Package ‘lddmm’

November 8, 2021

Type Package
Title Longitudinal Drift-Diffusion Mixed Models (LDDMM)
Version 0.1.0
Date 2021-11-02
Description Implementation of the drift-diffusion mixed model for category learning as described in Paulon et al. (2021).
Depends R (>= 3.5.0)
Language en-US
License MIT + file LICENSE
Encoding UTF-8
Imports Rcpp (>= 1.0.6), RcppProgress, rgen, gtools, LaplacesDemon, dplyr, plyr, tidy, ggplot2, latex2exp, reshape2, RColorBrewer
LazyData true
LinkingTo Rcpp, RcppArmadillo, RcppProgress, rgen
RoxygenNote 7.1.2
Suggests rmarkdown, knitr
VignetteBuilder knitr
NeedsCompilation yes
Author Giorgio Paulon [aut, cre], Abhra Sarkar [aut, ctb]
Maintainer Giorgio Paulon <giorgio.paulon@utexas.edu>
Repository CRAN
Date/Publication 2021-11-08 12:10:08 UTC

R topics documented:

B_basis ... 2
data ... 2
extract_post_draws .. 3

B_basis

Spline Basis Functions

Description

Construct the J basis functions for the splines evaluated on a grid.

Usage

B_basis(xgrid, knots)

Arguments

- **xgrid**: grid where we want to evaluate the spline functions (vector of length n)
- **knots**: vector of knots for the splines (vector of length K)

Value

n x (K+1) - matrix representing the value of each basis function evaluated on xgrid

data

Example dataset

Description

A toy dataset in the correct format for the LDDMM function call. This dataset has two possible response categories.

Usage

data

Format

A data frame with 24,254 rows and 6 columns
extract_post_draws

Details

- subject: vector of size n containing the participant labels
- block: vector of size n containing the training blocks (longitudinal units)
- s: vector of size n containing the stimuli
- d: vector of size n containing the decisions
- r_time: vector of size n containing the response times
- cens: vector of size n containing the censoring indicators (1 censored, 0 non censored)

Parameter posterior draws

Description

Function to extract the posterior draws of the parameters of interest from a lddmm fit object.

Usage

extract_post_draws(data, fit, par = c("drift", "boundary"))

Arguments

data dataframe with the following columns:
- subject: vector of size n containing the participant labels
- block: vector of size n containing the training blocks (longitudinal units)
- s: vector of size n containing the stimuli
- d: vector of size n containing the decisions
- r_time: vector of size n containing the response times
- cens: vector of size n containing the censoring indicators (1 censored, 0 non censored)

fit fit from the lddmm function
par parameter to output (‘drift’, or ‘boundary’)

Value

Matrix with the following columns:
- subject: participant labels
- block: training blocks
- draw: iteration of the MCMC estimates
- par_s_d, ...: posterior draws for the requested parameters
extract_post_mean
Parameter posterior means

Description

Function to extract the posterior means of the parameters of interest from a lddmm fit object.

Usage

```r
extract_post_mean(data, fit, par = c("drift", "boundary"))
```

Arguments

- `data`: dataframe with the following columns:
 - `subject`: vector of size n containing the participant labels
 - `block`: vector of size n containing the training blocks (longitudinal units)
 - `s`: vector of size n containing the stimuli
 - `d`: vector of size n containing the decisions
 - `r_time`: vector of size n containing the response times
 - `cens`: vector of size n containing the censoring indicators (1 censored, 0 non censored)
- `fit`: fit from the lddmm function
- `par`: parameter to output ('drift', or 'boundary')

Value

Matrix with the following columns:

- `subject`: participant labels
- `block`: training blocks
- `par_s_d, ...`: posterior means for the requested parameters

H_ball
Hamming Ball

Description

Computes the Hamming Ball centered at x with radius r.

Usage

```r
H_ball(x, S, r)
```
LDDMM

Arguments

- **x**: center of the Hamming Ball
- **S**: number of states
- **r**: radius of the Hamming Ball

Value

Hamming Ball

LDDMM

Drift Diffusion Model Fit

Description

Main function for the Gibbs sampler for the drift-diffusion model.

