Package ‘htetree’

November 29, 2023

Type Package
Title Causal Inference with Tree-Based Machine Learning Algorithms
Version 0.1.18
Description Estimating heterogeneous treatment effects with tree-based machine learning algorithms and visualizing estimated results in flexible and presentation-ready ways. For more information, see Brand, Xu, Koch, and Geraldo (2021) <doi:10.1177/0081175021993503>. Our current package first started as a fork of the 'causalTree' package on 'GitHub' and we greatly appreciate the authors for their extremely useful and free package.

Depends R (>= 3.6.0)
Imports Rcpp, grf, partykit, data.tree, Matching, dplyr, jsonlite, rpart, rpart.plot, shiny, stringr
Suggests optmatch, haven, foreign, data.table, remotes, party
License GPL-2 | GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
NeedsCompilation yes
Author Jiahui Xu [cre, aut], Tanvi Shinkre [aut], Jennie Brand [aut]
Maintainer Jiahui Xu <jiahuixu@ucla.edu>
Repository CRAN
Date/Publication 2023-11-29 18:50:05 UTC

R topics documented:

 bundScript ... 2
 causalTree ... 3
 causalTree.branch .. 6
 causalTree.control .. 7
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>causalTree.matrix</td>
<td>8</td>
</tr>
<tr>
<td>causalTreeCallback</td>
<td>8</td>
</tr>
<tr>
<td>causalTreeCo</td>
<td>9</td>
</tr>
<tr>
<td>clearTemp</td>
<td>9</td>
</tr>
<tr>
<td>est.causalTree</td>
<td>10</td>
</tr>
<tr>
<td>estimate.causalTree</td>
<td>10</td>
</tr>
<tr>
<td>format</td>
<td>11</td>
</tr>
<tr>
<td>getDefaultPath</td>
<td>11</td>
</tr>
<tr>
<td>getDensities</td>
<td>12</td>
</tr>
<tr>
<td>honest.causalTree</td>
<td>12</td>
</tr>
<tr>
<td>honest.est.causalTree</td>
<td>16</td>
</tr>
<tr>
<td>honest.est.rparttree</td>
<td>17</td>
</tr>
<tr>
<td>honest.rparttree</td>
<td>17</td>
</tr>
<tr>
<td>hteTree.anova</td>
<td>19</td>
</tr>
<tr>
<td>hte_causalTree</td>
<td>20</td>
</tr>
<tr>
<td>hte_forest</td>
<td>21</td>
</tr>
<tr>
<td>hte_ipw</td>
<td>22</td>
</tr>
<tr>
<td>hte_match</td>
<td>24</td>
</tr>
<tr>
<td>hte_plot</td>
<td>26</td>
</tr>
<tr>
<td>hte_plot_line</td>
<td>27</td>
</tr>
<tr>
<td>importance</td>
<td>28</td>
</tr>
<tr>
<td>init.causalForest</td>
<td>28</td>
</tr>
<tr>
<td>makeplots</td>
<td>32</td>
</tr>
<tr>
<td>matchingleaves</td>
<td>33</td>
</tr>
<tr>
<td>model.frame.causalTree</td>
<td>34</td>
</tr>
<tr>
<td>na.causalTree</td>
<td>35</td>
</tr>
<tr>
<td>plotOutcomes</td>
<td>35</td>
</tr>
<tr>
<td>runDynamic</td>
<td>36</td>
</tr>
<tr>
<td>saveBCSS</td>
<td>37</td>
</tr>
<tr>
<td>saveFiles</td>
<td>37</td>
</tr>
<tr>
<td>saveGCSS</td>
<td>38</td>
</tr>
<tr>
<td>saveInd</td>
<td>39</td>
</tr>
<tr>
<td>saveServ</td>
<td>39</td>
</tr>
<tr>
<td>saveUI</td>
<td>40</td>
</tr>
<tr>
<td>simulation.1</td>
<td>40</td>
</tr>
</tbody>
</table>

Index

bundScript

Include the Javascript Used in Shiny

Description

intermediate function used to include necessary javascript to visualize tree structures and estimated treatment effect in shiny
Usage

bundScript(...)

Arguments

... There is no required arguments in this function. But user could manipulate to include different css files.

Value

No return value. It is used to pass the Javascript to Shiny.

causalTree

Causal Effect Regression and Estimation Trees

Description

Fit a causalTree model to get an rpart object

Usage

causalTree(
 formula,
 data,
 weights,
 treatment,
 subset,
 na.action = na.causalTree,
 split.Rule,
 split.Honest,
 HonestSampleSize,
 split.Bucket,
 bucketNum = 5,
 bucketMax = 100,
 cv.option,
 cv.Honest,
 minsize = 2L,
 x = FALSE,
 y = TRUE,
 propensity,
 control,
 split.alpha = 0.5,
 cv.alpha = 0.5,
 cv.gamma = 0.5,
 split.gamma = 0.5,
 cost,
 ...
)
Arguments

- **formula**: a formula, with a response and features but no interaction terms. If this a a data frame, that is taken as the model frame (see `model.frame`).
- **data**: an optional data frame that includes the variables named in the formula.
- **weights**: optional case weights.
- **treatment**: a vector that indicates the treatment status of each observation. 1 represents treated and 0 represents control. Only binary treatment supported in this version.
- **subset**: optional expression saying that only a subset of the rows of the data should be used in the fit.
- **na.action**: the default action deletes all observations for which y is missing, but keeps those in which one or more predictors are missing.
- **split.Rule**: causalTree splitting options, one of "TOT", "CT", "fit", "tstats", four splitting rules in causalTree. Note that the "tstats" alternative does not have an associated cross-validation method `cv.option`; see Athey and Imbens (2016) for a discussion. Note further that `split.Rule` and `cv.option` can mix and match.
- **split.Honest**: boolean option, TRUE or FALSE, used for `split.Rule` as "CT" or "fit". If set as TRUE, do honest splitting, with default `split.alpha` = 0.5; if set as FALSE, do adaptive splitting with `split.alpha` = 1. The user choice of `split.alpha` will be ignored if `split.Honest` is set as FALSE, but will be respected if set to TRUE. For `split.Rule="TOT"`, there is no honest splitting option and the parameter `split.alpha` does not matter. For `split.Rule="tstats"`, a value of TRUE enables use of `split.alpha` in calculating the risk function, which determines the order of pruning in cross-validation. Note also that causalTree function returns the estimates from the training data, no matter what the value of `split.Honest` is; the tree must be re-estimated to get the honest estimates using `estimate.causalTree`. The wrapper function `honest.CausalTree` does honest estimation in one step and returns a tree.
- **HonestSampleSize**: number of observations anticipated to be used in honest re-estimation after building the tree. This enters the risk function used in both splitting and cross-validation.
- **split.Bucket**: boolean option, TRUE or FALSE, used to specify whether to apply the discrete method in splitting the tree. If set as TRUE, in splitting a node, the observations in a leaf will be be partitioned into buckets, with each bucket containing `bucketNum` treated and `bucketNum` control units, and where observations are ordered prior to partitioning. Splitting will take place by bucket.
- **bucketNum**: number of observations in each bucket when set `split.Bucket = TRUE`. However, the code will override this choice in order to guarantee that there are at least `minsize` and at most `bucketMax` buckets.
- **bucketMax**: Option to choose maximum number of buckets to use in splitting when set `split.Bucket = TRUE`, bucketNum can change by choice of bucketMax.
- **cv.option**: cross validation options, one of "TOT", "matching", "CT", "fit", four cross validation methods in causalTree. There is no `cv.option` for the `split.Rule"tstats"`; see Athey and Imbens (2016) for discussion.
cv.Honest

