Package ‘jfa’

November 18, 2021

Title Bayesian and Classical Audit Sampling

Version 0.6.1

Date 2021-11-15

Description Implements the audit sampling workflow as discussed in Derks et al. (2019) <doi:10.31234/osf.io/9f6ub>. The package makes it easy for an auditor to plan a statistical sample, select the sample from the population, and evaluate the misstatement in the sample compliant with the International Standards on Auditing. Next to classical audit sampling methodology, the package implements Bayesian equivalents of these methods whose statistical underpinnings are described in Derks et al. (2021) <doi:10.1111/ijau.12240> and Derks et al. (2021) <doi:10.31234/osf.io/kzqp5>.

BugReports https://github.com/koenderks/jfa/issues

Imports extraDistr, graphics, stats

Suggests kableExtra, knitr, MUS, rmarkdown, testthat

Language en-US

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation no

Author Koen Derks [aut, cre] (<https://orcid.org/0000-0002-5533-9349>)

Maintainer Koen Derks <k.derks@nyenrode.nl>

Repository CRAN

Date/Publication 2021-11-18 15:30:14 UTC
Description

`jfa` is an R package for statistical audit sampling. The package provides functions for planning, performing, evaluating, and reporting an audit sample. Specifically, these functions implement standard audit sampling techniques for calculating sample sizes, selecting items from a population, and evaluating the misstatement from a data sample or from summary statistics. Additionally, the `jfa` package allows the user to create a prior probability distribution to perform Bayesian audit sampling using these functions.

The package and its intended workflow are also implemented with a graphical user interface in the Audit module of JASP, a free and open-source statistical software program.

For documentation on `jfa` itself, including the manual and user guide for the package, worked examples, and other tutorial information visit the package website.

Reference tables

Below you can find several links to reference tables that contain statistical sample sizes, upper limits, and Bayes factors. These tables are created using the `planning()` and `evaluation()` functions provided in the package. See the corresponding help files for more information about these functions and how to replicate this output.

Sample sizes

- Sample sizes based on the Poisson distribution
- Sample sizes based on the binomial distribution
- Sample sizes based on the hypergeometric distribution

Upper limits

- Upper limits based on the Poisson distribution
- Upper limits based on the binomial distribution
- Upper limits based on the hypergeometric distribution
One-sided p values

- One sided p values based on the Poisson distribution
- One sided p values based on the binomial distribution
- One sided p values based on the hypergeometric distribution

Bayes factors

- Impartial Bayes factors based on the gamma distribution
- Impartial Bayes factors based on the beta distribution
- Impartial Bayes factors based on the beta-binomial distribution

Author(s)

Koen Derks (maintainer, author) <k.derks@nyenrode.nl>

Please use the citation provided by R when citing this package. A BibTex entry is available from citation('jfa').

See Also

Useful links:

- The cheat sheet for a quick overview of the intended workflow.
- The vignettes for worked examples.
- The issue page to submit a bug report or feature request.

Examples

```r
# Load the jfa package
library(jfa)

# Load the BuildIt population
data('BuildIt')

# Example 1: Classical audit sampling
# Stage 1: Planning
stage1 <- planning(materiality = 0.03, expected = 0.01,
                    likelihood = 'poisson', conf.level = 0.95)
summary(stage1)

# Stage 2: Selection
stage2 <- selection(data = BuildIt, size = stage1,
                    units = 'values', values = 'bookValue',
                    likelihood = 'poisson', conf.level = 0.95)
```
summary(stage2)

Stage 3: Execution
sample <- stage2[['sample']]

Stage 4: Evaluation
stage4 <- evaluation(materiality = 0.03, method = 'stringer',
 conf.level = 0.95, data = sample,
 values = 'bookValue', values.audit = 'auditValue')
summary(stage4)

Example 2: Bayesian audit sampling using a non-informed prior ####

Create the prior distribution
prior <- auditPrior(method = 'default', likelihood = 'poisson')
summary(prior)

Stage 1: Planning
stage1 <- planning(materiality = 0.03, expected = 0.01,
 likelihood = 'poisson', conf.level = 0.95, prior = prior)
summary(stage1)

Stage 2: Selection
stage2 <- selection(data = BuildIt, size = stage1,
 units = 'values', values = 'bookValue',
 method = 'interval', start = 1)
summary(stage2)

Stage 3: Execution
sample <- stage2[['sample']]

Stage 4: Evaluation
stage4 <- evaluation(materiality = 0.03, conf.level = 0.95, data = sample,
 values = 'bookValue', values.audit = 'auditValue',
 prior = prior)
summary(stage4)

Example 3: Bayesian audit sampling using an informed prior ####

Create the prior distribution
prior <- auditPrior(method = 'arm', likelihood = 'poisson',
 expected = 0.01, materiality = 0.03, cr = 0.6, ir = 1)
summary(prior)

Stage 1: Planning
stage1 <- planning(materiality = 0.03, expected = 0.01,
 likelihood = 'poisson', conf.level = 0.95, prior = prior)
summary(stage1)
Stage 2: Selection
stage2 <- selection(data = BuildIt, size = stage1,
 units = 'values', values = 'bookValue',
 method = 'interval', start = 1)
summary(stage2)

Stage 3: Execution
sample <- stage2[['sample']]

Stage 4: Evaluation
stage4 <- evaluation(materiality = 0.03, conf.level = 0.95, data = sample,
 values = 'bookValue', values.audit = 'auditValue',
 prior = prior)
summary(stage4)

auditPrior

Prior Distributions for Audit Sampling

Description

This function creates a prior distribution for the misstatement parameter θ in an audit sampling model. The prior can be used in the `planning()` and `evaluation()` functions via their `prior` argument. The function returns an object of class `jfaPrior` which can be used with associated `summary()` and `plot()` methods.

