, 31, 33, 38, 41, 47
t_sma_plot, 43
t_splits_plot, 45
t_to_tbl, 3, 5, 23, 31, 33, 38, 42, 46
t_to_tbl(), 44
t_velocity_augment, 13, 47
t_velocity_augment(), 48
t_velocity_vec, 14, 48
t_vva_plot, 49
t_wfs_arima_boost, 50, 54, 56, 57, 59, 61, 64, 66, 68
t_wfs_auto_arima, 52, 53, 56, 57, 59, 61, 64, 66, 68
t_wfs_ets_reg, 52, 54, 56, 59, 61, 64, 66, 68
t_wfs_lin_reg, 52, 54, 56, 59, 61, 64, 66, 68
t_wfs_mars, 52, 54, 56, 57, 58, 61, 64, 66, 68
t_wfs_nnetar_reg, 52, 54, 56, 57, 59, 60, 64, 66, 68
t_wfs_prophet_reg, 52, 54, 56, 57, 59, 61, 62, 66, 68
t_wfs_svm_poly, 52, 54, 56, 57, 59, 61, 64, 65, 68
t_wfs_svm_rbf, 52, 54, 56, 57, 59, 61, 64, 66, 67
xts::plot.xts(), 24