A boolean option, `TRUE` or `FALSE`, only used for `cv.option` as "CT" or "fit", to specify whether to apply honest risk evaluation function in cross validation. If set `TRUE`, use honest risk function, otherwise use adaptive risk function in cross validation. If set `FALSE`, the user choice of `cv.alpha` will be set to 1. If set `TRUE`, `cv.alpha` will default to 0.5, but the user choice of `cv.alpha` will be respected. Note that honest cv estimates within-leaf variances and may perform better with larger leaf sizes and/or small number of cross-validation sets.

minsize

In order to split, each leaf must have at least `minsize` treated cases and `minsize` control cases. The default value is set as 2.

x

Keep a copy of the x matrix in the result.

y

Keep a copy of the dependent variable in the result. If missing and model is supplied this defaults to `FALSE`.

propensity

Propensity score used in "TOT" splitting and "TOT", honest "CT" cross validation methods. The default value is the proportion of treated cases in all observations. In this implementation, the propensity score is a constant for the whole dataset. Unit-specific propensity scores are not supported; however, the user may use inverse propensity scores as case weights if desired.

control

A list of options that control details of the `rpart` algorithm. See `rpart.control`.

split.alpha

Scale parameter between 0 and 1, used in splitting risk evaluation function for "CT". When `split.Honest = FALSE`, `split.alpha` will be set as 1. For `split.Rule = "tstats"`, if `split.Honest = TRUE`, `split.alpha` is used in calculating the risk function, which determines the order of pruning in cross-validation.

cv.alpha

Scale parameter between 0 and 1, used in cross validation risk evaluation function for "CT" and "fit". When `cv.Honest = FALSE`, `cv.alpha` will be set as 1.

cv.gamma, split.gamma

Optional parameters used in evaluating policies.

cost

A vector of non-negative costs, one for each variable in the model. Defaults to one for all variables. These are scalings to be applied when considering splits, so the improvement on splitting on a variable is divided by its cost in deciding which split to choose.

... arguments to `rpart.control` may also be specified in the call to `causalTree`. They are checked against the list of valid arguments. An example of a commonly set parameter would be `xval`, which sets the number of cross-validation samples. The parameter `minsize` is implemented differently in `causalTree` than in `rpart`; we require a minimum of `minsize` treated observations and a minimum of `minsize` control observations in each leaf.

Details

CausalTree differs from `rpart` function from `rpart` package in splitting rules and cross validation methods. Please check Athey and Imbens, *Recursive Partitioning for Heterogeneous Causal Effects* (2016) for more details.

Value

An object of class `rpart`. See `rpart.object`.
References

See Also

honest.causalTree, rpart.control, rpart.object, summary.rpart, rpart.plot

Examples

library("htetree")
library("rpart")
library("rpart.plot")
tree <- causalTree(y~ x1 + x2 + x3 + x4, data = simulation.1,
treatment = simulation.1$treatment,
split.Rule = "CT", cv.option = "CT", split.Honest = TRUE, cv.Honest = TRUE,
split.Bucket = FALSE, xval = 5,
cp = 0, minsize = 20, propensity = 0.5)
opcp <- tree$cptable[,1][which.min(tree$cptable[,4])]
opfit <- prune(tree, opcp)
rpart.plot(opfit)

fittree <- causalTree(y~ x1 + x2 + x3 + x4, data = simulation.1,
treatment = simulation.1$treatment,
split.Rule = "fit", cv.option = "fit",
split.Honest = TRUE, cv.Honest = TRUE, split.Bucket = TRUE,
bucketNum = 5,
bucketMax = 200, xval = 10,
cp = 0, minsize = 20, propensity = 0.5)

tstatstree <- causalTree(y~ x1 + x2 + x3 + x4, data = simulation.1,
treatment = simulation.1$treatment,
split.Rule = "tstats", cv.option = "CT",
cv.Honest = TRUE, split.Bucket = TRUE,
bucketNum = 10,
bucketMax = 200, xval = 5,
cp = 0, minsize = 20, propensity = 0.5)
Usage
causalTree.branch(x, y, node, branch)

Arguments
x covariates
y outcome
node node of the fitted tree
branch branch of the fitted tree

Value
number of branches to be drawn

causalTree.control Intermediate function for causalTree

Description
Intermediate function for causalTree

Usage
causalTree.control(
 minsplit = 20L,
 minbucket = round(minsplit/3),
 cp = 0,
 maxcompete = 4L,
 maxsurrogate = 5L,
 usesurrogate = 2L,
 xval = 10L,
 surrogatestyle = 0L,
 maxdepth = 30L,
 ...
)

Arguments
minsplit minimum number of splits
minbucket minimum number of bucket
cp default is 0
maxcompete maximum number of compete
maxsurrogate maximum number of surrogate
usesurrogate initial number of surrogate
causalTreecallback

xval cross-validation
surrogatestyle the style of surrogate
maxdepth Maximum depth
... arguments to \texttt{rpart.control} may also be specified in the call to causalTree. They are checked against the list of valid arguments. An example of a commonly set parameter would be xval, which sets the number of cross-validation samples. The parameter minsize is implemented differently in causalTree than in \texttt{rpart}; we require a minimum of minsize treated observations and a minimum of minsize control observations in each leaf.