For more details on how to use this function, see the package vignette: `vignette('jfa', package = 'jfa')`

Usage

```r
auditPrior(method = 'default', likelihood = c('poisson', 'binomial', 'hypergeometric'), 
           N.units = NULL, alpha = NULL, beta = NULL, materiality = NULL, expected = 0, 
           ir = NULL, cr = NULL, ub = NULL, p.hmin = NULL, x = NULL, 
           n = NULL, factor = NULL, conf.level = 0.95)
```

Arguments

- **method**
 - A character specifying the method by which the prior distribution is constructed.
 - Defaults to `default` which incorporates no existing information. Other options are `strict`, `arm`, `bram`, `impartial`, `hyp`, `sample`, and `factor`. See the details section for more information about the available methods.

- **likelihood**
 - A character specifying the likelihood assumed when updating the prior distribution. This can be either `poisson` (default) for the Poisson likelihood and gamma prior distribution, `binomial` for the binomial likelihood and beta prior distribution, or `hypergeometric` for the hypergeometric likelihood and beta-binomial prior distribution. See the details section for more information about the available likelihoods.
auditPrior

N.units an numeric value larger than 0 specifying the total number of units in the population. Optional unless likelihood = 'hypergeometric'.

alpha if method = 'param', a numeric value specifying the α parameter of the prior distribution.

beta if method = 'param', a numeric value specifying the β parameter of the prior distribution.

materiality a numeric value between 0 and 1 specifying the performance materiality (i.e., the maximum upper limit) as a fraction of the total population size. Can be NULL for some methods.

expected a numeric value between 0 and 1 specifying the expected errors in the sample relative to the total sample size, or a numeric value (>= 1) that represents the sum of expected errors in the sample. It is advised to set this value conservatively to minimize the probability of the observed errors exceeding the expected errors, which would imply that insufficient work has been done in the end.

ir if method = 'arm', a numeric value between 0 and 1 specifying the inherent risk in the audit risk model. Defaults to 1 for 100% risk.

cr if method = 'arm', a numeric value between 0 and 1 specifying the internal control risk in the audit risk model. Defaults to 1 for 100% risk.

ub if method = 'bram', a numeric value between 0 and 1 specifying the upper bound for the prior distribution as a fraction of the population size.

p.hmin if method = 'hyp', a numeric value between 0 and 1 specifying the prior probability of the hypothesis of tolerable misstatement (H1: $\theta < \text{materiality}$).

x if method = 'sample' or method = 'factor', a numeric value larger than, or equal to, 0 specifying the sum of errors in the sample equivalent to the prior information.

n if method = 'sample' or method = 'factor', an integer larger than, or equal to, 0 specifying the sample size of the sample equivalent to the prior information.

factor if method = 'factor', a numeric value between 0 and 1 specifying the weighting factor for the results of the sample equivalent to the prior information.

conf.level a numeric value between 0 and 1 specifying the confidence level to be used in the planning. Defaults to 0.95 for 95% confidence. Used to calculate the upper bound of the prior distribution.

Details

auditPrior is used to define prior distributions for parameters in jfa models. To perform Bayesian audit sampling, you must assign a prior distribution to the misstatement parameter θ. The prior is a probability distribution that reflects the existing information about the parameter before seeing a sample. To keep the priors proper, the default priors used by jfa are very diffuse, meaning they contain minimal prior information. However, it is strongly recommended to use an informed prior distribution when possible.

This section elaborates on the available options for the method argument.

- default: This method produces $\text{gamma}(1, 1)$, $\text{beta}(1, 1)$, and $\text{beta-binomial}(N, 1, 1)$ prior distributions which incorporate minimal information about the possible values of the misstatement.
• **strict**: This method produces $\text{gamma}(1, 0)$, $\text{beta}(1, 0)$, and $\text{beta-binomial}(N, 1, 0)$ prior distributions. Note that these prior distributions are improper and yield the same sample sizes and upper limits as classical techniques.

• **param**: This method constructs a prior distribution on the basis of manually specified α and β parameters.

• **impartial**: This method constructs a prior distribution under which the prior probability of tolerable misstatement ($\theta < \text{materiality}$) is equal to the prior probability of intolerable misstatement ($\theta > \text{materiality}$).

• **hyp**: This method constructs a prior distribution with manual prior probabilities for the hypotheses of tolerable misstatement ($\theta < \text{materiality}$) and intolerable misstatement ($\theta > \text{materiality}$). This method requires specification of the $p.\text{hmin}$ argument.

