Package ‘iBST’

January 31, 2017

Type Package
Title Improper Bagging Survival Tree
Version 1.0
Date 2017-01-30
Author Cyprien Mbogning and Philippe Broet
Maintainer Cyprien Mbogning <cyprien.mbogning@gmail.com>
Description Fit a bagging survival tree on a mixture of population (susceptible and nonsusceptible) using either a pseudo R2 criterion or an adjusted Logrank criterion. The predictor is evaluated using the Out Of Bag Integrated Brier Score (IBS) and several scores of importance are computed for variable selection. The thresholds values for variable selection are computed using a nonparametric permutation test.

License GPL (>= 2.0)
LazyLoad yes
Depends survival, rpart, parallel
Imports Rcpp
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-01-31 14:16:51

R topics documented:

- `iBST-package`
- `Bagg_pred_Surv`
- `Bagg_Surv`
- `burn`
- `improper_tree`
- `permute_select_surv`
- `PseudoR2.Cure`
- `tree2indicators`

Index

1
Description

Fit a bagging survival tree on a mixture of population (susceptible and nonsusceptible) using either a pseudo R2 criterion or an adjusted Logrank criterion. The predictor is evaluated using the Out Of Bag Integrated Brier Score (IBS) and several scores of importance are computed for variable selection. The thresholds values for variable selection are computed using a nonparametric permutation test.

Details

Package: iBST
Type: Package
Version: 1.0
Date: 2017-01-30
License: GPL(>=2.0)

Author(s)

Cyprien Mbogning and Philippe Broet
Maintainer: Cyprien Mbogning <cyprien.mbogning@gmail.com>

References

See Also

`Bagg.Surv` `Bagg_pred.Surv` `improper.tree`

Examples

```r
## Not run:
data(burn)
myarg = list(cp = 0, maxcompete = 0, maxsurrogate = 0, maxdepth = 2)
Y.names = c("T3","D3")
P.names = 'Z2'
T.names = c("Z1", paste("Z", 3:11, sep = ''))
mybag = 40
set.seed(5000)
```
Bagg_pred_Surv

Bagging survival tree prediction

Description

Use the Bagging improper survival tree to predict on new features and to evaluate the predictor using Out Of Bag Integrated Brier Scores with either the Nelson Aalen estimator or the Breslow estimator. A permutation importance score is also computed using OOB observations.
Usage

```r
Bagg_pred_Surv(xdata, Y.names, P.names, resBag, args.parallel = list(numWorkers = 1),
new_data = data.frame(), OOB = FALSE)
```

Arguments

- **xdata**: The learning data frame
- **Y.names**: A vector of the names of the two variables of interest (the time-to-event is followed by the event indicator)
- **P.names**: The names of independent variables acting on the non-susceptible population (the plateau)
- **resBag**: The result of the `Bagg_Surv` function
- **args.parallel**: a list containing the number of parallel computing arguments: The number of workers, the type of parallelization to achieve, ... see `mclapply` for further details.
- **new_data**: An optional data frame to validate the bagging procedure (the test dataset)
- **OOB**: A value of TRUE or FALSE with TRUE indicating the computation of the OOB error using the Integrated Brier Score and also the computation of the permutation importance score.

Value

- **PREDNA**: A matrix with Nelson Aalen predictions on all individuals of the learning sample
- **PREDRE**: A matrix with Breslow predictions on all individuals of the learning sample
- **tabhazNAa**: A list of matrix with Nelson Aalen prediction of each tree of the bagging sequence with the leaf node prediction in each column
- **tabhazBRe**: A list of matrix with Breslow prediction of each tree of the bagging sequence with the leaf node prediction in each column
- **OOB**: A value of NULL if OOB is FALSE. A list of twelve elements otherwise: `IBSKM`: The Kaplan-Meier estimation of the Integrated Brier Score; `IBSNAOob`: The OOB error using the Nelson-Aalen estimator; `IBSBREOob`: The OOB error using the Breslow estimator; `vimpooobpna`: The permutation variable importance using the Nelson-Aalen estimator; `vimpooobpbre`: The permutation variable importance using the Breslow estimator; `oobibspbpna`: The mean OOB error predictor by predictor using the Nelson-Aalen estimator; `oobibspbpbre`: The mean OOB error predictor by predictor using the Breslow estimator; `SURVNAOob`: A matrix with the predicted OOB survival using the Nelson-Aalen estimator; `SURVBREOob`: A matrix with the predicted OOB survival using the Breslow estimator; `BSTKM`: The vector of Brier scores using the KM estimator; `BSTNAOob`: The vector of Brier scores using the NA estimator; `BSTBREOob`: The vector of Brier scores using the BRE estimator.
- **Timediff**: The execution time of the prediction procedure
- **TEST**: A value of NULL if new_data is not available. A list of seven elements otherwise: `IBSNAKMaNew`: The IBS using the NA estimator on the new dataset; `IBSBRKMaNew`: The IBS using the BRE estimator on the new dataset; `IBSKMaNew`: The IBS using
the KM estimator on the new dataset; SURV_NAnew: A matrix of predicted survival on the new dataset using the NA estimator; SURV_BREnew: A matrix of predicted survival on the new dataset using the BRE estimator; SURV_NAnew: a vector of survival prediction on the testing dataset using the NA estimator; SURV_BREnew: a vector of survival prediction on the testing dataset using the BRE estimator.

