Package ‘i2extras’

July 8, 2021

Type Package
Title Functions to Work with 'incidence2' Objects
Version 0.1.2
Description Provides functions to work with 'incidence2' objects, including a simplified interface for trend fitting and peak estimation. This package is part of the RECON (<https://www.repidemicsconsortium.org/>) toolkit for outbreak analysis (<https://www.reconverse.org/>).

URL https://www.reconverse.org/i2extras/

BugReports https://github.com/reconverse/i2extras/issues

Encoding UTF-8
License MIT + file LICENSE
RoxygenNote 7.1.1
Imports utils, stats, incidence2 (>= 1.2.0), trending, dplyr, tibble, rlang, tidyr, vctrs, ellipsis, ggplot2, data.table, tidyselect
Suggests testthat, outbreaks, ggplot2, data.table, tidyselect

VignetteBuilder knitr

NeedsCompilation no

Author Tim Taylor [aut, cre] (<https://orcid.org/0000-0002-8587-7113>), Thibaut Jombart [aut]

Maintainer Tim Taylor <tim.taylor@hiddenelephants.co.uk>

Repository CRAN

Date/Publication 2021-07-08 09:30:02 UTC

R topics documented:

add_rolling_average .. 2
bootstrap ... 3
estimate_peak ... 4
find_peak ... 6
fit_curve .. 7
Description

`add_rolling_average()` adds a rolling average to an `incidence2::incidence()` object. If `x` is a grouped this will be a `dplyr::rowwise()` type object. If `x` is not grouped this will be a subclass of tibble.

Usage

```r
add_rolling_average(x, ...)
## Default S3 method:
add_rolling_average(x, ...)
## S3 method for class 'incidence2'
add_rolling_average(x, before = 2, ...)
```

Arguments

- `x` An `incidence2::incidence` object.
- `...` Not currently used.
- `before` how many prior dates to group the current observation with. Default is 2 days.

Value

An object of class `incidence2_rolling`.

Note

If groups are present the average will be calculated across each grouping, therefore care is required when plotting.

Author(s)

Tim Taylor
bootstrap

Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE) &&
    requireNamespace("incidence2", quietly = TRUE)) {

  data(ebola_sim_clean, package = "outbreaks")
  dat <- ebola_sim_clean$linelist
  dat <- subset(dat, date_of_onset <= as.Date("2014-10-05"))

  inci <- incidence2::incidence(dat,
      date_index = date_of_onset,
      interval = "week",
      groups = gender)

  ra <- add_rolling_average(inci, before = 2)
  plot(ra, color = "white")

  inci2 <- incidence2::regroup(inci)
  ra2 <- add_rolling_average(inci2, before = 2)
  plot(ra, color = "white")
}
```

bootstrap

Bootstrap incidence time series

Description

This function can be used to bootstrap `incidence2::incidence` objects. Bootstrapping is done by sampling with replacement the original input dates. See details for more information on how this is implemented.

Usage

```r
bootstrap(x, randomise_groups = FALSE)
```

Arguments

- **x**: An `incidence2::incidence` object.
- **randomise_groups**: A logical indicating whether groups should be randomised as well in the resampling procedure; respective group sizes will be preserved, but this can be used to remove any group-specific temporal dynamics. If FALSE (default), data are resampled within groups.

Details

As original data are not stored in `incidence2::incidence` objects, the bootstrapping is achieved by multinomial sampling of date bins weighted by their relative incidence.
estimates_peak

Value
An incidence2 object.

Author(s)
Thibaut Jombart, Tim Taylor

See Also
find_peak() to use estimate peak date using bootstrap

Examples
if (requireNamespace("outbreaks", quietly = TRUE)) {
 data(fluH7N9_china_2013, package = "outbreaks")
 i <- incidence2::incidence(fluH7N9_china_2013, date_index = date_of_onset)
 bootstrap(i)
 bootstrap(i, randomise_groups = TRUE)
}

estimate_peak
estimate_peak(x, n = 100, alpha = 0.05, progress = TRUE)

Description
This function can be used to estimate the peak of an epidemic curve stored as incidence2::incidence object, using bootstrapped samples of the available data. See bootstrap() for more information on the resampling.

Usage

Arguments

 x An incidence2::incidence object.
 n The number of bootstrap datasets to be generated; defaults to 100.
 alpha The type 1 error chosen for the confidence interval; defaults to 0.05.
 progress Should a progress bar be displayed (default = TRUE)

Details

Input dates are resampled with replacement to form bootstrapped datasets; the peak is reported for each, resulting in a distribution of peak times. When there are ties for peak incidence, only the first date is reported.

Note that the bootstrapping approach used for estimating the peak time makes the following assumptions:

- the total number of event is known (no uncertainty on total incidence)
- dates with no events (zero incidence) will never be in bootstrapped datasets
- the reporting is assumed to be constant over time, i.e. every case is equally likely to be reported

Value

A tibble with the the following columns:

- observed_date: the date of peak incidence of the original dataset.
- observed_count: the peak incidence of the original dataset.
- estimated: the median peak time of the bootstrap datasets.
- lower_ci/upper_ci: the confidence interval based on bootstrap datasets.
- peaks: a nested tibble containing the the peak times of the bootstrapped datasets.

Author(s)

Thibaut Jombart and Tim Taylor, with inputs on caveats from Michael Höhle.

See Also

bootstrap() for the bootstrapping underlying this approach and find_peak() to find the peak in a single incidence2::incidence object.

Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE)) {

  # load data and create incidence
data(fluH7N9_china_2013, package = "outbreaks")
i <- incidence2::incidence(fluH7N9_china_2013, date_index = date_of_onset)

  # find 95% CI for peak time using bootstrap
  peak_data <- estimate_peak(i)
  peak_data
  summary(peak_data$peaks)
}
```
find_peak