• **arm**: This method constructs a prior distribution by translating the risks of material misstatement (inherent risk and internal control risk) from the audit risk model to an implicit sample. The method requires specification of the ir (inherent risk) and cr (internal control risk) arguments.

• **bram**: This method constructs a prior distribution using the Bayesian audit risk assessment model (BRAM) in which the expected most likely error and expected upper bound of the misstatement must be specified. The method requires specification of the ub argument.

• **sample**: This method constructs a prior distribution on the basis of an earlier observed sample. This method requires specification of the n and x arguments.

• **factor**: This method constructs a prior distribution on the basis of an earlier sample in combination with a weighting factor. This method requires specification of the n, x, and factor arguments.

This section elaborates on the available likelihoods and corresponding prior distributions for the likelihood argument.

• **poisson**: The Poisson likelihood is often used as a likelihood for monetary unit sampling (MUS). The likelihood function is defined as:

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

The conjugate $\text{gamma}(\alpha, \beta)$ prior has probability density function:

$$f(x; \alpha, \beta) = \frac{\beta^\alpha x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$$

• **binomial**: The binomial likelihood is often used as a likelihood for attributes sampling with replacement. The likelihood function is defined as:

$$p(x) = \binom{n}{k} p^k (1 - p)^{n-k}$$

The conjugate $\text{beta}(\alpha, \beta)$ prior has probability density function:

$$f(x; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha-1} (1 - x)^{\beta-1}$$
• hypergeometric: The hypergeometric likelihood is used as a likelihood for sampling without replacement. The likelihood function is defined as:

\[p(x = k) = \binom{K}{k} \binom{N-K}{n-k} \binom{n}{k} \]

The conjugate beta-binomial(\(\alpha, \beta\)) prior (Dyer and Pierce, 1993) has probability density function:

\[f(k|n, \alpha, \beta) = \binom{n}{k} \frac{B(k + \alpha, n - k + \beta)}{B(\alpha, \beta)} \]

Value

An object of class `jfaPrior` containing:

- **prior**
 a string describing the functional form of the prior distribution.

- **description**
 a list containing a description of the prior distribution, including the parameters of the prior distribution and the implicit sample on which the prior distribution is based.

- **statistics**
 a list containing statistics of the prior distribution, including the mean, mode, median, and upper bound of the prior distribution.

- **specifics**
 a list containing specifics of the prior distribution that vary depending on the method.

- **hypotheses**
 if materiality is specified, a list containing information about the hypotheses, including prior probabilities and odds for the hypothesis of tolerable misstatement (H1) and the hypothesis of intolerable misstatement (H0).

- **method**
 a character indicating the method by which the prior distribution is constructed.

- **likelihood**
 a character indicating the assumed likelihood.

- **materiality**
 if materiality is specified, a numeric value between 0 and 1 indicating the materiality used to construct the prior distribution.

- **expected**
 a numeric value larger than, or equal to, 0 indicating the input for the number of expected errors.

- **conf.level**
 a numeric value between 0 and 1 indicating the confidence level used.

- **N.units**
 if N is specified, an integer larger than 0 indicating the population size.

Author(s)

Koen Derks, <k.derks@nyenrode.nl>

References

BuildIt

See Also

planning selection evaluation report

Examples

Translate inherent risk (ir) and control risk (cr) to a prior distribution
auditPrior(
 method = "arm", likelihood = "poisson", expected = 0.025,
 materiality = 0.05, ir = 1, cr = 0.6
)

Equal prior probabilities
auditPrior(method = "impartial", likelihood = "poisson", materiality = 0.05)

Custom prior distribution
auditPrior(method = "param", likelihood = "poisson", alpha = 1, beta = 10)

BuildIt

BuildIt Construction Financial Statements

Description

Fictional data from a construction company in the United States, containing 3500 observations
identification numbers, book values, and audit values. The audit values are added for illustrative
purposes, as these would need to be assessed by the auditor in the execution stage of the audit.

Usage

data(BuildIt)

Format

A data frame with 3500 rows and 3 variables.

ID unique record identification number.
auditValue true value in US dollars ($14.47–$2,224.40).

References

Examples

data(BuildIt)
carrier

Carrier Company Financial Statements

Description

Fictional data from a carrier company in Europe, containing 202 ledger items across 10 company entities.

Usage

`data(carrier)`

Format

A data frame with 202 rows and 12 variables.

- `description` description of the ledger item.
- `entity1` recorded values for entity 1, in US dollars.
- `entity2` recorded values for entity 2, in US dollars.
- `entity3` recorded values for entity 3, in US dollars.
- `entity4` recorded values for entity 4, in US dollars.
- `entity5` recorded values for entity 5, in US dollars.
- `entity6` recorded values for entity 6, in US dollars.
- `entity7` recorded values for entity 7, in US dollars.
- `entity8` recorded values for entity 8, in US dollars.
- `entity9` recorded values for entity 9, in US dollars.
- `entity10` recorded values for entity 10, in US dollars.
- `total` total value, in US dollars.