Author(s)

Cyprien Mbogning and Philippe Broet

References

See Also

Bagg_Surv

Examples

```r
## Not run:
data(burn)
myarg = list(cp = 0, maxcompete = 0, maxsurrogate = 0, maxdepth = 2)
Y.names = c("T3", "D3")
P.names = 'Z2'
T.names = c("Z1", paste("Z", 3:11, sep = '\'))
mybag = 40
set.seed(5000)
burn.BagEssai0 <- Bagg_Surv(burn, Y.names, P.names, T.names, method = "LR", args.rpart = myarg, args.parallel = list(numWorkers = 1), Bag = mybag)
burn.BagEssai1 <- Bagg_Surv(burn, Y.names, P.names, T.names, method = "R2", args.rpart = myarg, args.parallel = list(numWorkers = 1), Bag = mybag)
pred0 <- Bagg_pred_Surv(burn, Y.names, P.names, burn.BagEssai0, burn.BagEssai0, args.parallel = list(numWorkers = 1), OOB = TRUE)
pred1 <- Bagg_pred_Surv(burn, Y.names, P.names, burn.BagEssai1, burn.BagEssai1, args.parallel = list(numWorkers = 1), OOB = TRUE)

## End(Not run)
```
Bagging improper survival trees

Description

Bagging procedure to aggregate several improper trees using either the pseudo-R2 procedure or the adjusted Logrank procedure. Several scores for variables importance are computed.

Usage

```
Bagg_Surv(xdata, Y.names, P.names, T.names, method = "R2", args.rpart,
           args.parallel = list(numWorkers = 1), Bag = 100)
```

Arguments

- `xdata`: The learning data frame
- `Y.names`: A vector of the names of the two variables of interest (the time-to-event is followed by the event indicator)
- `P.names`: The names of independent variables acting on the non-susceptible population (the plateau)
- `T.names`: The names of independent variables acting on the survival of the susceptible population
- `method`: The chosen method (either "LR" for the Logrank or "R2" for the proposed pseudo-R2 criterion)
- `args.rpart`: The improper survival tree parameters: a list of options that control details of the rpart algorithm. `minbucket`: the minimum number of observations in any terminal `<leaf>` node; `cp`: complexity parameter (Any split that does not decrease the overall lack of fit by a factor of `cp` is not attempted); `maxdepth`: the maximum depth of any node of the final tree, with the root node counted as depth 0. ... See `rpart.control` for further details
- `args.parallel`: A list containing the number of parallel computing arguments: The number of workers, the type of parallelization to achieve, ... see `mclapply` for further details.
- `Bag`: The number of Bagging samples to consider

Details

For the Bagging procedure, it is mandatory to set `maxcompete` = 0 and `maxsurrogate` = 0 within the `args.rpart` arguments. This will ensure the correct calculation of the importance of variables and also a better computation time.
Value

A list of ten elements

- **MaxTreeList**: The list of improper survival trees computed during the bagging procedure
- **IIS**: The Index Importance Score
- **DIIIS**: The Depth Index Importance Score
- **DEPTH**: The minimum depth importance Score
- **IND_OOB**: A list of length Bag containing the Out Of Bag (OOB) individuals for improper survival tree model
- **IND_SAMP**: The final list of length Bag of sample individuals used for each improper survival tree
- **IND_SAMP**: The initial list of sample individuals used for each improper survival tree at the beginning
- **Bag**: The number of bagging samples retained at the end of the procedure after removing the trees without leaves
- **indrpart**: A vector of TRUE or FALSE with the value FALSE when the corresponding tree is removed from the final bagged predictor
- **Timediff**: The elapsed time of the Bagging procedure

Note

This version of the code allows for the moment only one variable to have an impact on the cured population. The next version will allow more than one variable.

