Package ‘labeling’

August 30, 2023

Type Package
Title Axis Labeling
Version 0.4.3
Date 2023-08-29
Author Justin Talbot,
Maintainer Nuno Sempere <nuno.semperelh@gmail.com>
Description Functions which provide a range of axis labeling algorithms.
License MIT + file LICENSE | Unlimited
Collate 'labeling.R'
NeedsCompilation no
Imports stats, graphics
Repository CRAN
Date/Publication 2023-08-29 22:20:02 UTC

R topics documented:

- labeling-package ... 2
- extended .. 3
- extended.figures ... 4
- gnuplot ... 4
- heckbert ... 5
- matplotlib ... 6
- nelder ... 6
- rpretty .. 7
- sparks ... 8
- thayer ... 9
- wilkinson ... 9

Index 11
Description

Functions for positioning tick labels on axes

Details

Package: labeling
Type: Package
Version: 0.4.3
Date: 2023-08-29
License: Unlimited
LazyLoad: yes

Implements a number of axis labeling schemes, including those compared in An Extension of Wilkinson’s Algorithm for Positioning Tick Labels on Axes by Talbot, Lin, and Hanrahan, InfoVis 2010.

Author(s)

Justin Talbot <justintalbot@gmail.com>

References

See Also

extended, wilkinson, heckbert, rpretty, gnuplot, matplotlib, nelder, sparks, thayer, pretty

Examples

heckbert(8.1, 14.1, 4) # 5 10 15
wilkinson(8.1, 14.1, 4) # 8 9 10 11 12 13 14 15
extended(8.1, 14.1, 4) # 8 10 12 14
When plotting, extend the plot range to include the labeling
Should probably have a helper function to make this easier
data(iris)
x <- iris$Sepal.Width
y <- iris$Sepal.Length
extended <- extended(min(x), max(x), 6)
yl <- extended(min(y), max(y), 6)
plot(x, y,
 xlim=c(min(x,xl),max(x,xl)),
 ylim=c(min(y,yl),max(y,yl)),
 axes=FALSE, main="Extended labeling")
axis(1, at=xl)
axis(2, at=yl)

extended

An Extension of Wilkinson’s Algorithm for Position Tick Labels on Axes

Description

extended is an enhanced version of Wilkinson’s optimization-based axis labeling approach. It is described in detail in our paper. See the references.

Usage

`extended(dmin, dmax, m, Q = c(1, 5, 2, 2.5, 4, 3), only.loose = FALSE, w = c(0.25, 0.2, 0.5, 0.05))`

Arguments

- `dmin`: minimum of the data range
- `dmax`: maximum of the data range
- `m`: number of axis labels
- `Q`: set of nice numbers
- `only.loose`: if true, the extreme labels will be outside the data range
- `w`: weights applied to the four optimization components (simplicity, coverage, density, and legibility)

Value

vector of axis label locations

Author(s)

Justin Talbot <justintalbot@gmail.com>

References

extended.figures

Generate figures from An Extension of Wilkinson’s Algorithm for Position Tick Labels on Axes

Description
Generates Figures 2 and 3 from our paper.

Usage
extended.figures(samples = 100)

Arguments
samples number of samples to use (in the paper we used 10000, but that takes awhile to run).

Value
produces plots as a side effect

Author(s)
Justin Talbot <justintalbot@gmail.com>

References

gnuplot
gnuplot’s labeling algorithm

Description
gnuplot’s labeling algorithm

Usage
gnuplot(dmin, dmax, m)

Arguments
dmin minimum of the data range
dmax maximum of the data range
m number of axis labels
heckbert

Value
vector of axis label locations

Author(s)
Justin Talbot <justintalbot@gmail.com>

References
http://www.gnuplot.info/

Description
Heckbert's labeling algorithm

Usage
heckbert(dmin, dmax, m)

Arguments
dmin minimum of the data range
dmax maximum of the data range
m number of axis labels

Value
vector of axis label locations

Author(s)
Justin Talbot <justintalbot@gmail.com>

References
Matplotlib's labeling algorithm

Usage

```r
matplotlib(dmin, dmax, m)
```

Arguments

- `dmin`: minimum of the data range
- `dmax`: maximum of the data range
- `m`: number of axis labels

Value

vector of axis label locations

Author(s)

Justin Talbot <justintalbot@gmail.com>

References

https://matplotlib.org/

Nelder's labeling algorithm

Usage

```r
nelder(dmin, dmax, m,
Q = c(1, 1.2, 1.6, 2, 2.5, 3, 4, 5, 6, 8, 10))
```