Source

Examples

`data(carrier)`
evaluation

Evaluate a statistical audit sample

Description

This function takes a data frame (using data, values, and values.audit) or summary statistics (using x and n) and performs inference on the misstatement in the sample. The function returns an object of class jfaEvaluation which can be used with associated summary() and plot() methods.

For more details on how to use this function, see the package vignette: vignette('jfa', package = 'jfa')

Usage

evaluation(materiality = NULL, min.precision = NULL, method = 'poisson', alternative = c('less', 'two.sided', 'greater'), conf.level = 0.95, data = NULL, values = NULL, values.audit = NULL, times = NULL, x = NULL, n = NULL, N.units = NULL, N.items = NULL, r.delta = 2.7, m.type = 'accounts', cs.a = 1, cs.b = 3, cs.mu = 0.5, prior = FALSE)

Arguments

materiality a numeric value between 0 and 1 specifying the performance materiality (maximum tolerable error) as a fraction of the total size of the population. If specified, the function also returns the conclusion of the analysis with respect to the performance materiality. The value is discarded when direct, difference, quotient, or regression method is chosen.

min.precision a numeric value between 0 and 1 specifying the required minimum precision (upper bound minus most likely error) as a fraction of the total size of the population. If specified, the function also returns the conclusion of the analysis with respect to the required minimum precision.

method a character specifying the method to be used in the evaluation. Possible options are poisson, binomial (default), hypergeometric, mpu, stringer, stringer.meikle, stringer.lta, stringer.pvz, rohrbach, moment, direct, difference, quotient, or regression. See the details section for more information.

alternative a character indicating the alternative hypothesis to be tested (and the type of interval to be produced). This must be one of less (default), two.sided, or greater. You can specify just the initial letter.

conf.level a numeric value between 0 and 1 specifying the confidence level used in the evaluation. Defaults to 0.95 for 95% confidence.

data a data frame containing the sample to be evaluated. The sample must at least contain a column of book values and a column of audit (true) values.

values a character specifying name of a column in data containing the book values of the items.
values.audit a character specifying name of a column in data containing the audit (true) values of the items.
times a character specifying name of a column in data containing the number of times each item in the data should be counted in the evaluation (due to it being selected multiple times for the sample).
x a numeric value larger than 0 specifying the sum of errors found in the sample. If specified, overrides the data, values and values.audit arguments and assumes that the data come from summary statistics specified by both x and n.
n an integer larger than 0 specifying the number of items in the sample. If specified, overrides the data, values and values.audit arguments and assumes that the data come from summary statistics specified by both x and n.
N.units an integer larger than 0 specifying the total number of sampling units in the population (i.e., the population size / value). Only required if method is one of 'hypergeometric', direct, difference, quotient, or regression.
N.items an integer larger than 0 specifying the total number of items in the population. Only required if method is one of direct, difference, quotient, or regression.
r.delta if method = 'rohrbach', a numeric value specifying Δ in Rohrbach’s augmented variance bound (Rohrbach, 1993).
m.type if method = 'moment', a character specifying the type of population (Dworin and Grimlund, 1984). Possible options are accounts and inventory. This argument affects the calculation of the central moments in the bound.
cs.a if method = "coxsnell", a numeric value specifying the α parameter of the prior distribution on the mean taint. Defaults to 1 as recommended by Cox and Snell (1979).
cs.b if method = "coxsnell", a numeric value specifying the β parameter of the prior distribution on the mean taint. Defaults to 3 as recommended by Cox and Snell (1979).
cs.mu if method = "coxsnell", a numeric value between 0 and 1 specifying the mean of the prior distribution on the mean taint. Defaults to 0.5 as recommended by Cox and Snell (1979).
prior a logical specifying if a prior distribution must be used, or an object of class jfaPrior or jfaPosterior containing the prior distribution. Defaults to FALSE for frequentist planning. If TRUE, a minimal information prior is chosen by default. Chooses a conjugate gamma distribution for the Poisson likelihood, a conjugate beta distribution for the binomial likelihood, and a conjugate beta-binomial distribution for the hypergeometric likelihood.

Details

This section lists the available options for the methods argument.

- poisson: Evaluates the sample with the Poisson distribution. If combined with prior = TRUE, performs Bayesian evaluation using a gamma prior and posterior.
- binomial: Evaluates the sample with the binomial distribution. If combined with prior = TRUE, performs Bayesian evaluation using a beta prior and posterior.
evaluation