Author(s)

Cyprien Mbogning and Philippe Broet

References

See Also

Bagg_pred_Surv

Examples

```r
## Not run:
data(burn)
myarg = list(cp = 0, maxcompete = 0, maxsurrogate = 0, maxdepth = 2)
Y.names = c("T3", "O3")
P.names = c("Z2")
T.names = c("Z1", paste("Z", 3:11, sep = ""))
mybag = 40
set.seed(5000)
```
burn.BagEssai0 <- Bagg_Surv(burn, Y.names, P.names, T.names, method = "LR", args.rpart = myarg,
args.parallel = list(numWorkers = 1), Bag = mybag)

burn.BagEssai1 <- Bagg_Surv(burn, Y.names, P.names, T.names, method = "R2", args.rpart = myarg,
args.parallel = list(numWorkers = 1), Bag = mybag)

End(Not run)

burn dataset

Description

The burn data frame has 154 rows and 17 columns.

Usage

data(burn)

Format

A data frame with 154 observations on the following 17 variables.

obs Observation number
z1 Treatment: 0-routine bathing 1-Body cleansing
z2 Gender (0=male 1=female)
z3 Race: 0=nonwhite 1=white
z4 Percentage of total surface area burned
z5 Burn site indicator: head 1=yes, 0=no
z6 Burn site indicator: buttock 1=yes, 0=no
z7 Burn site indicator: trunk 1=yes, 0=no
z8 Burn site indicator: upper leg 1=yes, 0=no
z9 Burn site indicator: lower leg 1=yes, 0=no
z10 Burn site indicator: respiratory tract 1=yes, 0=no
z11 Type of burn: 1=chemical, 2=scald, 3=electric, 4=flame
t1 Time to excision or on study time
d1 Excision indicator: 1=yes 0=no
t2 Time to prophylactic antibiotic treatment or on study time
d2 Prophylactic antibiotic treatment: 1=yes 0=no
t3 Time to straphylocous aureaus infection or on study time
d3 Straphylocous aureaus infection: 1=yes 0=no
Source

Examples

data(burn)
 ## maybe str(burn) ;

improper_tree improper survival tree

Description

Fit an improper survival tree for the mixed population (susceptible and nonsusceptible) using either the proposed pseudo R2 criterion or an adjusted Logrank criterion

Usage

improper_tree(xdata, Y.names, P.names, T.names, method = "R2", args.rpart)

Arguments

- **xdata** The learning data frame
- **Y.names** A vector of the names of the two variables of interest (the time-to-event is follow by the event indicator)
- **P.names** The names of independant variables acting on the non-susceptible population (the plateau)
- **T.names** The names of independant variables acting on the survival of the susceptible population
- **method** The choosen method (either "LR" for the Logrank or "R2" for the proposed pseudo-R2 criterion)
- **args.rpart** The improper survival tree parameters: a list of options that control details of the rpart algorithm. minbucket: the minimum number of observations in any terminal <leaf> node; cp: complexity parameter (Any split that does not decrease the overall lack of fit by a factor of cp is not attempted); maxdepth: the maximum depth of any node of the final tree, with the root node counted as depth 0. ... See rpart.control for further details

Value

An unprunned improper survival tree
permute_select_surv

Author(s)

Cyprien Mbogning and Philippe Broet

References

See Also

Bagg_Surv Bagg_pred_Surv

Examples

```r
## Not run:
data(burn)
myarg = list(cp = 0, maxcompete = 0, maxsurrogate = 0, maxdepth = 3)
Y.names = c("T3", "D3")
P.names = 'Z2'
T.names = c("Z1", paste("Z", 3:11, sep = ''))
burn.tree <- improper_tree(burn, Y.names, P.names, T.names, method = "R2", args.rpart = myarg)
plot(burn.tree)
text(burn.tree, cex = .7)
## End(Not run)
```

permute_select_surv permutation variable selection

Description

Variable selection using the permutation test on several scores of importance: IIS, DIIS and DEPTH.

Usage

```r
permute_select_surv(xdata, Y.names, P.names, T.names, importance = "IIS", method = "R2", Bag, args.rpart, args.parallel = list(numWorkers = 1), nperm = 50)
```

Arguments

- `xdata`: The learning data frame
- `Y.names`: A vector of the names of the two variables of interest (the time-to-event is follow by the event indicator)
- `P.names`: The names of independant variables acting on the non-susceptible population (the plateau)
- `T.names`: The names of independant variables acting on the survival of the susceptible population
permute_select_surv

importance
The importance score to consider: either IIS, DIIS or DEPTH

method
The splitting method: either "R2" for the proposed pseudo-R2 criterion or "LR" for the adjusted Logrank criterion

Bag
The number of Bagging samples to consider

args.rpart
The improper survival tree parameters: a list of options that control details of the rpart algorithm. minbucket: the minimum number of observations in any terminal <leaf> node; cp: complexity parameter (Any split that does not decrease the overall lack of fit by a factor of cp is not attempted); maxdepth: the maximum depth of any node of the final tree, with the root node counted as depth 0. ... See rpart.control for further details

args.parallel
a list containing the number of parallel computing arguments: The number of workers, the type of parallelization to achieve, ... see mclapply for further details.

nperm
The number of permutation samples to consider for the permutation test

Details
Testing whether the importance score is null or not.