Arguments

- `dmin`: minimum of the data range
- `dmax`: maximum of the data range
- `m`: number of axis labels
- `Q`: set of nice numbers
rpretty

Value
vector of axis label locations

Author(s)
Justin Talbot <justintalbot@gmail.com>

References

rpretty | R's pretty algorithm implemented in R

Description
R's pretty algorithm implemented in R

Usage
rpretty(dmin, dmax, m = 6, n = floor(m) - 1,
min.n = n%/%3, shrink.sml = 0.75, high.u.bias = 1.5,
u5.bias = 0.5 + 1.5 * high.u.bias)

Arguments
dmin minimum of the data range
dmax maximum of the data range
m number of axis labels
n number of axis intervals (specify one of m or n)
min.n nonnegative integer giving the minimal number of intervals. If min.n == 0, pretty(.) may return a single value.
shrink.sml positive numeric by a which a default scale is shrunk in the case when range(x) is very small (usually 0).
high.u.bias non-negative numeric, typically > 1. The interval unit is determined as \{1,2,5,10\} times b, a power of 10. Larger high.u.bias values favor larger units.
u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and 'optimal': u5.bias = .5 + 1.5*high.u.bias.

Value
vector of axis label locations
sparks

Sparks' labeling algorithm

Description

Sparks' labeling algorithm

Usage

```
sparks(dmin, dmax, m)
```

Arguments

- `dmin`: minimum of the data range
- `dmax`: maximum of the data range
- `m`: number of axis labels

Value

vector of axis label locations

Author(s)

Justin Talbot <justintalbot@gmail.com>

References

thayer

Thayer and Storer’s labeling algorithm

Description
Thayer and Storer’s labeling algorithm

Usage

```r
thayer(dmin, dmax, m)
```

Arguments
- `dmin`: minimum of the data range
- `dmax`: maximum of the data range
- `m`: number of axis labels

Value
vector of axis label locations

Author(s)
Justin Talbot <justintalbot@gmail.com>

References

wilkinson

Wilkinson’s labeling algorithm

Description
Wilkinson’s labeling algorithm

Usage

```r
wilkinson(dmin, dmax, m,
          Q = c(1, 5, 2, 2.5, 3, 4, 1.5, 7, 6, 8, 9),
          mincoverage = 0.8,
          mrange = max(floor(m/2), 2):ceiling(6 * m))
```

Arguments

\[d_{\text{min}}\] minimum of the data range
\[d_{\text{max}}\] maximum of the data range
\[m\] number of axis labels
\[Q\] set of nice numbers
\[\text{mincoverage}\] minimum ratio between the the data range and the labeling range, controlling the whitespace around the labeling (default = 0.8)
\[m_{\text{range}}\] range of \(m\), the number of tick marks, that should be considered in the optimization search

Value

vector of axis label locations

Note

Ported from Wilkinson’s Java implementation with some changes. Changes: 1) \(m\) (the target number of ticks) is hard coded in Wilkinson’s implementation as 5. Here we allow it to vary as a parameter. Since \(m\) is fixed, Wilkinson only searches over a fixed range 4-13 of possible resulting ticks. We broadened the search range to \(\text{max}(\text{floor}(m/2), 2)\) to \(\text{ceiling}(6\times m)\), which is a larger range than Wilkinson considers for 5 and allows us to vary \(m\), including using non-integer values of \(m\). 2) Wilkinson’s implementation assumes that the scores are non-negative. But, his revised granularity function can be extremely negative. We tweaked the code to allow negative scores. We found that this produced better labelings. 3) We added 10 to \(Q\). This seemed to be necessary to get steps of size 1. It is possible for this algorithm to find no solution. In Wilkinson’s implementation, instead of failing, he returns the non-nice labels spaced evenly from \(\text{min}\) to \(\text{max}\). We want to detect this case, so we return NULL. If this happens, the search range, \(m_{\text{range}}\), needs to be increased.

Author(s)

Justin Talbot <justintalbot@gmail.com>

References

Index

* dplot
 labeling-package, 2
extended, 2, 3
extended.figures, 4
gnuplot, 2, 4
heckbert, 2, 5
labeling(labeling-package), 2
labeling-package, 2
matplotlib, 2, 6
nelder, 2, 6
pretty, 2
rpretty, 2, 7
sparks, 2, 8
thayer, 2, 9
wilkinson, 2, 9