Package ‘ipdw’

December 6, 2019

Title Spatial Interpolation by Inverse Path Distance Weighting
Description Functions are provided to interpolate geo-referenced point data via Inverse Path Distance Weighting. Useful for coastal marine applications where barriers in the landscape preclude interpolation with Euclidean distances.
Version 0.2-8
URL https://www.github.com/jsta/ipdw
BugReports https://www.github.com/jsta/ipdw/issues
Depends R (>= 3.0.2), gdistance
Imports sp, raster, rgeos, methods
Suggests geoR, gstat, gdata, spatstat, rgdal, testthat, knitr, rmarkdown
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
VignetteBuilder knitr
NeedsCompilation no
Author Joseph Stachelek [aut, cre] (<https://orcid.org/0000-0002-5924-2464>)
Maintainer Joseph Stachelek <stachel2@msu.edu>
Repository CRAN
Date/Publication 2019-12-06 06:00:05 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>costrasterGen</td>
<td>2</td>
</tr>
<tr>
<td>errorGen</td>
<td>3</td>
</tr>
<tr>
<td>ipdw</td>
<td>4</td>
</tr>
<tr>
<td>ipdwInterp</td>
<td>6</td>
</tr>
<tr>
<td>pathdistGen</td>
<td>7</td>
</tr>
<tr>
<td>rm_na_pointslayers</td>
<td>8</td>
</tr>
</tbody>
</table>

Index 9
costrasterGen

Generate a cost Raster

Description

Generate a cost raster from an object of class `SpatialPolygons`, `matrix`, or `SpatialPointsDataFrame`

Usage

```r
costrasterGen(xymat, pols, extent = "polys", projstr, resolution = 1)
```

Arguments

- `xymat`: Matrix of coordinates or a `SpatialPointsDataFrame` object
- `pols`: `SpatialPolygons` object
- `extent`: Define extent based on extent of `xymat/xyspdf` (points) or `pols` (polys). Default is `polys`.
- `projstr`: proj4 string defining the output projection. An error will be thrown if `projstr` does not match the projection of the extent target. Pass NULL for non-geographic grids.
- `resolution`: Numeric defaults to 1. See `raster`.

Details

Ensure that the projection of the `xymat` coordinates and `pols` match. This can be accomplished by running the `projection` command on both inputs. If they do not match use the `spTransform` command.

Value

`RasterLayer`

Author(s)

Joseph Stachelek

See Also

`spTransform-methods, rasterize`
errorGen

Examples

Not run:
Sr1 <- Polygon(cbind(c(0, 0, 1, 1, 0), c(0, 12, 12, 0, 0)))
Sr4 <- Polygon(cbind(c(9, 9, 10, 10, 9), c(0, 12, 12, 0, 0)))
Sr2 <- Polygon(cbind(c(1, 1, 9, 9, 1), c(11, 12, 12, 11, 11)))
Sr3 <- Polygon(cbind(c(1, 1, 9, 9, 1), c(0, 1, 1, 0, 0)))
Sr5 <- Polygon(cbind(c(4, 4, 5, 5, 4), c(4, 8, 8, 4, 4)))
Srs1 <- Polygons(list(Sr1), "s1")
Srs2 <- Polygons(list(Sr2), "s2")
Srs3 <- Polygons(list(Sr3), "s3")
Srs4 <- Polygons(list(Sr4), "s4")
Srs5 <- Polygons(list(Sr5), "s5")
pols <- SpatialPolygons(list(Srs1, Srs2, Srs3, Srs4, Srs5), 1:5)

#using a matrix object
xymat <- matrix(3, 3, nrow = 1, ncol = 2)
costras <- costrasterGen(xymat, pols, projstr = NULL)

#plotting
plot(costras)
points(xymat)

End(Not run)

errorGen

Generate interpolation error stats from validation datasets

Description

Generate error statistics from validation point datasets overlaid on a raster surface

Usage

errorGen(
 finalraster, validation.spdf, validation.data, plot = FALSE, title = ""
)

Arguments

finalraster RasterLayer object
validation.spdf SpatialPointsDataFrame
validation.data <- data.frame(rnorm(10, mean = 0.2, sd = 1))
names(validation.data) <- c("validation")
validation.spdf <- validation.data
validation.data <- as.numeric(unlist(validation.data))
xy <- data.frame(x = c(0:9), y = rep(1, 10))
coordinates(validation.spdf) <- xy
m <- matrix(NA, 1, 10)
out.ras <- raster(m, xmn = 0, xmx = ncol(m), ymn = 0, ymx = nrow(m))
out.ras[] <- validation.data + rnorm(ncell(out.ras), mean = 0.01, sd = 0.2)
valid.stats <- errorGen(out.ras, validation.spdf, validation.data, plot = TRUE, title = "Validation Plot")
valid.stats

Description

Interpolate geo-referenced point data using inverse path distance weighting.