\textbf{Value}

parameters used to in causalTree

\begin{verbatim}
causalTree.matrix \textit{Intermediate function for causalTree}
\end{verbatim}

\textbf{Description}

Intermediate function for causalTree

\textbf{Usage}

causalTree.matrix(frame)

\textbf{Arguments}

\begin{itemize}
 \item frame inherited from data.frame
\end{itemize}

\textbf{Value}

A covariate matrix used in the causal regression.

\begin{verbatim}
causalTreecallback \textit{Intermediate function for causalTree}
\end{verbatim}

\textbf{Description}

This routine sets up the callback code for user-written split routines in causalTree

\textbf{Usage}

causalTreecallback(mlist, nobs, init)
causalTreeco

Arguments
- `mlist` a list of user written methods
- `nobs` number of observations
- `init` function name

Value
- split method written by users

causalTreeco

Intermediate function for causalTree

Description
Compute the x-y coordinates for a tree

Usage

```
causalTreeco(tree, parms)
```

Arguments
- `tree` an causalTree object
- `parms` parms

Value
- the x-y coordinates for a tree

clearTemp

Clear Temporary Files

Description
The files for shiny are saved in a temporary directory. The files can be cleared manually using the `clearTemp()` function, or will automatically be cleared when you close R

Usage

```
clearTemp()
```

Value
- no return value, to unlink files under the temp folder
est.causalTree

Intermediate function for causalTree

Description
Run down the built tree and get the final leaf ids for estimation sample

Usage
est.causalTree(fit, x)

Arguments
fit an causalTree object
x covariates

Value
Intermediate estimation results for an causalTree object.

estimate.causalTree
estimate causal Tree

Description
estimate causal Tree

Usage
estimate.causalTree(
 object,
 data,
 weights,
 treatment,
 na.action = na.causalTree
)

Arguments
object A tree-structured fit rpart object, such as one generated as a causalTree fit.
data New data frame to be used for estimating effects within leaves.
weights optional case weights.
treatment The treatment status of observations in the new dataframe, where 1 represents treated and 0 represents control.
na.action the default action deletes all observations for which y is missing, but keeps those in which one or more predictors are missing.
Details

When the leaf contains only treated or control cases, the function will trace back to the leaf’s parent node recursively until the parent can be used to compute causal effect. Please see Athey and Imbens *Machine Learning Methods for Estimating Heterogeneous Causal Effects* (2015) for details.

Value

Intermediate estimation results for an `causalTree` object

formatg

Intermediate function for causalTree

Description

Intermediate function for `causalTree`

Usage

```r
formatg(x, digits = getOption("digits"), format = paste0("%.", digits, "g"))
```

Arguments

- `x`: input training data
- `digits`: number of digits to be kept
- `format`: format of exported vector

Value

No return value, called for formatting the exported estimates

getDefaultPath

Get the Current Working Directory

Description

get the current work directory and set it as the default directory to save the shiny files temporarily

Usage

```r
getDefaultPath()
```

Value

a temporary file path
getDensities

Description

Getting the density of distribution in treatment and control groups, which will be displayed in the

Usage

getDensities(treatment, outcome)

Arguments

- **treatment**
 A character representing the name of treatment indicator.

- **outcome**
 A character representing the name of outcome variable.

Value

vector of corresponding densities for each value of outcome vector

honest.causalTree

Description

Fit a causalTree model to get an honest causal tree, with tree structure built on training sample (including cross-validation) and leaf estimates taken from estimation sample. Return an rpart object.

Usage

honest.causalTree(
 formula,
 data,
 weights,
 treatment,
 subset,
 est_data,
 est_weights,
 est_treatment,
 est_subset,
 na.action = na.causalTree,
 split.Rule,
 split.Honest,
honest.causalTree

HonestSampleSize, split.Bucket, bucketNum = 10, bucketMax = 40, cv.option, cv.Honest, minsize = 2L, model = FALSE, x = FALSE, y = TRUE, propensity, control, split.alpha = 0.5, cv.alpha = 0.5, cv.gamma = 0.5, split.gamma = 0.5, cost, ...

Arguments

- `formula`: a formula, with a response and features but no interaction terms. If this a data frame, that is taken as the model frame (see `model.frame`).
- `data`: an optional data frame that includes the variables named in the formula.
- `weights`: optional case weights.
- `treatment`: a vector that indicates the treatment status of each observation. 1 represents treated and 0 represents control. Only binary treatment supported in this version.
- `subset`: optional expression saying that only a subset of the rows of the data should be used in the fit.
- `est_data`: data frame to be used for leaf estimates; the estimation sample. Must contain the variables used in training the tree.
- `est_weights`: optional case weights for estimation sample.
- `est_treatment`: treatment vector for estimation sample. Must be same length as estimation data. A vector indicates the treatment status of the data, 1 represents treated and 0 represents control. Only binary treatment supported in this version.
- `est_subset`: optional expression saying that only a subset of the rows of the estimation data should be used in the fit of the re-estimated tree.
- `na.action`: the default action deletes all observations for which y is missing, but keeps those in which one or more predictors are missing.
- `split.Rule`: causalTree splitting options, one of "TOT", "CT", "fit", "tstats", four splitting rules in causalTree. Note that the "tstats" alternative does not have an associated cross-validation method cv.option; see Athey and Imbens (2016) for a discussion. Note further that split.Rule and cv.option can mix and match.
split.Honest boolean option, TRUE or FALSE, used for split.Rule as "CT" or "fit". If set as TRUE, do honest splitting, with default split.alpha = 0.5; if set as FALSE, do adaptive splitting with split.alpha = 1. The user choice of split.alpha will be ignored if split.Honest is set as FALSE, but will be respected if set to TRUE. For split.Rule="TOT", there is no honest splitting option and the parameter split.alpha does not matter. For split.Rule="tstats", a value of TRUE enables use of split.alpha in calculating the risk function, which determines the order of pruning in cross-validation. Note also that causalTree function returns the estimates from the training data, no matter what the value of split.Honest is; the tree must be re-estimated to get the honest estimates using estimate.causalTree. The wrapper function honest.CausalTree does honest estimation in one step and returns a tree.

HonestSampleSize number of observations anticipated to be used in honest re-estimation after building the tree. This enters the risk function used in both splitting and cross-validation.

split.Bucket boolean option, TRUE or FALSE, used to specify whether to apply the discrete method in splitting the tree. If set as TRUE, in splitting a node, the observations in a leaf will be be partitioned into buckets, with each bucket containing bucketNum treated and bucketNum control units, and where observations are ordered prior to partitioning. Splitting will take place by bucket.

bucketNum number of observations in each bucket when set split.Bucket = TRUE. However, the code will override this choice in order to guarantee that there are at least minsize and at most bucketMax buckets.

bucketMax Option to choose maximum number of buckets to use in splitting when set split.Bucket = TRUE. bucketNum can change by choice of bucketMax.

cv.option cross validation options, one of "TOT", "matching", "CT", "fit", four cross validation methods in causalTree. There is no cv.option for the split.Rule "tstats"; see Athey and Imbens (2016) for discussion.

cv.Honest boolean option, TRUE or FALSE, only used for cv.option as "CT" or "fit", to specify whether to apply honest risk evaluation function in cross validation. If set TRUE, use honest risk function, otherwise use adaptive risk function in cross validation. If set FALSE, the user choice of cv.alpha will be set to 1. If set TRUE, cv.alpha will default to 0.5, but the user choice of cv.alpha will be respected. Note that honest cv estimates within-leaf variances and may perform better with larger leaf sizes and/or small number of cross-validation sets.

minsize in order to split, each leaf must have at least minsize treated cases and minsize control cases. The default value is set as 2.

model model frame of causalTree, same as rpart

x keep a copy of the x matrix in the result.

y keep a copy of the dependent variable in the result. If missing and model is supplied this defaults to FALSE.