- hypergeometric: Evaluates the sample with the hypergeometric distribution. If combined with prior = TRUE, performs Bayesian evaluation using a beta-binomial prior and posterior.
- npu: Evaluates the sample with the mean-per-unit estimator.
- stringer: Evaluates the sample with the Stringer bound (Stringer, 1963).
- stringer.meikle: Evaluates the sample with the Stringer bound with Meikle’s correction for understatements (Meikle, 1972).
- stringer.lta: Evaluates the sample with the Stringer bound with LTA correction for understatements (Leslie, Teitlebaum, and Anderson, 1979).
- stringer.pvz: Evaluates the sample with the Stringer bound with Pap and van Zuijlen’s correction for understatements (Pap and van Zuijlen, 1996).
- rohrbach: Evaluates the sample with Rohrbach’s augmented variance bound (Rohrbach, 1993).
- moment: Evaluates the sample with the modified moment bound (Dworin and Grimlund, 1984).
- coxsnell: Evaluates the sample with the Cox and Snell bound (Cox and Snell, 1979).
- direct: Evaluates the sample with the direct estimator (Touw and Hoogduin, 2011).
- difference: Evaluates the sample with the difference estimator (Touw and Hoogduin, 2011).
- quotient: Evaluates the sample with the quotient estimator (Touw and Hoogduin, 2011).
- regression: Evaluates the sample with the regression estimator (Touw and Hoogduin, 2011).

Value

An object of class jfaEvaluation containing:

- conf.level: a numeric value between 0 and 1 indicating the confidence level used.
- mle: a numeric value between 0 and 1 indicating the most likely error in the population as a fraction of its total size.
- ub: a numeric value indicating the upper bound on the (probability of) misstatement.
- lb: a numeric value indicating the lower bound of the interval around the (probability of) misstatement.
- precision: a numeric value between 0 and 1 indicating the difference between the most likely error and the upper bound in the population as a fraction of the total population size.
- p.value: a numeric value indicating the one-sided p-value.
- x: an integer larger than, or equal to, 0 indicating the number of items in the sample that contained an error.
- t: a value larger than, or equal to, 0, indicating the sum of observed taints.
- n: an integer larger than 0 indicating the sample size.
- materiality: if materiality is specified, a numeric value between 0 and 1 indicating the performance materiality as a fraction of the total population size.
- min.precision: if min.precision is specified, a numeric value between 0 and 1 indicating the minimum required precision as a fraction of the total population size.
alternative a character indicating the alternative hypothesis.
method a character indicating the evaluation method.
N.units if N.units is specified, an integer larger than 0 indicating the total number of units in the population.
N.items if N.items is specified, an integer larger than 0 indicating the total number of items in the population.
K if method = 'hypergeometric', an integer indicating the assumed total errors in the population.
prior an object of class 'jfaPrior' that contains the prior distribution.
posterior an object of class 'jfaPosterior' that contains the posterior distribution.
data a data frame containing the relevant columns from the data.
data.name a character string giving the name of the data.

Author(s)
Koen Derks, <k.derks@nyenrode.nl>

References

See Also

auditPrior planning selection report
Examples

```r
data("BuildIt")

# Draw a sample of 100 monetary units from the population using
# fixed interval monetary unit sampling
sample <- selection(
  data = BuildIt, size = 100, units = "values",
  method = "interval", values = "bookValue"
)$sample

# Classical evaluation using the Stringer bound
evaluation(
  materiality = 0.05, method = "stringer", conf.level = 0.95,
  data = sample, values = "bookValue", values.audit = "auditValue"
)

# Classical evaluation using the Poisson likelihood
evaluation(
  materiality = 0.05, method = "poisson", conf.level = 0.95,
  data = sample, values = "bookValue", values.audit = "auditValue"
)

# Bayesian evaluation using a noninformative gamma prior distribution
evaluation(
  materiality = 0.05, method = "poisson", conf.level = 0.95,
  data = sample, values = "bookValue", values.audit = "auditValue",
  prior = TRUE
)

# Bayesian evaluation using an informed prior distribution
evaluation(
  materiality = 0.05, method = "poisson", conf.level = 0.95,
  data = sample, values = "bookValue", values.audit = "auditValue",
  prior = auditPrior(method = "param", alpha = 1, beta = 10)
)
```

jfa-methods

Methods defined for objects returned from the `auditPrior`, `planning`, `selection`, and `evaluation` functions.

Usage

```r
## S3 method for class 'jfaPrior'
print(x, ...)
```
S3 method for class 'jfaPosterior'
print(x, ...)

S3 method for class 'jfaPredictive'
print(x, ...)

S3 method for class 'jfaPlanning'
print(x, ...)

S3 method for class 'jfaSelection'
print(x, ...)

S3 method for class 'jfaEvaluation'
print(x, digits = getOption("digits"), ...)

S3 method for class 'summary.jfaPrior'
print(x, digits = getOption("digits"), ...)

S3 method for class 'summary.jfaPosterior'
print(x, digits = getOption("digits"), ...)

S3 method for class 'summary.jfaPredictive'
print(x, digits = getOption("digits"), ...)

S3 method for class 'summary.jfaPlanning'
print(x, digits = getOption("digits"), ...)

S3 method for class 'summary.jfaSelection'
print(x, digits = getOption("digits"), ...)

S3 method for class 'summary.jfaEvaluation'
print(x, digits = getOption("digits"), ...)

S3 method for class 'jfaPrior'
summary(object, digits = getOption("digits"), ...)

S3 method for class 'jfaPosterior'
summary(object, digits = getOption("digits"), ...)

S3 method for class 'jfaPredictive'
summary(object, digits = getOption("digits"), ...)