Value
A list of five elements:

- **pvalperm1**
The permutation test P-values ranking in decreasing order

- **pvalperm2**
The permutation test P-values ranking in decreasing order considering an approximate gaussian distribution under the null hypothesis

- **pvalKS**
The Kolmogorov-Smirnov P-values of the comparisons between the observed importance under the null hypothesis and a theoretical gaussian distribution

- **IMPH1**
The observed importance score

- **PERMH0**
A matrix with the importance scores for each permutation sample in each column

Author(s)
Cyprien Mbogning and Philippe Broet

References

See Also
Bagg_Surv Bagg_pred_Surv
Examples

```r
## Not run:
myarg = list(cp = 0, maxcompete = 0, maxsurrogate = 0, maxdepth = 2)
Y.names = c("T3", "D3")
P.names = ‘Z2’
T.names = c("Z1", paste("Z", 3:11, sep = ‘’))
mybag = 40
set.seed(5000)

data(burn)
resperm0 <- permute_select_surv(xdata = burn, Y.names, P.names, T.names, method = “LR”,
Bag = mybag, args.rpart = myarg, args.parallel = list(numWorkers = 1), nperm = 150)
## End(Not run)
```

PseudoR2.Cure

Pseudo R2 criterion

Description

Pseudo R2 criterion for a mixture of population (susceptible and nonsusceptible populations)

Usage

`PseudoR2.Cure(ygene, ydelai, yetat, strate, ordered = FALSE)`

Arguments

- `ygene` The main variable of interest
- `ydelai` The right censored delay until the event
- `yetat` The censoring indicator
- `strate` The variables acting on the nonsusceptible or cured population
- `ordered` A value of TRUE or FALSE indicating whether or not the times to event are ordered

Value

A pseudo R2 value lying between 0 and 1.

Author(s)

Cyprien Mbogning and Philippe Broet

References

tree2indicators

From a tree to indicators (or dummy variables)

Description

Coerces a given tree structure inheriting from rpart to binary covariates.

Usage

tree2indicators(fit)

Arguments

fit a tree structure inheriting to the rpart method

Value

a list of indicators defining the leaf nodes of the fitted tree from left to right

Author(s)

Cyprien Mbogning

Examples

fit <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)
tree2indicators(fit)

See Also

Bagg_Surv Bagg_pred_Surv improper_tree

Examples

data(burn)
PseudoR2.Cure(ygene = burn$Z3, ydelai = burn$T3, yetat = burn$D3, strate = burn$Z2)
PseudoR2.Cure(ygene = burn$Z2, ydelai = burn$T3, yetat = burn$D3, strate = burn$Z2)

tree2indicators

From a tree to indicators (or dummy variables)

Description

Coerces a given tree structure inheriting from rpart to binary covariates.

Usage

tree2indicators(fit)

Arguments

fit a tree structure inheriting to the rpart method

Value

a list of indicators defining the leaf nodes of the fitted tree from left to right

Author(s)

Cyprien Mbogning

Examples

fit <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)
tree2indicators(fit)
Index

*Topic datasets
 burn, 8
*Topic documentation
 Bagg_pred_Surv, 3
 Bagg_Surv, 6
 iBST-package, 2
 improper_tree, 9
 permute_select_surv, 10
 PseudoR2.Cure, 12
 tree2indicators, 13
*Topic multivariate
 Bagg_pred_Surv, 3
 Bagg_Surv, 6
 iBST-package, 2
 improper_tree, 9
 permute_select_surv, 10
*Topic nonparametric
 permute_select_surv, 10
*Topic package
 iBST-package, 2
*Topic survival
 Bagg_pred_Surv, 3
 Bagg_Surv, 6
 iBST-package, 2
 improper_tree, 9
 permute_select_surv, 10
 PseudoR2.Cure, 12
*Topic tree
 Bagg_pred_Surv, 3
 Bagg_Surv, 6
 iBST-package, 2
 improper_tree, 9
 permute_select_surv, 10
 PseudoR2.Cure, 12
 tree2indicators, 13

Bagg_pred_Surv, 2, 3, 7, 10, 11, 13
Bagg_Surv, 2, 4, 5, 6, 10, 11, 13
burn, 8