propensity propensity score used in "TOT" splitting and "TOT", honest "CT" cross validation methods. The default value is the proportion of treated cases in all observations. In this implementation, the propensity score is a constant for the whole dataset.
Unit-specific propensity scores are not supported; however, the user may use inverse propensity scores as case weights if desired.

control
da list of options that control details of the rpart algorithm. See `rpart.control`.

split.alpha
scale parameter between 0 and 1, used in splitting risk evaluation function for "CT". When `split.Honest = FALSE`, `split.alpha` will be set as 1. For `split.Rule = "tstats"`, if `split.Honest = TRUE`, `split.alpha` is used in calculating the risk function, which determines the order of pruning in cross-validation.

cv.alpha
scale parameter between 0 and 1, used in cross validation risk evaluation function for "CT" and "fit". When `cv.Honest = FALSE`, `cv.alpha` will be set as 1.

cv.gamma, split.gamma
optional parameters used in evaluating policies.

cost
a vector of non-negative costs, one for each variable in the model. Defaults to one for all variables. These are scalings to be applied when considering splits, so the improvement on splitting on a variable is divided by its cost in deciding which split to choose.

...
arguments to `rpart.control` may also be specified in the call to `causalTree`. They are checked against the list of valid arguments. An example of a commonly set parameter would be `xval`, which sets the number of cross-validation samples. The parameter `minsize` is implemented differently in `causalTree` than in `rpart`; we require a minimum of `minsize` treated observations and a minimum of `minsize` control observations in each leaf.

Value
An object of class `rpart`. See `rpart.object`.

References

See Also
`causalTree, estimate.causalTree, rpart.object, summary.rpart, rpart.plot`

Examples
```r
library("rpart")
library("rpart.plot")
library("htetree")
n <- nrow(simulation.1)

trIdx <- which(simulation.1$treatment == 1)
conIdx <- which(simulation.1$treatment == 0)

train_idx <- c(sample(trIdx, length(trIdx) / 2), sample(conIdx,
```
honest.est.causalTree

```
length(conIdx) / 2))

train_data <- simulation.1[train_idx, ]
est_data <- simulation.1[-train_idx, ]

honestTree <- honest.causalTree(y ~ x1 + x2 + x3 + x4, data = train_data,
treatment = train_data$treatment,
est_data = est_data,
est_treatment = est_data$treatment,
split.Rule = "CT", split.Honest = TRUE,
HonestSampleSize = nrow(est_data),
split.Bucket = TRUE, cv.option = "CT")

opcp <- honestTree$cptable[,1][which.min(honestTree$cptable[,4])]
opTree <- prune(honestTree, opcp)
rpart.plot(opTree)
```

honest.est.causalTree
honest re-estimation and change the frame of object using estimation sample

Description

honest re-estimation and change the frame of object using estimation sample

Usage

```
honest.est.causalTree(fit, x, wt, treatment, y)
```

Arguments

- **fit**: an causalTree object
- **x**: input training data
- **wt**: optional weights
- **treatment**: treatment variable
- **y**: outcome variable

Value

An object of class rpart. See rpart.object.
honest.est.rparttree

honest re-estimation and change the frame of object using estimation sample

Description

honest re-estimation and change the frame of object using estimation sample

Usage

honest.est.rparttree(fit, x, wt, y)

Arguments

- fit: an causalTree object
- x: input training data
- wt: optional weights
- y: outcome variable

Value

Intermediate estimation results for an honest estimation of causalTree.

honest.rparttree

Honest recursive partitioning Tree

Description

The recursive partitioning function, for R

Usage

honest.rparttree(
 formula,
 data,
 weights,
 subset,
 est_data,
 est_weights,
 na.action = na.rpart,
 method,
 model = FALSE,
 x = FALSE,
 y = TRUE,
 parms,
control,
cost,
...
)

Arguments

formula a formula, with a response and features but no interaction terms. If this a a data frame, that is taken as the model frame (see model.frame).

data an optional data frame that includes the variables named in the formula.

weights optional case weights.

subset optional expression saying that only a subset of the rows of the data should be used in the fit.

est_data data frame to be used for leaf estimates; the estimation sample. Must contain the variables used in training the tree.

est_weights optional case weights for estimation sample

na.action the default action deletes all observations for which y is missing, but keeps those in which one or more predictors are missing.

method one of "anova", "poisson", "class" or "exp". If method is missing then the routine tries to make an intelligent guess. If y is a survival object, then method = "exp" is assumed, if y has 2 columns then method = "poisson" is assumed, if y is a factor then method = "class" is assumed, otherwise method = "anova" is assumed. It is wisest to specify the method directly, especially as more criteria may added to the function in future.

Alternatively, method can be a list of functions named init, split and eval. Examples are given in the file ‘tests/usersplits.R’ in the sources, and in the vignettes ‘User Written Split Functions’.

model model frame of causalTree, same as rpart

x keep a copy of the x matrix in the result.

y keep a copy of the dependent variable in the result. If missing and model is supplied this defaults to FALSE.

parms optional parameters for the splitting function.

Anova splitting has no parameters.

Poisson splitting has a single parameter, the coefficient of variation of the prior distribution on the rates. The default value is 1.

Exponential splitting has the same parameter as Poisson.

For classification splitting, the list can contain any of: the vector of prior probabilities (component prior), the loss matrix (component loss) or the splitting index (component split). The priors must be positive and sum to 1. The loss matrix must have zeros on the diagonal and positive off-diagonal elements. The splitting index can be gini or information. The default priors are proportional to the data counts, the losses default to 1, and the split defaults to gini.

control a list of options that control details of the rpart algorithm. See rpart.control.
cost a vector of non-negative costs, one for each variable in the model. Defaults to one for all variables. These are scalings to be applied when considering splits, so the improvement on splitting on a variable is divided by its cost in deciding which split to choose.

... arguments to `rpart.control` may also be specified in the call to `causalTree`. They are checked against the list of valid arguments. An example of a commonly set parameter would be `xval`, which sets the number of cross-validation samples. The parameter `minsize` is implemented differently in `causalTree` than in `rpart`; we require a minimum of `minsize` treated observations and a minimum of `minsize` control observations in each leaf.

Value

An object of class `rpart` after running an honest recursive partitioning tree.

htetree.anova

Intermediate function for causalTree

Description

Intermediate function for `causalTree`

Usage

`htetree.anova(y, offset, wt)`

Arguments

- `y` outcome variable
- `offset` this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more `offset` terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See `model.offset`.
- `wt` optional weights

Value

No return value.
hte_causalTree \hspace{1em} \textit{Estimate Heterogeneous Treatment Effect via Causal Tree}

\textbf{Description}

Estimate heterogeneous treatment effect via causal tree. In each leaf, the treatment effect is the difference of mean outcome in treatment group and control group.