S3 method for class 'jfaPlanning'
summary(object, digits = getOption("digits"), ...)

S3 method for class 'jfaSelection'
summary(object, digits = getOption("digits"), ...)
S3 method for class 'jfaEvaluation'
summary(object, digits = getOption("digits"), ...)

S3 method for class 'jfaPrior'
predict(object, n, lim = NULL, cumulative = FALSE, ...)

S3 method for class 'jfaPosterior'
predict(object, n, lim = NULL, cumulative = FALSE, ...)

S3 method for class 'jfaPrior'
plot(x, xlim = c(0, 1), ...)

S3 method for class 'jfaPosterior'
plot(x, xlim = c(0, 1), ...)

S3 method for class 'jfaPredictive'
plot(x, xlim = c(0, 1), ...)

S3 method for class 'jfaPlanning'
plot(x, xlim = c(0, 1), ...)

S3 method for class 'jfaSelection'
plot(x, ...)

S3 method for class 'jfaEvaluation'
plot(x, xlim = c(0, 1), ...)

Arguments

... further arguments, currently ignored.
digits an integer specifying the number of digits to which output should be rounded. Used in summary.
object, x an object of class jfaPrior, jfaPosterior, jfaPredictive, jfaPlanning, jfaSelection, or jfaEvaluation.
n used in predict. Specifies the sample size for which predictions should be made.
limit used in predict. Limits the number of errors for which predictions should be made.
cumulative used in predict. Specifies whether cumulative probabilities should be shown.
xlim used in plot. Specifies the x limits (x1, x2) of the plot.

Value

The summary methods return a data.frame which contains the input and output.
The print methods simply print and return nothing.
Description

This function calculates the minimum sample size for a statistical audit sample based on the Poisson, binomial, or hypergeometric likelihood. The function returns an object of class `jfaPlanning` which can be used with associated `summary()` and `plot()` methods.

For more details on how to use this function, see the package vignette: `vignette('jfa', package = 'jfa')`

Usage

```r
planning(materiality = NULL, min.precision = NULL, expected = 0,
likelihood = c('poisson', 'binomial', 'hypergeometric'),
conf.level = 0.95, N.units = NULL, by = 1, max = 5000,
prior = FALSE)
```

Arguments

- `materiality`: a numeric value between 0 and 1 specifying the performance materiality (i.e., maximum upper limit) as a fraction of the total population size. Can be `NULL`, but `min.precision` should be specified in that case.
- `min.precision`: a numeric value between 0 and 1 specifying the minimum precision (i.e., upper bound minus most likely error) as a fraction of the total population size. Can be `NULL`, but `materiality` should be specified in that case.
- `expected`: a numeric value between 0 and 1 specifying the expected errors in the sample relative to the total sample size, or a number (>= 1) that represents the number of expected errors in the sample. It is advised to set this value conservatively to minimize the probability of the observed errors exceeding the expected errors, which would imply that insufficient work has been done in the end.
- `likelihood`: a character specifying the likelihood assumed in the calculation. This can be either `poisson` (default) for the Poisson likelihood, `binomial` for the binomial likelihood, or `hypergeometric` for the hypergeometric likelihood. See the details section for more information about the available likelihoods.
- `conf.level`: a numeric value between 0 and 1 specifying the confidence level used in the planning. Defaults to 0.95 for 95% confidence.
- `N.units`: an integer larger than 0 specifying the total number of units or items in the population (i.e., the population size). Only required when `likelihood = 'hypergeometric'`.
- `by`: an integer larger than 0 specifying the desired increment for the sample size calculation.
- `max`: an integer larger than 0 specifying the maximum sample size that is considered in the calculation. Defaults to 5000 for efficiency. Increase this value if the sample size cannot be found due to it being too large (e.g., for a low materiality).
planning

prior

a logical specifying whether to use a prior distribution when planning, or an object of class jfaPrior or jfaPosterior containing the prior distribution. Defaults to FALSE for frequentist planning. If TRUE, a minimal information prior is chosen by default. Chooses a conjugate gamma distribution for the Poisson likelihood, a conjugate beta distribution for the binomial likelihood, and a conjugate beta-binomial distribution for the hypergeometric likelihood.

Details

This section elaborates on the available likelihoods and corresponding prior distributions for the likelihood argument.

- poisson: The Poisson likelihood is often used as a likelihood for monetary unit sampling (MUS). The likelihood function is defined as:

\[
p(x) = \frac{\lambda^x e^{-\lambda}}{x!}
\]

The conjugate gamma(\(\alpha, \beta\)) prior has probability density function:

\[
f(x; \alpha, \beta) = \frac{\beta^\alpha x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}
\]

- binomial: The binomial likelihood is often used as a likelihood for attributes sampling with replacement. The likelihood function is defined as:

\[
p(x) = \binom{n}{k} p^k (1-p)^{n-k}
\]

The conjugate beta(\(\alpha, \beta\)) prior has probability density function:

\[
f(x; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}
\]

- hypergeometric: The hypergeometric likelihood is used as a likelihood for sampling without replacement. The likelihood function is defined as:

\[
p(x = k) = \binom{K}{k} \binom{N-K}{n-k} \binom{n}{k}
\]