Usage

```r
LDDMM(
  data,  # dataframe with the following columns:
  hypers,  # hyperparameters of the MCMC: list containing "s_sigma_mu" and "s_sigma_b",
  fix_boundary = FALSE,  # which are the smoothness parameters for drifts and boundaries, respectively
  Niter = 5000,  # total number of iterations
  burnin = 2000,  # burnin of the chain
  thin = 5       # thinning factor
)
```

Arguments

- **data**: dataframe with the following columns:
 - **subject**: vector of size n containing the participant labels
 - **block**: vector of size n containing the training blocks (longitudinal units)
 - **s**: vector of size n containing the stimuli
 - **d**: vector of size n containing the decisions
 - **r_time**: vector of size n containing the response times
 - **cens**: vector of size n containing the censoring indicators (1 censored, 0 non censored)
- **hypers**: hyperparameters of the MCMC: list containing "s_sigma_mu" and "s_sigma_b", which are the smoothness parameters for drifts and boundaries, respectively
- **fix_boundary**: whether to fix the boundary parameters to a single scalar or not
- **Niter**: total number of iterations
- **burnin**: burnin of the chain
- **thin**: thinning factor
Value

List with the following MCMC posterior samples:

- post_mean_delta: posterior samples for the population offset parameters
- post_mean_mu: posterior samples for the population drift parameters
- post_mean_b: posterior samples for the population boundary parameters
- post_ind_delta: posterior samples for the individual offset parameters
- post_ind_mu: posterior samples for the individual drift parameters
- post_ind_b: posterior samples for the individual boundary parameters
- sigma2_mu_us: posterior samples for the random effects drift smoothness parameters
- sigma2_mu_ua: posterior samples for the random effects drift variance parameters
- sigma2_b_us: posterior samples for the random effects boundary smoothness parameters
- sigma2_b_ua: posterior samples for the random effects boundary variance parameters
- sigma2_1_mu: posterior samples for the drift smoothness parameters
- sigma2_1_b: posterior samples for the boundary smoothness parameters
- pred_ans: predicted population-level categories
- pred_time: predicted population-level response times
- pred_ans_ind: predicted individual-level categories
- pred_time_ind: predicted individual-level response times

log_likelihood

Log-likelihood computation

Description

Compute the log-likelihood for the drift-diffusion model, including the censored data contribution.

Usage

log_likelihood(tau, mu, b, delta, cens, D, log)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tau</td>
<td>vector of size n containing the response times</td>
</tr>
<tr>
<td>mu</td>
<td>matrix of size (n x d1) containing the drift parameters corresponding to the n response times for each possible d1 decision</td>
</tr>
<tr>
<td>b</td>
<td>matrix of size (n x d1) containing the boundary parameters corresponding to the n response times for each possible d1 decision</td>
</tr>
<tr>
<td>delta</td>
<td>vector of size n containing the offset parameters corresponding to the n response times</td>
</tr>
</tbody>
</table>
plot_accuracy

- `cens`: vector of size n containing censoring indicators (1 censored, 0 not censored) corresponding to the n response times
- `D`: (n x 2) matrix whose first column has the n input stimuli, and whose second column has the n decision categories
- `log`: should the results be returned on the log scale?

Description

Plot the accuracy of the raw data.

Usage

```r
plot_accuracy(data)
```

Arguments

- `data`: dataframe with the following columns:
 - `subject`: vector of size n containing the participant labels
 - `block`: vector of size n containing the training blocks (longitudinal units)
 - `s`: vector of size n containing the stimuli
 - `d`: vector of size n containing the decisions
 - `r_time`: vector of size n containing the response times
 - `cens`: vector of size n containing the censoring indicators (1 censored, 0 non censored)

Value

Individual and population level raw accuracies

plot_post_pars

Plot posterior estimates

Description

Function to plot the posterior mean and credible intervals of the parameters of interest from a lddmm fit object.

Usage

```r
plot_post_pars(data, fit, par = c("drift", "boundary"))
```
Arguments

data: dataframe with the following columns:
 - subject: vector of size n containing the participant labels
 - block: vector of size n containing the training blocks (longitudinal units)
 - s: vector of size n containing the stimuli
 - d: vector of size n containing the decisions
 - r_time: vector of size n containing the response times
 - cens: vector of size n containing the censoring indicators (1 censored, 0 non censored)

fit: fit from the lddmm function

par: parameter to output ('drift', or 'boundary')

Value

Posterior mean and 95% CI

Description

Plot the mean response times of the raw data.

Usage

plot_RT(data)

Arguments

data: dataframe with the following columns:
 - subject: vector of size n containing the participant labels
 - block: vector of size n containing the training blocks (longitudinal units)
 - s: vector of size n containing the stimuli
 - d: vector of size n containing the decisions
 - r_time: vector of size n containing the response times
 - cens: vector of size n containing the censoring indicators (1 censored, 0 non censored)

Value

Population level raw response times
Description

Construct the covariance matrix P of the smoothness inducing prior for the spline coefficients

Usage

$P_{\text{smooth1}}(K)$

Arguments

K
Number of spline knots

Value

Covariance of the smoothness inducing prior (penalizing first differences in the spline coefficients)
Index

* datasets
 data, 2
B_basis, 2
data, 2
extract_post_draws, 3
extract_post_mean, 4
H_ball, 4
LDDMM, 5
log_likelihood, 6
P_smooth1, 9
plot_accuracy, 7
plot_post_pars, 7
plot_RT, 8