
Package ‘justifier’
June 3, 2019

Title Human and Machine-Readable Justifications and Justified
Decisions Based on 'YAML'

Version 0.1.0

Maintainer Gjalt-Jorn Ygram Peters <gjalt-jorn@behaviorchange.eu>

Description Leverages the 'yum' package to
implement a 'YAML' ('YAML Ain't Markup Language', a human
friendly standard for data serialization; see <https:yaml.org>)
standard for documenting justifications, such as for decisions
taken during the planning, execution and analysis of a study
or during the development of a behavior change intervention
as illustrated by Marques & Peters (2019)
<doi:10.17605/osf.io/ndxha>. These justifications are both
human- and machine-readable, facilitating efficient extraction
and organisation.

License GPL (>= 2)

Encoding UTF-8

LazyData true

URL https://r-packages.gitlab.io/justifier

BugReports https://gitlab.com/r-packages/justifier/issues

Suggests covr, knitr, rmarkdown, testthat

Imports data.tree (>= 0.7.8), DiagrammeR (>= 1.0.0), purrr (>= 0.3.0),
ufs (>= 0.2.0), yum (>= 0.0.1)

VignetteBuilder knitr

RoxygenNote 6.1.1

NeedsCompilation no

Author Gjalt-Jorn Ygram Peters [aut, cre]

Repository CRAN

Date/Publication 2019-06-03 12:30:18 UTC

1

https://r-packages.gitlab.io/justifier
https://gitlab.com/r-packages/justifier/issues

2 apply_graph_theme

R topics documented:
apply_graph_theme . 2
load_justifications . 3
parse_justifications . 5
sanitize_for_DiagrammeR . 7
to_specList . 7

Index 9

apply_graph_theme Apply multiple DiagrammeR global graph attributes

Description

Apply multiple DiagrammeR global graph attributes

Usage

apply_graph_theme(graph, ...)

Arguments

graph The DiagrammeR::DiagrammeR graph to apply the attributes to.

... One or more character vectors of length three, where the first element is the
attribute, the second the value, and the third, the attribute type (graph, node, or
edge).

Value

The DiagrammeR::DiagrammeR graph.

Examples

exampleJustifier <- '

assertion:

-
id: assertion_id
label: "An assertion"

decision:
-
id: decision_id
label: "A decision"
justification:

-
id: justification_id
label: "A justification"
assertion:

-

load_justifications 3

id: assertion_id
description: "A description of an assertion"
source:

-
id: source1_id
label: "First source"

-
id: source2_id
label: "second source"

';
justifications <-

load_justifications(text=exampleJustifier);
miniGraph_original <-

justifications$decisionGraphs[[1]];
miniGraph <-

apply_graph_theme(miniGraph_original,
c("color", "#0000AA", "node"),
c("shape", "triangle", "node"),
c("fontcolor", "#FF0000", "node"));

This line should be run when executing this example as test, because
rendering a DiagrammeR graph takes quite long
Not run:
DiagrammeR::render_graph(miniGraph);

End(Not run)

load_justifications Load Justifications from a file or multiple files

Description

These function load justifications from the YAML fragments in one (load_justifications) or
multiple files (load_justifications_dir).

Usage

load_justifications(text, file, delimiterRegEx = "^---$",
justificationContainer = c("justifier", "justification", "decision",
"assertion", "source"), ignoreOddDelimiters = FALSE,
encoding = "UTF-8", silent = TRUE)

load_justifications_dir(path, recursive = TRUE, extension = "jmd",
regex, justificationContainer = c("justifier", "justification",
"decision", "assertion", "source"), delimiterRegEx = "^---$",
ignoreOddDelimiters = FALSE, encoding = "UTF-8", silent = TRUE)

4 load_justifications

Arguments

text, file As text or file, you can specify a file to read with encoding encoding,
which will then be read using base::readLines(). If the argument is named
text, whether it is the path to an existing file is checked first, and if it is, that
file is read. If the argument is named file, and it does not point to an existing
file, an error is produced (useful if calling from other functions). A text should
be a character vector where every element is a line of the original source (like
provided by base::readLines()); although if a character vector of one element
and including at least one newline character (\n) is provided as text, it is split
at the newline characters using base::strsplit(). Basically, this behavior
means that the first argument can be either a character vector or the path to a
file; and if you’re specifying a file and you want to be certain that an error is
thrown if it doesn’t exist, make sure to name it file.

delimiterRegEx The regular expression used to locate YAML fragments

justificationContainer

The container of the justifications in the YAML fragments. Because only justi-
fications are read that are stored in this container, the files can contain YAML
fragments with other data, too, without interfering with the parsing of the justi-
fications.

ignoreOddDelimiters

Whether to throw an error (FALSE) or delete the last delimiter (TRUE) if an odd
number of delimiters is encountered.

encoding The encoding to use when calling readLines(). Set to NULL to let readLines()
guess.

silent Whether to be silent (TRUE) or informative (FALSE).

path The path containing the files to read.

recursive Whether to also process subdirectories (TRUE) or not (FALSE).

extension The extension of the files to read; files with other extensions will be ignored.
Multiple extensions can be separated by a pipe (|).

regex Instead of specifing an extension, it’s also possible to specify a regular expres-
sion; only files matching this regular expression are read. If specified, regex
takes precedece over extension,

Details

load_justifications_dir simply identifies all files and then calls load_justifications for
each of them. load_justifications loads the YAML fragments containing the justifications using
yum::load_yaml_fragments() and then parses the justifications into a visual representation as a
ggplot2::ggplot graph and Markdown documents with overviews.

