Package ‘hrqglas’

August 17, 2021

Type Package
Title Group Variable Selection for Quantile and Robust Mean Regression
Version 1.0.1
Date 2021-08-16
Maintainer Shaobo Li <shaobo.li@ku.edu>

Description A program that conducts group variable selection for quantile and robust mean regression (Sherwood and Li, 2021). The group lasso penalty (Yuan and Lin, 2006) is used for group-wise variable selection. Both of the quantile and mean regression models are based on the Huber loss. Specifically, with the tuning parameter in the Huber loss approaching to 0, the quantile check function can be approximated by the Huber loss for the median and the tilted version of Huber loss at other quantiles. Such approximation provides computational efficiency and stability, and has also been shown to be statistical consistent.

URL GitHub: https://github.com/shaobo-li/hrqglas
License GPL (>= 2)
Imports Rcpp (>= 1.0.4), stats, MASS, Matrix, graphics
LinkingTo Rcpp
RoxygenNote 7.1.1
Encoding UTF-8
NeedsCompilation yes
Author Shaobo Li [aut, cre],
Ben Sherwood [aut]

Repository CRAN
Date/Publication 2021-08-16 22:00:02 UTC

R topics documented:

coefficients.cv.hrq_glasso .. 2
coefficients.hrq_glasso ... 2
cv.hrq_glasso ... 3
coef.hrq_glasso

hrq_glasso ... 4
plot.cv.hrq_glasso ... 6
predict.cv.hrq_glasso .. 7
predict.hrq_glasso ... 7

Index 9

c coef.cv.hrq_glasso Extract coefficients from cv.hrq_glasso object

Description

Extract coefficients from cv.hrq_glasso object

Usage

S3 method for class 'cv.hrq_glasso'
coef(object, s, ...)

Arguments

object The model object cv.hrq_glasso object.
s Value of lambda.
... other input parameters.

Value

The function extract estimated coefficients from cv.hrq_glasso object.

c coef.hrq_glasso Extract coefficients from hrq_glasso object

Description

Extract coefficients from hrq_glasso object

Usage

S3 method for class 'hrq_glasso'
coef(object, s, ...)

Arguments

object The model object hrq_glasso object.
s Value of lambda.
... other input parameters.
cv.hrq_glasso

Value

The function extract estimated coefficients from hrq_glasso object.

cv.hrq_glasso Cross-validation for quantile regression with group lasso

Description

K fold cross-validation is conducted. Four types of loss (squared error (se), absolute error (ae) quantile check loss (check) and huber loss (he)) can be specified as the CV criterion.

Usage

cv.hrq_glasso(
 x,
 y,
 group.index,
 tau = 0.5,
 k = 5,
 loss = "check",
 method = "quantile",
 folds = NULL,
 ...
)

Arguments

x Design matrix
y Response variable
group.index A vector of group index, e.g., (1,1,1,2,2,2,3,3)
tau Percentage
k Number of folders.
loss The loss function used for computing the cross-validation error. Supported losses include squared error (se), absolute error (ae), quantile check loss (check) and huber loss (he).
method Choice for mean or quantile regression. Default is quantile.
folds A vector of folder index for all observations. The procedure random splits if this argument is not specified.
... Other inputs of function hrq_glasso().
Value

The full solution path is returned. It also returns the vector of CV score as well as the optimal values in terms of min and 1se. Corresponding lambda values are also returned.

- **beta**: The estimated coefficients for all lambdas, stored in sparse matrix format, where each column corresponds to a lambda.
- **lambda**: The sequence of lambdas.
- **lambda.min**: The optimal lambda that minimizes the CV error.
- **lambda.1se**: The largest lambda such that CV error is within 1 standard error of the minimum CV error.
- **cv.all**: The vector of all values of CV error for all lambdas.
- **cv.min**: The value of CV error corresponding to `lambda.min`.
- **cv.1se**: The value of CV error corresponding to `lambda.1se`.
- **folds**: The vector of indices for k folds split.
- **cvup**: CV error + 1 standard error.
- **cvlo**: CV error + 1 standard error.
- **n.grp**: The number of selected groups for each lambda.

