Package ‘iBATCGH’

October 14, 2020

Version 1.3.1
Date 2015-07-06
Title Integrative Bayesian Analysis of Transcriptomic and CGH Data
Author Alberto Cassese
Maintainer Alberto Cassese <alberto.cassese@maastrichtuniversity.nl>
Depends R (>= 2.10)
Imports Rcpp (>= 0.11.2), msm
LinkingTo Rcpp, RcppArmadillo
Description Bayesian integrative models of gene expression and comparative genomic hybridization data. The package provides inference on copy number variations and their association with gene expression.
License GPL-2
URL http://www.r-project.org
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-10-14 16:34:40 UTC

R topics documented:

iBATCGH-package ... 2
Center ... 3
iBAT ... 4
iBATProbit .. 6
Inference .. 8
InferenceA .. 10
InferenceMu .. 11
InferenceR .. 12
InferenceSd ... 13
InferenceXi .. 14
InitMu ... 15
InitXi ... 16
iBATCGH-package

Description

Bayesian integrative models of gene expression and comparative genomic hybridization data. The package provides inference on copy number variations and their association with gene expression.

Details

Package: iBATCGH
Type: Package
Version: 1.3
Date: 2015-07-06
License: GNU

The package takes as inputs gene expression, Comparative Genomic Hybridization (CGH) data, and the physical distance between CGH probes. It returns posterior probabilities of inclusion for each potential association gene expression - CGH, and inference on the CGH latent states. Two different models have been considered, see references for details. Available functions are classified in four classes: Preprocessing, Main, Postprocessing, Simulated Data.

Author(s)

Alberto Cassese, Marina Vannucci, Michele Guindani, Mahlet G. Tadesse.

Maintainer: Alberto Cassese <alberto.cassese@maastrichtuniversity.nl>

References

Examples

```r
## Not run:
data(NCI_60)
Y <- NCI_60$Affy
X <- NCI_60$aCGH
distance <- NCI_60$distance
disfix <- 146274826
xi <- InitXi(X)
tran <- Tran(xi)
mu <- InitMu()
d=0.2587288
Y <- Center(Y)
res <- iBAT(Y=Y,X=X,distance=distance,disfix=disfix,xi=xi,tran=tran,mu=mu,d=d)
summRes <- Inference(res,G=dim(Y)[[2]],M=dim(X)[[2]],niter=niter,burnin=bi,threshold=0.5)
## End(Not run)
```

Description

This function takes as argument a matrix of gene expression measurements Y, and returns the matrix obtained after centering each column with respect to its mean.

Usage

```r
Center(Y)
```

Arguments

- `Y` The matrix of data to be centered.

Details

This function center each column of the gene expression matrix.

Value

The matrix of data obtained after centering each column with respect to its mean.

Author(s)

Alberto Cassese
Examples

data(NCI_60)
Y <- NCI_60$Affy
Y <- Center(Y)

iBAT Main - Mixture selection prior

Description

Perform MCMC iterations of the model, as described in the reference.

Usage

iBAT(Y, X, distance, disfix, intercept=1, xi,
R=-1, tran, mu, sigma=((rgamma(4,1,1))^(-0.5)),
cmu=1/100000, c=10, delta=3, d = e=0.001, f=0.999,
alpha=20, deltak=c(-1,0,0.58,1), tauk=c(1,1,1,2),
upp_bounds=c(-0.1, 0.1, 0.73, Inf),
low_bounds=c(-Inf, -0.1, 0.1, 0.73),
alpha_IG=c(1,1,1,1), beta_IG=c(1,1,1,1),
low_IG=c(0.41,0.41,0.41,1), a=c(1,1,1,1),
niter=500000, burnin=200000, Cout=1000,
phi=0.5, pR=0.4, selectioncgh=-1, pXI=0.6, indep=0)