\textbf{Usage}

\begin{verbatim}
hte_causalTree(
 outcomevariable,
 minsize = 20,
 crossvalidation = 20,
 data,
 treatment_indicator,
 ps_indicator,
 covariates,
 negative = FALSE,
 drawplot = TRUE,
 varlabel = NULL,
 maintitle = "Heterogeneous Treatment Effect Estimation",
 legend.x = 0.08,
 legend.y = 0.25,
 check = FALSE,
 ...
)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{outcomevariable} \hspace{1em} a character representing the column name of the outcome variable.
 \item \texttt{minsize} \hspace{1em} the minimum number of observations in each leaf. The default is set as 20.
 \item \texttt{crossvalidation} \hspace{1em} number of cross validations. The default is set as 20.
 \item \texttt{data} \hspace{1em} a data frame containing the variables in the model.
 \item \texttt{treatment_indicator} \hspace{1em} a character representing the column name of the treatment indicator.
 \item \texttt{ps_indicator} \hspace{1em} a character representing the column name of the propensity score.
 \item \texttt{covariates} \hspace{1em} a vector of column names of all covariates (linear terms and propensity score).
 \item \texttt{negative} \hspace{1em} a logical value indicating whether we expect the treatment effect to be negative. The default is set as FALSE.
 \item \texttt{drawplot} \hspace{1em} a logical value indicating whether to plot the model as part of the output. The default is set as TRUE.
 \item \texttt{varlabel} \hspace{1em} a named vector containing variable labels.
\end{itemize}
hte_forest

maintitle a character string indicating the main title displayed when plotting the tree and results. The default is set as "Heterogeneous Treatment Effect Estimation".

legend.x, legend.y x and y coordinate to position the legend. The default is set as (0.08, 0.25).

check if TRUE, generates 100 trees and outputs most common tree structures and their frequency

Value

predicted treatment effect and the associated tree

Examples

library(rpart)
library(htetree)
hte_causalTree(outcomevariable="outcome",
data=data.frame("confounder"=c(0, 1, 1, 0, 1, 1),
"treatment"=c(0,0,0,1,1),
"prop_score"=c(0.4, 0.4, 0.5, 0.6, 0.6, 0.7),
"outcome"=c(1, 2, 2, 1, 4, 4)),
treatment_indicator = "treatment",
ps_indicator = "prop_score",
covariates = "confounder")

hte_forest

Estimate Heterogeneous Treatment Effect via Random Forest

Description

Estimate heterogeneous treatment effect via random forest. In each leaf, the treatment effect is the difference of mean outcome weighted by inverse propensity scores in treatment group and control group.

Usage

hte_forest(
 outcomevariable,
 minsize = 20,
crossvalidation = 20,
data = edurose_mediation_20181126,
treatment_indicator = "compcoll25",
ps_indicator = "propsc_com25",
ps_linear = "propsc_com25lin",
covariates = c(linear_terms, ps_indicator),
negative = FALSE,
drawplot = TRUE,
hte_ipw

Arguments

outcome_variable

a character representing the column name of the outcome variable.

minsize

the minimum number of observations in each leaf. The default is set as 20.

crossvalidation

number of cross validations. The default is set as 20.

data

a data frame containing the variables in the model.

treatment_indicator

a character representing the column name of the treatment indicator.

ps_indicator

a character representing the column name of the propensity score.

ps_linear

a character representing name of a column that stores linearized propensity scores.

covariates

a vector of column names of all covariates (linear terms and propensity score).

negative

a logical value indicating whether we expect the treatment effect to be negative. The default is set as FALSE.

drawplot

a logical value indicating whether to plot the model as part of the output. The default is set as TRUE.

legend.x, legend.y

x and y coordinate to position the legend. The default is set as (0.08, 0.25).

gf

a fitted generalized random forest object

... further arguments passed to or from other methods.

Value

A list with three elements. The first one is the predicted outcome for each unit. The second is an causalTree object with the tree split information. The third is a data.frame summarizing the prediction results.

hte_ipw Estimate Heterogeneous Treatment Effect via Adjusted Causal Tree

Description

Estimate heterogeneous treatment effect via adjusted causal tree. In each leaf, the treatment effect is the difference of mean outcome weighted by inverse propensity scores in treatment group and control group.
hten_ipw

Usage

hten_ipw(
 outcomevariable,
 minsize = 20,
 crossvalidation = 20,
 data,
 treatment_indicator,
 ps_indicator,
 ps_linear = NULL,
 covariates,
 negative = FALSE,
 drawplot = TRUE,
 varlabel = NULL,
 maintitle = "Heterogeneous Treatment Effect Estimation",
 legend.x = 0.08,
 legend.y = 0.25,
 check = FALSE,
 ...
)

Arguments

outcomevariable
 a character representing the column name of the outcome variable.

minsize
 the minimum number of observations in each leaf. The default is set as 20.

crossvalidation
 number of cross validations. The default is set as 20.

data
 a data frame containing the variables in the model.

treatment_indicator
 a character representing the column name of the treatment indicator.
	ps_indicator
 a character representing the column name of the propensity score.

ps_linear
 a character representing name of a column that stores linearized propensity scores.

covariates
 a vector of column names of all covariates (linear terms and propensity score).

negative
 a logical value indicating whether we expect the treatment effect to be negative. The default is set as FALSE.

drawplot
 a logical value indicating whether to plot the model as part of the output. The default is set as TRUE.

varlabel
 a named vector containing variable labels.

maintitle
 a character string indicating the main title displayed when plotting the tree and results. The default is set as "Heterogeneous Treatment Effect Estimation".

legend.x, legend.y
 x and y coordinate to position the legend. The default is set as (0.08, 0.25).

check
 if TRUE, generates 100 trees and outputs most common tree structures and their frequency

... further arguments passed to or from other methods.
Value

predicted treatment effect and the associated tree

Examples

```r
library(rpart)
library(htetree)
hte_ipw(outcomevariable="outcome",
data=data.frame("confounder"=c(0, 1, 1, 0, 1, 1),
"treatment"=c(0,0,1,1), "prop_score"=c(0.4, 0.4, 0.5, 0.6, 0.6, 0.7),
"outcome"=c(1, 2, 1, 4)), treatment_indicator = "treatment",
ps_indicator = "prop_score", covariates = "confounder")
```

hte_match Estimate Heterogeneous Treatment Effect via Adjusted Causal Tree

Description

Estimate heterogeneous treatment effect via adjusted causal tree. In each leaf, the treatment effect estimated from nn matching.