Examples

```r
n<- 100
p<- 10
x0<- matrix(rnorm(n*p),n,p)
X<- cbind(x0, x0^2, x0^3)[,order(rep(1:p,3))]
y<- -2+X[,1]+0.5*X[,2]-X[,3]-0.5*X[,7]+X[,8]-0.2*X[,9]+rt(n,2)
group<- rep(1:p, each=3)
fitcv<- cv.hrq_glasso(x=X, y=y, group.index=group, method="quantile")
plot(fitcv)
```

hrq_glasso

Robust group variable selection for quantile and mean regression

Description

This function conducts group-wise (with known groups) variable selection for quantile and robust mean regression with the group lasso penalty. The Huber loss is used for both types of regression model, where the quantile check function is approximated by Huber loss. A full solution path is generated unless a single value of the shrinkage parameter is specified.
Usage

hrq_glasso(
 x,
 y,
 group.index,
 tau = 0.5,
 lambda = NULL,
 weights = NULL,
 w.lambda = NULL,
 gamma = 0.2,
 max_iter = 200,
 approx = "huber",
 lambdadiscard = TRUE,
 method = "quantile",
 scalex = TRUE,
 epsilon = 1e-04,
 beta0 = NULL
)

Arguments

x Design matrix (in matrix format)
y Response variable
group.index A vector of group index, e.g., (1,1,2,2,2,3,3)
tau Percentile
lambda Shrinkage parameter, default is NULL so that the algorithm chooses a sequence.
weights Observation weights, default is NULL
w.lambda Weights for Shrinkage parameter of each group, default is NULL
gamma Huber parameter. An initial value is 0.2, while the algorithm adaptively tunes the value in each iteration.
max_iter Maximum number of iteration
approx Approximation method. Default is huber. The other option is tanh which uses the hypertangent function to approximate the first order derivative of absolute loss.
lambdadiscard Default is TRUE, meaning that the solution path stops if the relative deviance changes sufficiently small. It usually happens near the end of solution path. However, the program returns at least 70 models along the solution path.
method Choice for mean or quantile regression. Default is quantile.
scalex Standardize design matrix. Default is TRUE.
epsilon The epsilon level convergence. Default is 1e-4.
beta0 Initial estimates. Default is NULL.
Value

It returns a sequence of estimated coefficients for quantile regression with group feature selection corresponding to a sequence of lambda. The estimated coefficients are in the sparse matrix format. Returned values also include the sequence of lambda, the null deviance, values of penalized loss, and unpenalized loss across the sequence of lambda.

beta The estimated coefficients for all lambdas, stored in sparse matrix format, where each column corresponds to a lambda.

lambda The sequence of lambdas.
null.dev The null deviance.
pen.loss The value of penalized loss for each lambda.
loss The value of unpenalized loss for each lambda.
index.grp Group indices that correspond to the estimated coefficient matrix beta.
n.grp The number of selected groups for each lambda.

References

Examples

n <- 100
p <- 10
x0 <- matrix(rnorm(n*p), n, p)
X <- cbind(x0, x0^2, x0^3)[, order(rep(1:p,3))]
y <- -2+X[,1]+0.5*X[,2]-X[,3]-0.5*X[,7]+X[,8]-0.2*X[,9]+rt(n,2)
group <- rep(1:p, each=3)
fit <- hrq_glasso(X, y, group)
fit$beta[,8]

plot.cv.hrq_glasso
Generating plots for cross-validation

Description

Generating plots for cross-validation

Usage

S3 method for class 'cv.hrq_glasso'
plot(x, ...)

plot.cv.hrq_glasso
Generating plots for cross-validation
Arguments

- `x` The object of function `cv.hrq_glasso`.
- `...` other input parameters for the generic function `plot`.

Value

Cross-validation plot for the entire solution path.

predict.cv.hrq_glasso
Prediction for cv.hrq_glasso object

Description

Prediction for `cv.hrq_glasso` object

Usage

```r
## S3 method for class 'cv.hrq_glasso'
predict(object, newX, s, ...)
```

Arguments

- `object` The model object of `cv.hrq_glasso`.
- `newX` New design matrix.
- `s` Value of lambda. If missing, the default is the `lambda.min`.
- `...` other input parameters.

Value

The function returns predicted values based on the fitted model from `cv.hrq_glasso`.

predict.hrq_glasso
Prediction for the hrq_glasso object

Description

This function provides the prediction of the `hrq_glasso` object.

Usage

```r
## S3 method for class 'hrq_glasso'
predict(object, newX, s = NULL, ...)
```
Arguments

object The model object of hrglasso.
newX New design matrix.
s Value of lambda. Default is NULL, so that the function provides prediction at all lambdas used in hrglasso.
...
other input parameters.

Value

The function returns predicted values based on the fitted model from hrglasso.

Examples

```r
n<- 100
p<- 10
x0<- matrix(rnorm(n*p),n,p)
X<- cbind(x0, x0^2, x0^3)[,order(rep(1:p,3))]
y<- -2+X[,1]+0.5*X[,2]-X[,3]-0.5*X[,7]+X[,8]-0.2*X[,9]+rt(n,2)
group<- rep(1:p, each=3)
fit<- hrglasso(X, y, group)
pred<- predict(fit, newX=X, s=0.3)
```
Index

coev.cv_hrq_glasso, 2
coef.hrq_glasso, 2
cv.hrq_glasso, 3
hrq_glasso, 4
plot.cv.hrq_glasso, 6
predict.cv.hrq_glasso, 7
predict.hrq_glasso, 7