The conjugate beta-binomial(\(\alpha, \beta\)) prior (Dyer and Pierce, 1993) has probability density function:

\[
f(k|n, \alpha, \beta) = \binom{n}{k} \frac{B(k + \alpha, n - k + \beta)}{B(\alpha, \beta)}
\]

Value

An object of class jfaPlanning containing:

- conf.level a numeric value between 0 and 1 indicating the confidence level used.
- x a numeric value larger than, or equal to, 0 indicating the number of tolerable errors in the sample.
planning

n an integer larger than 0 indicating the required sample size.
ub a numeric value between 0 and 1 indicating the expected upper bound if the sample goes according to plan.
precision a numeric value between 0 and 1 indicating the expected precision if the sample goes according to plan.
p.value a numeric value indicating the one-sided p-value.
K if likelihood = 'hypergeometric', an integer larger than 0 indicating the assumed population errors.
N.units an integer larger than 0 indicating the population size (only returned if N is specified).
materiality a numeric value between 0 and 1 indicating the specified materiality.
min.precision a numeric value between 0 and 1 indicating the minimum precision to be obtained.
expected a numeric value larger than, or equal to, 0 indicating the expected errors input.
likelihood a character indicating the specified likelihood.
errorType a character indicating whether the expected errors where specified as a percentage or as an integer.
iterations a numeric value indicating the number of iterations used.
prior if a prior distribution is specified, an object of class jfaPrior that contains information about the prior distribution.
posterior if a prior distribution is specified, an object of class jfaPosterior that contains information about the expected posterior distribution.

Author(s)

Koen Derks, <k.derks@nyenrode.nl>

References

See Also

auditPrior selection evaluation report

Examples

Classical planning using a Poisson likelihood
planning(materiality = 0.05, expected = 0.025, likelihood = "poisson")

Bayesian planning using a noninformative gamma prior distribution
planning(
 materiality = 0.05, expected = 0.025, likelihood = "poisson",
 prior = TRUE
)

Bayesian planning using an informed gamma prior distribution
planning(
 materiality = 0.05, expected = 0.025, likelihood = "poisson",
 prior = auditPrior(method = "impartial", materiality = 0.05)
)

Description

This function takes an object of class `jfaEvaluation` as returned by the `evaluation()` function automatically generates a html or pdf report containing the analysis results and their interpretation.

For more details on how to use this function, see the package vignette: `vignette('jfa',package = 'jfa')`

Usage

```r
report(object, file = 'report.html', format = c('html_document', 'pdf_document'))
```

Arguments

- **object**: an object of class `jfaEvaluation` as returned by the `evaluation()` function.
- **file**: a character specifying the name of the report (e.g. `report.html`). By default, the report is created in your current working directory.
- **format**: a character specifying the output format of the report. Possible options are `html_document` (default) and `pdf_document`, but compiling to pdf format requires a local version of MikTex.

Value

A html or pdf file containing a report of the evaluation.

Author(s)

Koen Derks, <k.derks@nyenrode.nl>

See Also

- `auditPrior`
- `planning`
- `selection`
- `evaluation`
Examples

data("BuildIt")

Draw a sample of 100 monetary units from the population using
fixed interval monetary unit sampling
sample <- selection(
 data = BuildIt, size = 100, method = "interval",
 units = "values", values = "bookValue"
)$sample

Evaluate using the Stringer bound
result <- evaluation(
 conf.level = 0.95, materiality = 0.05, method = "stringer",
 data = sample, values = "bookValue", values.audit = "auditValue"
)

Not run:
report(result)

End(Not run)

selection

Select a Statistical Audit Sample

Description

This function takes a data frame and performs statistical selection according to one of four algorithms: fixed interval sampling, cell sampling, random sampling, and modified sieve sampling. Selection is done on the level of two possible sampling units: items (records / rows) or monetary units. The function returns an object of class `jfaSelection` which can be used with associated `summary()` and `plot()` methods.

For more details on how to use this function, see the package vignette: vignette('jfa', package = 'jfa')

Usage

```r
selection(data, size, units = c('items', 'values'),
  method = c('interval', 'cell', 'random', 'sieve'), values = NULL,
  order = NULL, decreasing = FALSE, randomize = FALSE,
  replace = FALSE, start = 1)
```

Arguments

- **data**
 - a data frame containing the population of items the auditor wishes to sample from.
- **size**
 - an integer larger than 0 specifying the number of sampling units that need to be selected from the population. Can also be an object of class `jfaPlanning`.
units a character specifying the sampling units used. Possible options are items (default) for selection on the level of items (rows) or values for selection on the level of monetary units.

method a character specifying the sampling algorithm used. Possible options are interval (default) for fixed interval sampling, cell for cell sampling, random for random sampling, or sieve for modified sieve sampling.

values a character specifying the name of a column in data containing the book values of the items.

order a character specifying the name of a column in data containing the ranks of the items. The items in the data are ordered according to these values in the order indicated by decreasing.

decreasing if order is specified, a logical specifying whether to order the items from smallest to largest. Defaults to FALSE.

randomize a logical specifying whether the items in the data should be randomly shuffled before selection. Defaults to FALSE. Note that specifying if randomize = TRUE overrules order.

replace if method = 'random', a logical specifying whether sampling should be performed with replacement. Defaults to FALSE.

start if method = 'interval', an integer larger than 0 specifying the starting point of the algorithm.