Arguments

Y Matrix of gene expression data
X Matrix of CGH data
distance Vector of distance between CGH probes
disfix Length of the chromosome under investigation
intercept If set to one an intercept is included in the regression model
xi Initialized matrix of latent states
R Initialized association matrix in a vector form. Default set to -1, that automatically creates a vector with all the positions set to zero
tran Initialized transition matrix
mu Initialized state specific mean vector
sigma Initialized state specific standard deviation vector
cmu Parameter that controls the variance of the prior on the intercept
c Parameter that determines the shrinkage in the model
delta Parameter of the Inverse-Gamma prior on the error variance
d Parameter of the Inverse-Gamma prior on the error variance
e Parameter of the Beta prior on the inclusion probability
Parameter of the Beta prior on the inclusion probability
Parameter that regulates the strength of the independent part of the mixture
Vector of mean of the prior on the state specific mean
Vector of sd of the prior on the state specific mean
Vector of upper bounds of the prior on the state specific mean
Vector of lower bounds of the prior on the state specific mean
Vector of parameters of the prior on the state specific mean standard deviation
Vector of parameters of the prior on the state specific mean standard deviation
Truncation of the prior on the state specific standard deviation
Vector of parameters of the prior on the transition matrix
Number of Monte Carlo Markov Chain iterations
Burn-in
Print the number of iterations ran every Cout iterations
Probability of an A/D step
Parameter of the distribution used to select the rows to be updated at every MCMC iteration
Number of samples not in neutral state in order to consider a CGH as a potential candidate for association with gene expression. Default set to -1 that automatically set it to 10% of the samples
Parameter of the distribution used to select the rows to be updated at every MCMC iteration
If set to an integer different from zero, run the analysis with an independent prior, see reference.

The output consists of an R list composed by 4*niter+3 elements objects, where niter is the number of MCMC iterations. The first niter objects of the list are vectors, each containing the positions of the association matrix set to one, at the corresponding MCMC iteration. Each of the following niter objects of the list are the transition matrices at the corresponding MCMC iteration, while the third and the fourth set of niter objects are the vectors of state specific mean and state specific variance, respectively. The last three objects of the list consist of three matrices counting the number of times the corresponding latent state has been set to 1, 3 and 4, respectively.

Author(s)
Alberto Cassese

References
Examples

Not run:

data(NCI_60)

Y <- NCI_60$Affy
X <- NCI_60$aCGH
distance <- NCI_60$distance
disfix <- 146274826
xi <- InitXi(X)
tran <- Tran(xi)
mu <- InitMu()
d=0.2587288

Y <- Center(Y)

res <- iBAT(Y=Y,X=X,distance=distance,disfix=disfix,xi=xi,tran=tran,mu=mu,d=d)

summRes <- Inference(res,G=dim(Y)[[2]],M=dim(X)[[2]],niter=niter,burnin=bi,threshold=0.5)

End(Not run)

iBATProbit

Main - Probit selection prior

Description

Perform MCMC iterations of the model described in the reference.

Usage

iBATProbit(Y, X, distance, disfix, intercept=1, xi,
R=-1, tran, mu, sigma=((rgamma(4,1,1))^(-0.5)),
cmu=1/1000000, c=10, delta=3, d, alpha0=2.32,
alpha1=1, deltak=c(-1,0,0.58,1), tauk=c(1,1,1,2),
upp_bounds=c(-0.1, 0.1, 0.73, Inf),
low_bounds=c(-Inf, -0.1, 0.1, 0.73),
alpha_IG=c(1,1,1,1), beta_IG=c(1,1,1,1),
low_IG=c(0.41,0.41,0.41,1), a=c(1,1,1,1),
niter=500000, burnin=200000, Cout=1000,
phi=0.5, pR=0.4, selectioncgh=-1, pXI=0.6)

Arguments

<table>
<thead>
<tr>
<th>Y</th>
<th>Matrix of gene expression data</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Matrix of CGH data</td>
</tr>
<tr>
<td>distance</td>
<td>Vector of distance between CGH probes</td>
</tr>
<tr>
<td>disfix</td>
<td>Length of the chromosome under investigation</td>
</tr>
</tbody>
</table>
intercept: If set to one an intercept is included in the regression model.

xi: Initialized matrix of latent states.

R: Initialized association matrix in a vector form. Default set to -1, that automatically creates a vector with all the positions set to zero.

tran: Initialized transition matrix.

mu: Initialized state specific mean vector.

sigma: Initialized state specific standard deviation vector.

cmu: Parameter that controls the variance of the prior on the intercept.

c: Parameter that determines the shrinkage in the model.

delta: Parameter of the Inverse-Gamma prior on the error variance.

d: Parameter of the Inverse-Gamma prior on the error variance.

alpha0: Baseline intercept of the selection prior.

alpha1: Parameter that regulates the strength of the spatially informed dependence.

deltak: Vector of mean of the prior on the state specific mean.

tauk: Vector of sd of the prior on the state specific mean.

upp_bounds: Vector of upper bounds of the prior on the state specific mean.

low_bounds: Vector of lower bounds of the prior on the state specific mean.

alpha_IG: Parameter of the prior on the state specific standard deviation.

beta_IG: Parameter of the prior on the state specific standard deviation.

low_IG: Truncation of the prior on the state specific standard deviation.

a: Vector of parameters of the prior on the transition matrix.

niter: Number of Monte Carlo Markov Chain iteration.

burnin: Burn-in.