Usage

```
ipdw(
  spdf, costras, range, paramlist, overlapped = FALSE,
  yearmon = "default", removefile = TRUE, step = 16,
```
Arguments

- `spdf` SpatialPointsDataFrame object
- `costras` RasterLayer. Cost raster
- `range` numeric. Range of interpolation neighborhood
- `paramlist` character. String representing parameter names
- `overlapped` logical. Default is FALSE, specify TRUE if some points lie on top of barriers
- `yearmon` character. String specifying the name of the spdf
- `removefile` logical. Remove files after processing?
- `step` numeric. Number of sub loops to manage memory during raster processing.
- `dist_power` numeric. Distance decay power (p)
- `trim_rstack` logical. Trim the raster output by the convex hill of spdf

Details

This is a high level function that interpolates a SpatialPointsDataFrame object in a single pass. Points must be located within a single contiguous area. The presence of "landlocked" points will cause errors. It may be necessary to increase the value assigned to land areas when using a large range value in combination with a large sized cost rasters (grain x extent). In these cases, the value of land areas should be increased to ensure that it is always greater than the maximum accumulated cost path distance of any given geo-referenced point.

Value

RasterLayer

Author(s)

Joseph Stachelek

Examples

see vignette
ipdwInterp

Inverse Distance Weighting with custom distances

Description

This function takes a rasterstack of pathdistances and generates surfaces by weighting parameter values by these distances

Usage

ipdwInterp(
 spdf,
 rstack,
 paramlist,
 overlapped = FALSE,
 yearmon = "default",
 removefile = TRUE,
 dist_power = 1,
 trim_rstack = FALSE
)

Arguments

spdf
SpatialPointsDataFrame object

rstack
RasterStack of path distances

paramlist
character. String representing parameter names

overlapped
logical. Default is FALSE, specify TRUE if some points lie on top of barriers

yearmon
character. String specifying the name of the spdf

removefile
logical. Remove files after processing?

dist_power
numeric. Distance decay power (p)

trim_rstack
logical. Trim the raster stack by the convex hull of spdf

Details

Under the hood, this function evaluates:

$$ V = \frac{\sum_{i=1}^{n} v_i \frac{1}{d_i^p}}{\sum_{i=1}^{n} \frac{1}{d_i^p}} $$

where \(d \) is the distance between prediction and measurement points, \(v_i \) is the measured parameter value, and \(p \) is a power parameter.

Value

RasterLayer
Author(s)

Joseph Stachelek

Examples

```r
spdf <- data.frame(rnorm(2))
xy <- data.frame(x = c(4, 2), y = c(8, 4))
coordinates(spdf) <- xy
m <- matrix(NA, 10, 10)
costras <- raster(m, xmn = 0, xmx = ncol(m), ymn = 0, ymx = nrow(m))

# introduce spatial gradient
gostras[] <- runif(ncell(costras), min = 1, max = 10)
for(i in 1:nrow(costras)){
  costras[i,] <- costras[i,] + i
  costras[,i] <- costras[,i] + i
}
rstack <- pathdistGen(spdf, costras, 100, progressbar = FALSE)
final.raster <- ipdwInterp(spdf, rstack, paramlist = c("rnorm.2."), overlapped = TRUE)
plot(final.raster)
plot(spdf, add = TRUE)
```

pathdistGen

Generate a stack of path distance raster objects

Description

Generate a stack of path accumulated distance raster objects

Usage

```r
pathdistGen(spdf, costras, range, yearmon = "default", progressbar = TRUE)
```

Arguments

- `spdf` SpatialPointsDataFrame object
- `costras` RasterLayer cost raster
- `range` numeric. Range of interpolation neighborhood
- `yearmon` character. String specifying the name of the spdf
- `progressbar` logical show progressbar during processing?

Value

RasterStack object of path distances
Author(s)
Joseph Stachelek

Examples
```r
spdf <- data.frame(rnorm(2))
xy <- data.frame(x = c(4, 2), y = c(8, 4))
coordinates(spdf) <- xy

m <- matrix(NA, 10, 10)
costras <- raster(m, xmn = 0, xmx = ncol(m), ymn = 0, ymx = nrow(m))
costras[] <- runif(ncell(costras), min = 1, max = 10)
#introduce spatial gradient
for(i in 1:nrow(costras)){
  costras[i,] <- costras[i,] + i
  costras[,i] <- costras[,i] + i
}

rstack <- pathdistGen(spdf, costras, 100, progressbar = FALSE)
```

rm_na_pointslayers

Remove NA SpatialPointsDataFrame features and drop corresponding raster stack layers

Description
Remove NA SpatialPointsDataFrame features and drop corresponding raster stack layers

Usage
```
rm_na_pointslayers(param_name, spdf, rstack)
```

Arguments
- **param_name**: character name of data column
- **spdf**: SpatialPointsDataFrame object
- **rstack**: RasterStack or RasterBrick
Index

costrasterGen, 2
errorGen, 3
ipdw, 4
ipdwInterp, 6
pathdistGen, 7
raster, 2
rasterize, 2
rm_na_pointslayers, 8