Usage

```r
hte_match(
  outcomevariable,
  minsize = 20,
  crossvalidation = 20,
  data,
  treatment_indicator,
  ps_indicator,
  ps_linear = NULL,
  covariates,
  negative = FALSE,
  drawplot = TRUE,
  con.num = 1,
  varlabel = NULL,
  maintitle = "Heterogeneous Treatment Effect Estimation",
  legend.x = 0.08,
  legend.y = 0.25,
  check = FALSE,
  ...
)
```

Arguments

outcomevariable

a character representing the column name of the outcome variable.
hte_match

minsize the minimum number of observations in each leaf. The default is set as 20.
crossvalidation number of cross validations. The default is set as 20.
data a data frame containing the variables in the model.
treatment_indicator a character representing the column name of the treatment indicator.
ps_indicator a character representing the column name of the propensity score.
ps_linear a character representing name of a column that stores linearized propensity scores.
covariates a vector of column names of all covariates (linear terms and propensity score).
negative a logical value indicating whether we expect the treatment effect to be negative. The default is set as FALSE.
drawplot a logical value indicating whether to plot the model as part of the output. The default is set as TRUE.
con.num a number indicating the number of units from control groups to be used in matching.
varlabel a named vector containing variable labels.
maintitle a character string indicating the main title displayed when plotting the tree and results. The default is set as "Heterogeneous Treatment Effect Estimation".
legend.x, legend.y x and y coordinate to position the legend. The default is set as (0.08, 0.25).
check if TRUE, generates 100 trees and outputs most common tree structures and their frequency
... further arguments passed to or from other methods.

Value

predicted treatment effect and the associated tree

Examples

library(rpart)
library(htetree)
hte_match(outcomevariable="outcome",
data=data.frame("x1"=c(0, 1, 1, 0, 1, 1),"x2"=c(3, 2, 1, 5, 7, 1),
"treatment"=c(0,0,0,1,1,1), "prop_score"=c(0.4, 0.4, 0.5, 0.6, 0.6, 0.7),
"outcome"=c(1, 2, 2, 1, 4, 4)), treatment_indicator = "treatment",
ps_indicator = "prop_score", covariates = c("x1","x2"))
The function `hte_plot` takes a model created by causal tree, as well as the adjusted version, and plots the distribution of the outcome variable in treated and control groups in each leaf of the tree. This visualization aims to show how the predicted treatment effect changes with each split in the tree.

Usage

```r
hte_plot(
    model,  # a tree model constructed by hte_causalTree, hte_matchinleaves, or hte_ipw.
    data,   # a data frame containing the variables in the model.
    treatment_indicator = NULL,  # a character representing the column name for the treatment variable in the causal setup.
    outcomevariable = NULL,      # a character representing the column name of the outcome variable.
    propensity_score = NULL,     # a character representing the column name of the propensity score.
    plot.title = "Visualization of the Tree"
)
```

Arguments

- `model` a tree model constructed by `hte_causalTree`, `hte_matchinleaves`, or `hte_ipw`.
- `data` a data frame containing the variables in the model.
- `treatment_indicator` a character representing the column name for the treatment variable in the causal setup.
- `outcomevariable` a character representing the column name of the outcome variable.
- `propensity_score` a character representing the column name of the propensity score.
- `plot.title` character representing the main title of the plot.

Value

no return value
hte_plot_line

Visualize the Estimated Results

Description

The function hte_plot_line takes a model created by causal tree, as well as the adjusted version, and plots the different least squares models used to estimate heterogeneous treatment effects (HTE) at each node. At each node, this visualization aims to show how the estimated treatment effect differs when using ordinary least squares and weighted least squares methods. The weighted least squares method in this package uses inverse propensity scores as weights, in order to reduce bias due to confounding variables.

Usage

hte_plot_line(
 model,
 data,
 treatment_indicator = NULL,
 outcomevariable,
 propensity_score,
 plot.title = "Visualization of the Tree",
 gamma = 0,
 lambda = 0,
 ...
)

Arguments

model a tree model constructed by hte_causalTree, hte_matchinleaves, or hte_ipw.
data a data frame containing the variables in the model.
treatment_indicator a character representing the column name for the treatment variable in the causal setup.
outcomevariable a character representing the column name of the outcome variable.
propensity_score a character representing the column name of the propensity score.
plot.title character representing the main title of the plot.
gamma, lambda numbers indicating the bias level used in sensitivity analysis
...
further arguments passed to or from other methods.

Value

No return value, used for plotting the estimated results with lines.
importance

Causal Effect Regression and Estimation Forests (Tree Ensembles)

Description

Build a random causal forest by fitting a user selected number of causalTree models to get an ensemble of rpart objects.

Usage

init.causalForest(
 formula,
 data,
 treatment,
 weights = FALSE,
 cost = FALSE,
 num.trees,
 ncv_sample
)

S3 method for class 'causalForest'
predict(object, newdata, predict.all = FALSE, type = "vector", ...)

causalForest(
 formula,
 data,
treatment,
na.action = na.causalTree,
split.Rule = "CT",
double.Sample = TRUE,
split.Honest = TRUE,
split.Bucket = FALSE,
bucketNum = 5,
bucketMax = 100,
cv.option = "CT",
cv.Honest = TRUE,
minsize = 2L,
propensity,
control,
split.alpha = 0.5,
cv.alpha = 0.5,
sample.size.total = floor(nrow(data)/10),
sample.size.train.frac = 0.5,
mtry = ceiling(ncol(data)/3),
nodesize = 1,
num.trees = nrow(data),
cost = FALSE,
weights = FALSE,
ncolx,
ncov_sample
)

Arguments

- **formula**: a formula, with a response and features but no interaction terms. If this a a data frame, that is taken as the model frame (see `model.frame`).
- **data**: an optional data frame that includes the variables named in the formula.
- **treatment**: a vector that indicates the treatment status of each observation. 1 represents treated and 0 represents control. Only binary treatment supported in this version.
- **weights**: optional case weights.
- **cost**: a vector of non-negative costs, one for each variable in the model. Defaults to one for all variables. These are scalings to be applied when considering splits, so the improvement on splitting on a variable is divided by its cost in deciding which split to choose.
- **num.trees**: Number of trees to be built in the causal forest
- **ncov_sample**: Number of covariates randomly sampled to build each tree in the forest
- **object**: a causalTree object
- **newdata**: new data to predict
- **predict.all**: If TRUE, return predicted individual effect for each observations. Otherwise, return the average effect.
- **type**: the type of returned object
... arguments to `rpart.control` may also be specified in the call to `causalForest`. They are checked against the list of valid arguments. The parameter `minsize` is implemented differently in `causalTree` than in `rpart`; we require a minimum of `minsize` treated observations and a minimum of `minsize` control observations in each leaf.

`na.action` the default action deletes all observations for which `y` is missing, but keeps those in which one or more predictors are missing.

`split.Rule` `causalTree` splitting options, one of "TOT", "CT", "fit", "tstats", four splitting rules in `causalTree`. Note that the "tstats" alternative does not have an associated cross-validation method `cv.option`; see Athey and Imbens (2016) for a discussion. Note further that `split.Rule` and `cv.option` can mix and match.

`double.Sample` boolean option, TRUE or FALSE, if set to True, causalForest will build honest trees.

`split.Honest` boolean option, TRUE or FALSE, used to decide the splitting rule of the trees.