Cout: Print the number of iterations ran every Cout iterations.

pR: Parameter of the distribution used to select the rows to be updated at every MCMC iteration.

selectioncgh: Number of samples not in neutral state in order to consider a CGH as a potential candidate for association with gene expression. Default set to -1 that automatically set it to 10% of the samples.

pXI: Parameter of the distribution used to select the rows to be updated at every MCMC iteration.

Value

The output consists of an R list composed by 4*niter+3 objects, where niter is the number of MCMC iterations. The first niter objects of the list are vectors, each containing the positions of the association matrix set to one, at the corresponding MCMC iteration. Each of the following niter objects of the list are the transition matrices at the corresponding MCMC iteration, while the third and the fourth set of niter objects are the vectors of state specific mean and state specific variance, respectively. The last three objects of the list consist of three matrices counting the number of times the corresponding latent state has been set to 1, 3 and 4, respectively.
Inference

Author(s)

Alberto Cassese

References

Examples

```r
## Not run:
data(TCGA_lung)

Y <- TCGA_lung$Affy
X <- TCGA_lung$aCGH
distance <- TCGA_lung$distance
disfix <- 199446827
xi <- InitXi(X)
tran <- Tran(xi)
mu <- InitMu()
d=0.2587288

Y <- Center(Y)
res <- iBATProbit(Y=Y,X=X,distance=distance,disfix=disfix,xi=xi,tran=tran,mu=mu,d=d)

summRes <- Inference(res,G=dim(Y)[[2]],M=dim(X)[[2]],niter=niter,burnin=bi,threshold=0.5)
## End(Not run)
```

Postprocessing - Posterior Inference

Description

Performs posterior inference on the output of the main function.

Usage

```
Inference(listComplete, G, M, niter, burnin, threshold = 0.5)
```

Arguments

- `listComplete`: Output of the main function.
- `G`: Number of gene expression probes.
- `M`: Number of CGH probes.
- `niter`: Number of Monte Carlo Markov Chain iterations.
- `burnin`: Burn-in.
- `threshold`: Threshold on the posterior probabilities of inclusion of the association matrix.
Details

Wrapper function which calls InferenceR, InferenceXi, InferenceA, InferenceMu, InferenceSd on the output of the main function.

Value

A list made by the following items

- **R** Binary matrix of estimated association
- **Xi** Matrix of estimated copy number states
- **A** Estimated transition matrix
- **Mu** Estimated vector of state specific means
- **Sd** Estimated vector of state specific standard deviations

Author(s)

Alberto Cassese

References

See Also

See Also InferenceR, InferenceXi

Examples

```r
## Not run:
data(NCI_60)

Y <- NCI_60$Affy
X <- NCI_60$aCGH
distance <- NCI_60$distance
disfix <- 146274826
xi <- InitXi(X)
tran <- Tran(xi)
mu <- InitMu()
d=0.2587288

Y <- Center(Y)

res <- iBAT(Y=Y,X=X,distance=distance,disfix=disfix,xi=xi,tran=tran,mu=mu,d=d)

summRes <- Inference(res,G=dim(Y)[[2]],M=dim(X)[[2]],niter=niter,burnin=bi,threshold=0.5)
```
Description
This function returns a matrix obtained as the elementwise mean of the association matrices, output of the Monte Carlo Markov Chain iterations, after removing burn-in.

Usage
```
InferenceA(listA, niter, burnin)
```

Arguments
- `listA`: Second niter objects of the output of the main function
- `niter`: Number of Monte Carlo Markov Chain iterations
- `burnin`: Burn-in

Value
Estimated transition matrix.

Author(s)
Alberto Cassese

References

See Also
See Also as `Inference`

Examples
```
## See Inference
```
InferenceMu

Postprocessing - Inference on the vector of state specific mean

Description
This function returns a vector obtained as the elementwise mean of the vectors of state specific mean, output of the Monte Carlo Markov Chain iterations, after removing burn-in.