Description

This function can be used to find the peak of an epidemic curve stored as an `incidence2::incidence` object.

Usage

```r
find_peak(x)
```

Arguments

- **x**

 An `incidence2::incidence` object.

Value

A tibble containing the date of the (first) highest incidence in the data along with the count. If `x` is grouped object then the output will have the peak calculated for each grouping.

Author(s)

Tim Taylor

See Also

`estimate_peak()` for bootstrap estimates of the peak time.

Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE)) {
  # load data and create incidence
  data(fluH7N9_china_2013, package = "outbreaks")
  i <- incidence2::incidence(fluH7N9_china_2013, date_index = date_of_onset)
  find_peak(i)
}
```
fit_curve

Description

Fit an epi curve

Usage

```
fit_curve(x, model, ...)
```

- **# Default S3 method:**
  ```
  fit_curve(x, model, ...)
  ```

- **# S3 method for class 'incidence2'**
  ```
  fit_curve(x, model = "poisson", alpha = 0.05, ...)
  ```

Arguments

- **x**
 An `incidence2::incidence` object.

- **model**
 The regression model to fit (can be "poisson" or "negbin").

- **...**
 Additional arguments to pass to `stats::glm()` for `model = "poisson"` or `MASS::glm.nb()` for `model = "negbin"`.

- **alpha**
 Value of alpha used to calculate confidence intervals; defaults to 0.05 which corresponds to a 95% confidence interval.

Value

An object of class `incidence2_fit`.

Author(s)

Tim Taylor

fit_model

Description

Fit a model to an incidence object
Usage

fit_model(x, model, ...)

Default S3 method:
fit_model(x, model, ...)

S3 method for class 'trending_model'
fit_model(x, model, ...)

S3 method for class 'list'
fit_model(x, model, ...)

Arguments

x An incidence2::incidence object.
model Either an individual trending_model object generated by lm_model, glm_model,
glm_nb_model, brms_model or a list of these models (see ?trending::trending_model() for further details).
... Not currently used.

Value

An object of class incidence2_fit or incidence2_fit_list if a list of models is given as input.

Author(s)

Tim Taylor
Tim Taylor

flag_low_counts Flag low counts and set them to NAs

Description

Low counts may be genuine, but they can also reflect actually missing data or strong under-reporting. This function aims to detect the latter by flagging any count below a certain threshold, expressed as a fraction of the median count. Setting low values to NAs can be useful to help fitting temporal trends to the data, as zeros / low counts can throw off some models (e.g. Negative Binomial GLMs).

Usage

flag_low_counts(x, counts = NULL, threshold = 0.001, set_missing = TRUE)
growth_rate

Arguments

- `x`: An incidence2::incidence object.
- `counts`: A tidyselect compliant indication of the counts to be used.
- `threshold`: A numeric multiplier of the median count to be used as threshold. Defaults to 0.001, in which case any count strictly lower than 0.1% of the mean count is flagged as low count.
- `set_missing`: A logical indicating if the low counts identified should be replaced with NAs (TRUE, default). If FALSE, new logical columns with the flag_low suffix will be added, indicating which entries are below the threshold.

Value

An incidence2::incidence object.

Author(s)

Tim Taylor and Thibaut Jombart

Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE) &&
    requireNamespace("incidence2", quietly = TRUE)) {
  data(covid19_england_nhscalls_2020, package = "outbreaks")
  dat <- covid19_england_nhscalls_2020
  i <- incidence(dat, date, interval = "monday week", count = count)
  plot(i)
  plot(flag_low_counts(i, threshold = 0.1))
  plot(flag_low_counts(i, threshold = 1), title = "removing counts below the median")
}
```

growth_rate

Calculate growth/decay rate

Description

Calculate growth/decay rate

Usage

```r
growth_rate(x, ...)
```

Default S3 method:

```r
growth_rate(x, ...)
```

S3 method for class 'incidence2_fit'

```r
growth_rate(
```
Arguments

x The output of function `fit_curve.incidence2()`.
... Not currently used.
alpha Value of alpha used to calculate confidence intervals; defaults to 0.05 which corresponds to a 95% confidence interval.
growth_decay_time Should a doubling/halving time and corresponding confidence intervals be added to the output. Default TRUE.
include_warnings Include models in output that triggered warnings but not errors. Defaults to FALSE.