`split.Bucket` boolean option, TRUE or FALSE, used to specify whether to apply the discrete method in splitting the tree. If set as TRUE, in splitting a node, the observations in a leaf will be be partitioned into buckets, with each bucket containing `bucketNum` treated and `bucketNum` control units, and where observations are ordered prior to partitioning. Splitting will take place by bucket.

`bucketNum` number of observations in each bucket when set `split.Bucket = TRUE`. However, the code will override this choice in order to guarantee that there are at least `minsize` and at most `bucketMax` buckets.

`bucketMax` Option to choose maximum number of buckets to use in splitting when set `split.Bucket = TRUE`, `bucketNum` can change by choice of `bucketMax`.

`cv.option` cross validation options, one of "TOT", "matching", "CT", "fit", four cross validation methods in `causalTree`. There is no `cv.option` for the `split.Rule` "tstats"; see Athey and Imbens (2016) for discussion.

`cv.Honest` boolean option, TRUE or FALSE, only used for `cv.option` as "CT" or "fit", to specify whether to apply honest risk evaluation function in cross validation. If set TRUE, use honest risk function, otherwise use adaptive risk function in cross validation. If set FALSE, the user choice of `cv.alpha` will be set to 1. If set TRUE, `cv.alpha` will default to 0.5, but the user choice of `cv.alpha` will be respected. Note that honest cv estimates within-leaf variances and may perform better with larger leaf sizes and/or small number of cross-validation sets.

`minsize` in order to split, each leaf must have at least `minsize` treated cases and `minsize` control cases. The default value is set as 2.

`propensity` propensity score used in "TOT" splitting and "TOT", honest "CT" cross validation methods. The default value is the proportion of treated cases in all observations. In this implementation, the propensity score is a constant for the whole dataset. Unit-specific propensity scores are not supported; however, the user may use inverse propensity scores as case weights if desired.

`control` a list of options that control details of the `rpart` algorithm. See `rpart.control`.

`split.alpha` scale parameter between 0 and 1, used in splitting risk evaluation function for "CT". When `split.Honest = FALSE`, `split.alpha` will be set as 1. For `split.Rule="tstats"`,
if split.Honest=TRUE, split.alpha is used in calculating the risk function, which determines the order of pruning in cross-validation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cv.alpha</td>
<td>scale parameter between 0 and 1, used in cross validation risk evaluation function for "CT" and "fit". When cv.Honest = FALSE, cv.alpha will be set as 1.</td>
</tr>
<tr>
<td>sample.size.total</td>
<td>Sample size used to build each tree in the forest (sampled randomly with replacement).</td>
</tr>
<tr>
<td>sample.size.train.frac</td>
<td>Fraction of the sample size used for building each tree (training). For example, if the sample.size.total is 1000 and frac = 0.5 then, 500 samples will be used to build the tree and the other 500 samples will be used to evaluate the tree.</td>
</tr>
<tr>
<td>mtry</td>
<td>Number of data features used to build a tree (This variable is not used presently).</td>
</tr>
<tr>
<td>nodesize</td>
<td>Minimum number of observations for treated and control cases in one leaf node</td>
</tr>
<tr>
<td>ncolx</td>
<td>Total number of covariates</td>
</tr>
</tbody>
</table>

Details

CausalForest builds an ensemble of CausalTrees (See Athey and Imbens, *Recursive Partitioning for Heterogeneous Causal Effects* (2016)), by repeated random sampling of the data with replacement. Further, each tree is built using a randomly sampled subset of all available covariates. A causal forest object is a list of trees. To predict, call R’s predict function with new test data and the causalForest object (estimated on the training data) obtained after calling the causalForest function. During the prediction phase, the average value over all tree predictions is returned as the final prediction by default. To return the predictions of each tree in the forest for each test observation, set the flag predict.all=TRUE CausalTree differs from rpart function from rpart package in splitting rules and cross validation methods. Please check Athey and Imbens, *Recursive Partitioning for Heterogeneous Causal Effects* (2016) and Stefan Wager and Susan Athey, *Estimation and Inference of Heterogeneous Treatment Effects using Random Forests* for more details.

Value

An object of class rpart. See rpart.object.

References

See Also

causalTree honest.causalTree, rpart.control, rpart.object, summary.rpart, rpart.plot
Examples

```r
library(rpart)
library("htetree")

cf <- causalForest(y~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=simulation.1,
treatment=simulation.1$treatment,
split.Rule="CT", split.Honest=TRUE,
split.Bucket=FALSE, bucketNum = 5,
bucketMax = 100, cv.option="CT", cv.Honest=TRUE, minsize = 2L,
split.alpha = 0.5, cv.alpha = 0.5,
sample.size.total = floor(nrow(simulation.1) / 2),
sample.size.train.frac = .5,
mtry = ceiling(ncol(simulation.1)/3), nodesize = 3, num.trees= 5,
ncolx=10,ncov_sample=3)

cfpredtest <- predict.causalForest(cf, newdata=simulation.1[1:100,],
type="vector")
```

Description

An intermediate function used for plotting

Usage

```r
makeplots(
negative,
opfit. = opfit,
trainset,
covariates,
outcomevariable,
data. = data,
hte_effect_setup,
varlabel,
maintitle,
legend.x = 0.8,
legend.y = 0.25,
...)
```

Arguments

- `negative` a logical value indicating whether we expect the treatment effect to be negative. The default is set as FALSE.
- `opfit.` tree structure generated from causal tree algorithm.
- `trainset` a data frame only containing the variables used in the model and missings values are listwise deleted.
matchinleaves

covariates	a vector of column names of all covariates (linear terms and propensity score).
outcomevariable	a character representing the column name of the outcome variable.
data.	a data frame containing the variables in the model.
hte_effect_setup	a empty list to store the adjusted treatment effect.
varlabel	a named vector containing variable labels.
maintitle	a character string indicating the main title displayed when plotting the tree and results. The default is set as "Heterogeneous Treatment Effect Estimation".
legend.x, legend.y	x and y coordinate to position the legend. The default is set as (0.08, 0.25).
...	further arguments passed to or from other methods.

Value

A plot visualizing the tree and estimated treatment effect in each node.

Description

This intermediate function is used to adjust the heterogeneous treatment effect estimated in each leaf with NN matching.

Usage

```r
matchinleaves(
  trainset = match_data,
  covariates = covariates,
  outcomevariable = outcomevariable,
  hte_effect_setup = hte_effect_setup,
  treatment_indicator,
  con.num = 1,
  ...
)
```

Arguments

- **trainset**: a data frame only containing the variables used in the model and missings values are listwise deleted.
- **covariates**: a vector of column names of all covariates (linear terms and propensity score).
- **outcomevariable**: a character representing the column name of the outcome variable.
hte_effect_setup

a empty list to store the adjusted treatment effect.

treatment_indicator

a character representing the column name of the treatment indicator.

con.num

a number indicating the number of units from control groups to be used in matching.

... further arguments passed to or from other methods.