Usage
InferenceMu(listMu, niter, burnin)

Arguments
- listMu: Third niter objects of the output of the main function
- niter: Number of Monte Carlo Markov Chain iteration
- burnin: Burn-in

Value
Estimated vector of state specific mean.

Author(s)
Alberto Cassese

References

See Also
See Also as Inference

Examples
##See Inference
Description

This function performs posterior inference on the association matrix, returning the matrix of posterior probabilities of inclusion for each association gene expression - CGH. It also returns the binary matrix of significant links that exceed a threshold given as argument.

Usage

InferenceR(listR, G, M, niter, burnin, threshold = 0.5)

Arguments

- **listR**: First niter objects of the output of the main function
- **G**: Number of gene expression probes
- **M**: Number of aCGH probes
- **niter**: Number of Monte Carlo Markov Chains iterations
- **burnin**: Burn-in
- **threshold**: Threshold on the posterior probability of inclusion

Value

A list made of the following items

- **FreqMat**: Matrix of posterior probabilities of inclusion
- **final**: Binary association matrix

Author(s)

Alberto Cassese

References

See Also

See Also as Inference

Examples

##See Inference
InferenceSd

Postprocessing - Inference on the vector of state specific sd

Description
This function returns a vector obtained as the elementwise mean of the vectors of state specific standard deviation, output of the Monte Carlo Markov Chain iterations, after removing burn-in.

Usage
InferenceSd(listSd, niter, burnin)

Arguments
- listSd: Fourth niter objects of the output of the main function
- niter: Number of Monte Carlo Markov Chain iterations
- burnin: Burn-in

Value
Estimated vector of state specific sd.

Author(s)
Alberto Cassese

References

See Also
See Also as Inference

Examples
##See Inference
InferenceXi

Postprocessing - Inference on the latent states

Description

This function returns the modal latent states.

Usage

InferenceXi(listXi, niter, burnin)

Arguments

- listXi: Last three objects of the output of the main function
- niter: Number of Monte Carlo Markov Chain iterations
- burnin: Burn-in

Details

Must use the same burn-in as in the main function.

Value

Matrix of modal latent states, i.e. estimated Copy Number Variants. A four class classification is considered:

1. Loss
2. Neutral
3. Gain
4. Amplification

Author(s)

Alberto Cassese

References

See Also

See Also as Inference
Description

Initializes the state specific mean vector, by sampling each element independently from its prior, i.e. truncated normal distribution.

Usage

```r
InitMu(deltak = c(-1, 0, 0.58, 1), tauk = c(1, 1, 1, 2),
       low_bounds = c(-Inf, -0.1, 0.1, 0.73), upp_bounds = c(-0.1, 0.1, 0.73, Inf))
```

Arguments

- `deltak`: Vector of means of the truncated Normal distributions
- `tauk`: Vector of standard deviations of the truncated Normal distributions
- `low_bounds`: Vector of lower bounds of the truncated Normal distributions
- `upp_bounds`: Vector of upper bounds of the truncated Normal distributions

Value

A vector of state specific mean, that could be used as input of the main function.

Author(s)

Alberto Cassese

References

Examples

```r
mu <- InitMu()
```
InitXi

Preprocessing - Initialize matrix of latent states

Description
This function takes a matrix of CGH data as the only argument and returns a crude estimate of the corresponding latent copy number states.

Usage
InitXi(X, bounds = c(-0.5, 0.29, 0.79))

Arguments
- **X**: Matrix of aCGH data
- **bounds**: Vector of threshold used to estimate the latent states

Details
Given as argument a vector of threshold bounds the function simply applies the thresholding to the data and groups them into four subsets. Each subset is associated to a specific latent state.

Value
Return a matrix of estimated latent states, that could be used as input of the main function.

Author(s)
Alberto Cassese

References

See Also
See Also Tran

Examples
```r
data(NCI_60)
X <- NCI_60$aCGH
xi <- InitXi(X)
```
NCI_60 cancer cell lines data

Description

Processed and filtered NCI-60 cancer cell lines data, as described in the reference.

Usage

data(NCI_60)

Format

The format is a list of 3 objects
$ aCGH
$ Affy
$ distance

Source

Full matrix of data downloaded from discover.nci.nih.gov/cellminer.