Details

The first part of this section elaborates on the two possible options for the units argument:

- items: In record sampling each item in the population is seen as a sampling unit. An item of $5000 is therefore equally likely to be selected as an item of $500.
- values: In monetary unit sampling each monetary unit in the population is seen as a sampling unit. An item of $5000 is therefore ten times more likely to be selected as an item of $500.

The second part of this section elaborates on the four possible options for the method argument:

- interval: In fixed interval sampling the sampling units in the population are divided into a number (equal to the sample size) of intervals. From each interval one sampling unit is selected according to a fixed starting point (specified by start).
- cell: In cell sampling the sampling units in the population are divided into a number (equal to the sample size) of intervals. From each interval one sampling unit is selected with equal probability.
- random: In random sampling each sampling unit in the population is drawn with equal probability.
- sieve: In modified sieve sampling each item in the population is selected proportional to its value (Hoogduin, Hall, & Tsay, 2010).
Value

An object of class `jfaSelection` containing:

- `data` a data frame containing the input data.
- `sample` a data frame containing the selected sample of items.
- `n.req` an integer indicating the requested sample size.
- `n.units` an integer indicating the total number of obtained sampling units.
- `n.items` an integer indicating the total number of obtained sample items.
- `N.units` an integer indicating the total number of sampling units in the population.
- `N.items` an integer indicating the total number of items in the population.
- `interval` if `method` = `'interval'`, a numeric value indicating the size of the selection interval.
- `units` a character indicating the sampling units that were used to create the selection.
- `method` a character indicating the the algorithm that was used to create the selection.
- `values` if `values` is specified, a character indicating the name of the book value column.
- `start` if `method` = `'interval'`, an integer indicating the starting point in the interval.
- `data.name` a character string giving the name of the data.

Author(s)

Koen Derks, <k.derks@nyenrode.nl>

References

See Also

- `auditPrior`
- `planning`
- `evaluation`
- `report`

Examples

```r
# Select 100 items using random sampling
selection(data = BuildIt, size = 100, method = "random")

# Select 150 monetary units using fixed interval sampling
selection(
```
data = BuildIt, size = 150, units = "values",
method = "interval", values = "bookValue"
)
Index

* audit
 auditPrior, 5
 evaluation, 11
 planning, 18
 report, 21
 selection, 22
* bound
 evaluation, 11
* confidence
 evaluation, 11
* datasets
 BuildIt, 9
 carrier, 10
* distribution
 auditPrior, 5
* evaluation
 auditPrior, 5
 evaluation, 11
 report, 21
* jfa
 jfa-package, 2
* package
 jfa-package, 2
* planning
 auditPrior, 5
 planning, 18
* prior
 auditPrior, 5
* report
 report, 21
* sample
 planning, 18
 selection, 22
* selection
 selection, 22
* size
 planning, 18
 auditPrior, 5, 14, 15, 20, 21, 24
 BuildIt, 9
 carrier, 10
 evaluation, 9, 11, 15, 20, 21, 24
 jfa (jfa-package), 2
 jfa-methods, 15
 jfa-package, 2
 planning, 9, 14, 15, 18, 21, 24
 plot.jfaEvaluation (jfa-methods), 15
 plot.jfaPlanning (jfa-methods), 15
 plot.jfaPosterior (jfa-methods), 15
 plot.jfaPredictive (jfa-methods), 15
 plot.jfaPrior (jfa-methods), 15
 plot.jfaSelection (jfa-methods), 15
 predict.jfaPosterior (jfa-methods), 15
 predict.jfaPrior (jfa-methods), 15
 print.jfaEvaluation (jfa-methods), 15
 print.jfaPlanning (jfa-methods), 15
 print.jfaPosterior (jfa-methods), 15
 print.jfaPredictive (jfa-methods), 15
 print.jfaPrior (jfa-methods), 15
 print.jfaSelection (jfa-methods), 15
 print.summary.jfaEvaluation
 (jfa-methods), 15
 print.summary.jfaPlanning
 (jfa-methods), 15
 print.summary.jfaPosterior
 (jfa-methods), 15
 print.summary.jfaPredictive
 (jfa-methods), 15
 print.summary.jfaPrior (jfa-methods), 15
 print.summary.jfaSelection
 (jfa-methods), 15
 report, 9, 14, 20, 21, 24
 selection, 9, 14, 15, 20, 21, 22
 summary.jfaEvaluation (jfa-methods), 15
 summary.jfaPlanning (jfa-methods), 15
 summary.jfaPosterior (jfa-methods), 15

26
INDEX

summary.jfaPredictive (jfa-methods), 15
summary.jfaPrior (jfa-methods), 15
summary.jfaSelection (jfa-methods), 15