Value

A list for summarizing the results after matching.

model.frame.causalTree

Intermediate function for causalTree

Description

get model frame of causalTree, same as rpart

Usage

S3 method for class 'causalTree'
model.frame(formula, ...)

Arguments

formula a formula, with a response but no interaction terms. If this is a data frame, it is taken as the model frame (see model.frame).

... arguments to rpart.control may also be specified in the call to causalTree. They are checked against the list of valid arguments. An example of a commonly set parameter would be xval, which sets the number of cross-validation samples. The parameter minsize is implemented differently in causalTree than in rpart: we require a minimum of minsize treated observations and a minimum of minsize control observations in each leaf.

Value

a model frame for causalTree.
na.causalTree
Intermediate function for causalTree

Description
requirement when missing values are included in sample.

Usage
`na.causalTree(x)`

Arguments
- `x` covariates

Value
No return value, used for handling missing values when they are included in sample.

plotOutcomes
Intermediate function for hte_plot_line

Description
Plots the different least squares models used to estimate heterogeneous treatment effects (HTE) at each node. At each node, this visualization aims to show how the estimated treatment effect differs when using ordinary least squares and weighted least squares methods. The weighted least squares method in this package uses inverse propensity scores as weights, in order to reduce bias due to confounding variables.

Usage
```r
plotOutcomes(
  treatment,
  outcome,
  propscores,
  confInt = TRUE,
  colbyWt = FALSE,
  ylab = "",
  xlab = "",
  title = "",
  gamma = 0,
  lambda = 0,
  ...
)
```
Arguments

- **treatment**: a character representing the column name for the treatment variable in the causal setup.
- **outcome**: a character representing the column name of the outcome variable.
- **propscores**: a character representing the column name of the propensity score.
- **confInt**: a logical value indicating whether adding the 95 confidence interval. The default is set as TRUE.
- **colbyWt**: a logical value indicating whether the points are are colored according to inverse propensity scores. The default is set as FALSE.
- **xlab, ylab, title**: Characters representing the name for x axis, y axis, and main title for each node.
- **gamma, lambda**: numbers indicating the bias level used in sensitivity analysis.
- **...**: further arguments passed to or from other methods.

Value

A summary table after adjusting the estimates with inverse probability weighting (ipw).

runDynamic
Visualize Causal Tree and Treatment Effects via Shiny

Description

Visualize Causal Tree and Treatment Effects via Shiny

Usage

```r
runDynamic(
  model,
  data,
  outcomevariable,
  treatment_indicator,
  propensity_score = "",
)
```

Arguments

- **model**: a tree model constructed by `hte_causalTree`, `hte_matchinleaves`, or `hte_ipw`.
- **data**: a data frame containing the variables in the model.
- **outcomevariable**: a character representing the column name of the outcome variable.
- **treatment_indicator**: a character representing the column name for the treatment variable in the causal setup.
- **propensity_score**: a character representing the column name of the propensity score.
Value

A Shiny page.

saveBCSS

Save Javascript Embedded in Shiny App

Description

Save Javascript Embedded in Shiny App

Usage

```
saveBCSS(filePath)
```

Arguments

- `filePath` a character string representing the path name to save the files temporarily.

Value

No return value. It is used to save necessary files temporarily to run Shiny App.

saveFiles

Save Necessary Files to Run Shiny App

Description

This function is to save files necessary to run Shiny app to visualize causal tree and the estimated heterogeneous treatment effects in an interactive way.

Usage

```
saveFiles(
    model,
    data,
    outcomevariable,
    treatment_indicator,
    propensity_score = "",
    filePath = ""
)
```
Arguments

model: a tree model constructed by hte_causalTree, hte_matchinleaves, or hte_ipw.
data: a data frame containing the variables in the model.
outcomeVariable: a character representing the column name of the outcome variable.
treatment_indicator: a character representing the column name for the treatment variable in the causal setup.
propensity_score: a character representing the column name of the propensity score.
filePath: a character string representing the path name to save the files temporarily.

Value

No return value. It is used to save necessary files temporarily to run Shiny App.

Description

Save CSS File Embedded in Shiny App

Usage

saveGCSS(filePath)

Arguments

filePath: a character string representing the path name to save the files temporarily.

Value

No return value. It is used to save necessary files temporarily to run Shiny App.
saveInd

Description
Save HTML Index Embedded in Shiny App

Usage
saveInd(filePath)

Arguments
filePath
a character string representing the path name to save the files temporarily.

Value
No return value. It is used to save necessary files temporarily to run Shiny App.

saveServ

Description
Save Shiny Server Temporarily

Usage
saveServ(filePath)

Arguments
filePath
a character string representing the path name to save the files temporarily.

Value
No return value. It is used to save necessary files temporarily to run Shiny App.
saveUI

Save Shiny UI Temporarily

Description
Save Shiny UI Temporarily

Usage
saveUI(filePath)

Arguments
filePath a character string representing the path name to save the files temporarily.

Value
No return value. It is used to save necessary files temporarily to run Shiny App.

simulation.1

A Simulated Dataset

Description
A simulated dataset inherited from causalTree package

Usage
simulation.1

Format
'## simulation.1' A data frame with 500 observations on the following 12 variables.

x1 a numeric vector
x2 a numeric vector
x3 a numeric vector
x4 a numeric vector
x5 a numeric vector
x6 a numeric vector
x7 a numeric vector
x8 a numeric vector
x9 a numeric vector
x10 a numeric vector
y a numeric vector
treatment a numeric vector
Index

* datasets
 - simulation.1, 40

bundScript, 2

causalForest(init.causalForest), 28
causalTree, 3, 15, 31
causalTree.branch, 6
causalTree.control, 7
causalTree.matrix, 8
causalTree.callback, 8
causalTree.co, 9
clearTemp, 9

est.causalTree, 10
estimate.causalTree, 10, 15

formatg, 11
formula, 4, 13, 18, 29, 34

getDefaultPath, 11
getDensities, 12

honest.causalTree, 6, 12, 31
honest.est.causalTree, 16
honest.est.rparttree, 17

honest.rparttree, 17
hete_causalTree, 20
hete_forest, 21
hete_ipw, 22
hete_match, 24
hete_plot, 26
hete_plot_line, 27
htetree.anova, 19

importance, 28
init.causalForest, 28

makeplots, 32
matchinleaves, 33
model.frame, 4, 13, 18, 29, 34

model.frame.causalTree, 34
model.offset, 19

na.causalTree, 35

offset, 19

plotOutcomes, 35
predict.causalForest
 (init.causalForest), 28

rpart, 34
rpart.control, 5, 6, 8, 15, 18, 19, 30, 31, 34
rpart.object, 5, 6, 15, 16, 31
rpart.plot, 6, 15, 31
runDynamic, 36

saveBCSS, 37
saveFiles, 37
saveGCSS, 38
saveInd, 39
saveServ, 39
saveUI, 40

simulation.1, 40

summary.rpart, 6, 15, 31

41