References

Examples

data <- data(NCI_60)

RListToVector

Internal function

Description

Internal function

Usage

RListToVector(xList, G, T)
Arguments

- `xList`: List of included associations (C format)
- `G`: Number of gene expression probes
- `T`: Number of CGH probes

Details

This is an internal function.

Value

Returns a vector whose elements are the number of times, across the MCMC iterations, the corresponding position of the transition matrix has been set to one.

Author(s)

Alberto Cassese

Scenario1

Simulated data - Scenario 1

Description

Simulates the data as described in the reference provided below (Scenario 1).

Usage

`Scenario1(sigmak = 0.1)`

Arguments

- `sigmak`: Standard deviation of the error term

Value

Return a list made of the following items

- `Y`: Matrix of simulated gene expression
- `X`: Matrix of simulated CGH
- `Xi`: True matrix of hidden states
- `A`: Empirical transition matrix
- `mu`: True vector of state specific mean
- `Sd`: True vector of state specific sd
- `coeff`: True matrix of association coefficients between gene expression and CGH probes
- `distance`: Vector of distance between CGH probes
- `disfix`: Length of the chromosome
Author(s)
Alberto Cassese

References

Examples
data <- Scenario1(sigmak = 0.1)

Scenario2 Simulated data - Scenario 2

Description
Simulates the data as described in the reference provided below (Scenario 2).

Usage
Scenario2(sigmak = 0.1)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigmak</td>
<td>Standard deviation of the error term</td>
</tr>
</tbody>
</table>

Value
Return a list made of the following items

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Matrix of simulated gene expression</td>
</tr>
<tr>
<td>X</td>
<td>Matrix of simulated CGH</td>
</tr>
<tr>
<td>Xi</td>
<td>True matrix of hidden states</td>
</tr>
<tr>
<td>A</td>
<td>Empirical transition matrix</td>
</tr>
<tr>
<td>mu</td>
<td>True vector of state specific mean</td>
</tr>
<tr>
<td>Sd</td>
<td>True vector of state specific sd</td>
</tr>
<tr>
<td>coeff</td>
<td>True matrix of association coefficients between gene expression and CGH probes</td>
</tr>
<tr>
<td>distance</td>
<td>Vector of distance between CGH probes</td>
</tr>
<tr>
<td>disfix</td>
<td>Length of the chromosome</td>
</tr>
</tbody>
</table>
Author(s)
Alberto Cassese

References

Examples
data <- Scenario2(sigma_k = 0.1)

TCGA_lung TCGA lung squamous cell carcinoma data

Description
Processed and filtered TCGA lung squamous cell carcinoma data, as described in the reference.

Usage
data(TCGA_lung)

Format
The format is a list of 3 objects
$ aCGH
$ Affy
$ distance

Source
Full matrix of data obtained from https://tcga-data.nci.nih.gov/tcga/.

References

Examples
data <- data(TCGA_lung)
Description

This function computes the transition matrix corresponding to a specific matrix of latent states.

Usage

Tran(xi)

Arguments

xi Matrix of estimated latent states

Details

The matrix of latent states must consider only 4 states:

1. Loss
2. Neutral
3. Gain
4. Amplification

Value

A 4 by 4 matrix with transition probabilities derived from the input matrix of latent states.

Author(s)

Alberto Cassese

References

Examples

data(NCI_60)
X <- NCI_60$aCGH
xi <- InitXi(X)
tran <- Tran(xi)
Index

Main
- iBAT, 4
- iBATProbit, 6

Package
- iBATCGH-package, 2

Postprocessing
- Inference, 8
- InferenceA, 10
- InferenceMu, 11
- InferenceR, 12
- InferenceSd, 13
- InferenceXi, 14

Preprocessing
- Center, 3
- Tran, 21

Prerocessing
- InitMu, 15

Simulated data
- Scenario1, 18
- Scenario2, 19

datasets
- NCI_60, 17
- TCGA_lung, 20

Center, 3

iBAT, 4
iBATCGH (iBATCGH-package), 2
iBATCGH-package, 2
iBATProbit, 6
Inference, 8, 10–14
InferenceA, 10
InferenceMu, 11
InferenceR, 9, 12
InferenceSd, 13
InferenceXi, 9, 14
InitMu, 15
InitXi, 16

NCI_60, 17

RListToVector, 17
Scenario1, 18
Scenario2, 19
TCGA_lung, 20
Tran, 16, 21