Value

An object with the ggplot2::ggplot graph stored in output$graph and the overview in output$overview.

parse_justifications 5

Examples

exampleMinutes <- 'This is an example of minutes that include
a source, an assertion, and a justification. For example, in
the meeting, we can discuss the assertion that sleep deprivation
affects decision making. We could quickly enter this assertion in
a machine-readable way in this manner:

assertion:

-
id: assertion_SD_decision
label: Sleep deprivation affects the decision making proces.
source:

id: source_Harrison

Because it is important to refer to sources, we cite a source as well.
We have maybe specified that source elsewhere, for example in the
minutes of our last meeting. That specification may have looked
like this:

source:

-
id: source_Harrison
label: "Harrison & Horne (2000) The impact of sleep deprivation on decision making: A review."
xdoi: "doi:10.1037/1076-898x.6.3.236"
type: "Journal article"

We can now refer to these two specifications later on, for
example to justify decisions we take.
';

load_justifications(text=exampleMinutes);

To load a directory with justifications
examplePath <-

file.path(system.file(package="justifier"),
'extdata');

load_justifications_dir(path=examplePath);

parse_justifications Parsing justifications

Description

This function is normally called by load_justifications(); however, sometimes it may be
desirable to parse justifications embedded in more complex objects, for example as provided by
yum::load_and_simplify(). Therefore, this function can also be called directly.

6 parse_justifications

Usage

parse_justifications(x)

Arguments

x An object resulting from a call to yum::load_and_simplify().

Details

While there is some flexibility in how justifications can be specified, they are most easily processed
further if they all follow the same conventions. This function ensures this. The convention is as
follows:

• all specifications are provided in four ’flat’ lists, named after the types of elements they con-
tain;

• all elements have a unique identifier

• all references to other elements are indeed only references to the other elements’ id’s in these
’flat lists’

Value

The parsed justifier object

Examples

Specify an example text
exampleFile <-

system.file("extdata",
"simple-example.jmd",
package="justifier");

Show contents
cat(readLines(exampleFile), sep="\n");

Load it with yum::load_and_simplify()
loadedMinutes <- yum::load_and_simplify(exampleFile);

Show contents
names(loadedMinutes);

Parse 'manually'
parsedJustifications <- justifier::parse_justifications(loadedMinutes);

Show contents
names(parsedJustifications);

sanitize_for_DiagrammeR 7

sanitize_for_DiagrammeR

Sanitize for DiagrammeR

Description

Basically a wrapper for gsub() to sanitize a string for DiagrammeR

Usage

sanitize_for_DiagrammeR(x,
regExReplacements = list(c("\\\"", "`"), c("\\'", "`"), c("\\\\", "/")))

Arguments

x The string or vector
regExReplacements

A list of two-element character vectors; first element should be the elemnet to
search, and the second element, the replacement.

Value

The sanitized character vector

Examples

justifier::sanitize_for_DiagrammeR("This is or isn't problematic");

to_specList Producing a list of specifications

Description

This function is for internal use, but has been exported in case it’s useful for people working ’man-
ually’ with lists of justifications.

Usage

to_specList(x, types, type)

Arguments

x The list to parse.

types The class to assign to the specification list (the justifierSpecList object to
return).

type The class to assign to each specification (in addition to justifierSpec).

8 to_specList

Value

A list of classes c("justifierSpecList", types) where each element is a specification of class
c("justifierSpec", type).

Examples

Specify an example text
exampleFile <-

system.file("extdata",
"simple-example.jmd",
package="justifier");

Show contents
cat(readLines(exampleFile), sep="\n");

Load it with yum::load_and_simplify()
loadedMinutes <- yum::load_and_simplify(exampleFile);

Show contents
names(loadedMinutes);

Show classes
class(loadedMinutes["assertion"]);

Convert to specification list
res <- to_specList(loadedMinutes["assertion"],

type="assertion",
types="assertions");

Show classes
class(res);

Show original and parsed objects
loadedMinutes["assertion"];
res;

Index

apply_graph_theme, 2

base::readLines(), 4
base::strsplit(), 4

DiagrammeR::DiagrammeR, 2

ggplot2::ggplot, 4
gsub(), 7

load_justifications, 3
load_justifications(), 5
load_justifications_dir

(load_justifications), 3

parse_justifications, 5
plot.justifications

(load_justifications), 3
print.justifications

(load_justifications), 3

readLines(), 4

sanitize_for_DiagrammeR, 7

to_specList, 7

yum::load_and_simplify(), 5, 6
yum::load_yaml_fragments(), 4

9

	apply_graph_theme
	load_justifications
	parse_justifications
	sanitize_for_DiagrammeR
	to_specList
	Index