Author(s)

Tim Taylor

is_okerr Error handling for incidence2_fit objects

Description

These functions are used to filter successful model fits from those that errored or gave warnings.

Usage

```r
is_ok(x, ...)
```

```r
## Default S3 method:
is_ok(x, ...)
```

```r
## S3 method for class 'incidence2_fit'
is_ok(x, include_warnings = FALSE, ...)
```

```r
is_error(x, ...)
```

```r
## Default S3 method:
is_error(x, ...)
```
S3 method for class 'incidence2_fit'

\texttt{is_error(x, ...)}

\texttt{is_warning(x, ...)}

Default S3 method:

\texttt{is_warning(x, ...)}

S3 method for class 'incidence2_fit'

\texttt{is_warning(x, ...)}

\subsection*{Arguments}

\begin{itemize}
 \item \texttt{x} \hspace{1cm} The output of function \texttt{fit_curve_incidence2()}.
 \item \texttt{...} \hspace{1cm} Not currently used.
 \item \texttt{include_warnings} \hspace{1cm} Include results in output that triggered warnings but not errors. Defaults to FALSE.
\end{itemize}

\subsection*{Value}

- \texttt{is_ok()}: returns rows from an \texttt{incidence2_fit} object that did not error (and optionally produce a warning).
- \texttt{is_error()}: returns rows from an \texttt{incidence2_fit} object that errored.
- \texttt{is_warning()}: returns rows from an \texttt{incidence2_fit} object that produced warnings.

\subsection*{Author(s)}

Tim Taylor

\section*{NA_counts_}

\textit{Generate NAs of the right type for counts}

\subsection*{Description}

Counts can be of type integer or double. When setting up NAs to counts, this needs to be reflected by using the right type of NAs. This function addresses this need.

\subsection*{Usage}

\texttt{NA_counts_(x)}

\subsection*{Arguments}

\begin{itemize}
 \item \texttt{x} \hspace{1cm} A count vector.
\end{itemize}
Value

A NA of the type matching the input.

Author(s)

Thibaut

plot.incidence2_fit Plot a fitted epicurve

Description

Plot a fitted epicurve

Usage

```r
## S3 method for class 'incidence2_fit'
plot(x, cnt = NULL, include_warnings = FALSE, ci = TRUE, pi = FALSE, ...)
```

Arguments

- `x`
 An incidence2_fit object created by `fit_curve()`.
- `cnt`
 The count variable to print. If NULL defaults to the first value from `attr(x, "counts")`.
- `include_warnings`
 Include results in plot that triggered warnings but not errors. Defaults to FALSE.
- `ci`
 Plot confidence intervals (defaults to TRUE).
- `pi`
 Plot prediction intervals (defaults to FALSE).
- `...`
 Additional arguments to be passed to `incidence2::plot.incidence2()` or `incidence2::facet_plot()`.

Value

An incidence plot with the addition of a fitted curve. This will be facetted if the object is grouped.

Author(s)

Tim Taylor
plot.incidence2_rolling

Plot a rolling average incidence object

Description
Plot a rolling average incidence object

Usage
S3 method for class 'incidence2_rolling'
plot(x, cnt = NULL, ...)

Arguments
x An incidence2_ra object created by add_rolling_average().
cnt The count variable to print. If NULL defaults to the first value from attr(x, "counts").
... Additional arguments to be passed to incidence2::plot.incidence2() or incidence2::facet_plot().

Value
An incidence plot with the addition of a rolling average. This will be facetted if the object is grouped.

Author(s)
Tim Taylor
Index

add_rolling_average, 2
add_rolling_average(), 2, 13

bootstrap, 3
bootstrap(), 4, 5

dplyr::rowwise(), 2

estimate_peak, 4
estimate_peak(), 6

find_peak, 6
find_peak(), 4, 5
fit_curve, 7
fit_curve(), 12
fit_curve.incidence2(), 10, 11
fit_model, 7
flag_low_counts, 8

growth_rate, 9

incidence2::facet_plot(), 12, 13
incidence2::incidence, 2–9
incidence2::incidence(), 2
incidence2::plot.incidence2(), 12, 13
incidence2_fit, 11
incidence2_fit(fit_curve), 7
is_err.incidence2_fit(is_okerr), 10
is_error(is_okerr), 10
is_ok(is_okerr), 10
is_okerr, 10
is_warning(is_okerr), 10

MASS::glm.nb(), 7

NA_counts_, 11

plot.incidence2_fit, 12
plot.incidence2_rolling, 13

stats::glm(), 7

trending_model, 8