Package ‘leontief’

September 2, 2020

Type Package

Title Input-Output Analysis

Version 0.2

Date 2020-09-01

Description An implementation of the Input-Output model developed by Wassily Leontief that represents the interdependencies between different sectors of a national economy or different regional economies.

License GPL-3

Imports Rcpp

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown, covr, roxygen2, testthat

VignetteBuilder knitr

LazyData true

Depends R (>= 3.2)

URL https://pachamaltese.github.io/leontief

BugReports https://github.com/pachamaltese/leontief/issues

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation yes

Author Mauricio Vargas [aut, cre] (<https://orcid.org/0000-0003-1017-7574>), Central Bank of Chile [dtc]

Maintainer Mauricio Vargas <mvargas@dcc.uchile.cl>

Repository CRAN

Date/Publication 2020-09-02 07:10:07 UTC
R topics documented:

- augmented_input_requirement
- backward_linkage
- employment_matrix
- employment_multiplier
- employment_number
- equilibrium_output
- forward_linkage
- income_multiplier
- input_requirement
- leontief_inverse
- multiplier_product_matrix
- output_allocation
- output_multiplier
- power_dispersion
- power_dispersion_cv
- sensitivity_dispersion
- sensitivity_dispersion_cv
- transaction_matrix
- wage_demand_matrix

Index

augmented_input_requirement

Augmented input requirement

Description

Augmented input requirement

Usage

augmented_input_requirement(X, w, c, d)

Arguments

- X: transaction matrix
- w: wage vector
- c: household consumption vector
- d: final demand vector
backward_linkage

Examples

```r
set.seed(200100)
X <- matrix(rnorm(100), nrow = 10)
w <- rnorm(10)
c <- rnorm(10)
d <- rnorm(10)
augmented_input_requirement(X, w, c, d)
```

Description

Backward linkage

Usage

```r
backward_linkage(A)
```

Arguments

- **A**: input requirement matrix

###就业矩阵

employment_matrix
Employment matrix (2013 data)
This matrix contains the employed people by industry and the employment coefficient that is the number of people divided by the total final demand from the wage and demand matrix.

Description

Employment matrix (2013 data)
This matrix contains the employed people by industry and the employment coefficient that is the number of people divided by the total final demand from the wage and demand matrix.

Usage

```r
wage_demand_matrix
```

Format

A matrix with 12 rows and 2 columns

Author(s)

University of Bio-Bio, based on data from the National Bureau of Statistics
employment_number

References

employment_multiplier Employment multiplier

Description

Employment multiplier

Usage

employment_multiplier(L, e)

Arguments

L Leontief inverse matrix
 e employment coefficients vector

employment_number Employment number

Description

Employment number

Usage

employment_number(L, e, c)

Arguments

L Leontief inverse matrix
 e employment coefficients vector
 c change in final demand
equilibrium_output

Equilibrium output

Description
Equilibrium output

Usage
equilibrium_output(L, d)

Arguments
- **L**: Leontief inverse matrix
- **d**: final demand vector

Examples
```
set.seed(200100)
L <- matrix(rnorm(100), nrow = 10)
d <- rnorm(10)
equilibrium_output(L,d)
```

forward_linkage

Forward linkage

Description
Forward linkage

Usage
forward_linkage(A)

Arguments
- **A**: input requirement matrix
income_multiplier

Income multiplier

Description

Income multiplier

Usage

`income_multiplier(L, w)`

Arguments

- `L`: Leontief inverse matrix
- `w`: wage vector

input_requirement

Input requirement

Description

Input requirement

Usage

`input_requirement(X, d)`

Arguments

- `X`: transaction matrix
- `d`: final demand vector

Examples

```r
set.seed(200100)
X <- matrix(rnorm(100), nrow = 10)
d <- rnorm(10)
input_requirement(X, d)
```
leontief_inverse Leontief inverse

Description
Leontief inverse

Usage
leontief_inverse(A)

Arguments
A input requirement matrix

Examples
set.seed(200100)
A <- matrix(rnorm(100), nrow = 10)
leontief_inverse(A)

multiplier_product_matrix Multiplier product matrix

Description
Multiplier product matrix

Usage
multiplier_product_matrix(L)

Arguments
L Leontief inverse matrix
output_allocation Output allocation

Description
Output allocation

Usage

output_allocation(X, d)

Arguments

* X transaction matrix
* d final demand vector

Examples

```r
set.seed(200100)
X <- matrix(rnorm(100), nrow = 10)
d <- rnorm(10)
output_allocation(X,d)
```

output_multiplier Output multiplier

Description
Output multiplier

Usage

output_multiplier(L)

Arguments

* L Leontief inverse matrix

Examples

```r
set.seed(200100)
L <- matrix(rnorm(100), nrow = 10)
output_multiplier(L)
```
power dispersion

Power of dispersion

Description

Power of dispersion

Usage

`power_dispersion(L)`

Arguments

- `L`: Leontief inverse matrix

power dispersion_cv

Power of dispersion coefficient of variation

Description

Power of dispersion coefficient of variation

Usage

`power_dispersion_cv(L)`

Arguments

- `L`: Leontief inverse matrix

sensitivity_dispersion

Sensitivity of dispersion coefficient of variation

Description

Sensitivity of dispersion coefficient of variation

Usage

`sensitivity_dispersion(L)`

Arguments

- `L`: Leontief inverse matrix
sensitivity_dispersion_cv

Sensitivity of dispersion coefficient of variation

Description
Sensitivity of dispersion coefficient of variation

Usage
sensitivity_dispersion_cv(L)

Arguments
L
Leontief inverse matrix

transaction_matrix

Transaction matrix (2013 data) This matrix contains the production of the chilean economy divided into 12 industries. The measuring unit is CLP million of the year 2013

Description
Transaction matrix (2013 data) This matrix contains the production of the chilean economy divided into 12 industries. The measuring unit is CLP million of the year 2013

Usage
transaction_matrix

Format
A matrix with 12 rows and 12 columns

Author(s)
Central Bank of Chile

References
https://si3.bcentral.cl/estadisticas/Principal1/Excel/CCNN/cdr/excel.html
Wage and demand matrix (2013 data) This matrix contains the wage, intermediate demand and disaggregated final demand of the Chilean economy divided into 12 industries. The final demand is given by components (household consumption, government consumption, etc.) and aggregated. The measuring unit is CLP million of the year 2013.

Description

Wage and demand matrix (2013 data) This matrix contains the wage, intermediate demand and disaggregated final demand of the Chilean economy divided into 12 industries. The final demand is given by components (household consumption, government consumption, etc.) and aggregated. The measuring unit is CLP million of the year 2013.

Usage

wage_demand_matrix

Format

A matrix with 12 rows and 9 columns

Author(s)

Central Bank of Chile

References

https://si3.bcentral.cl/estadisticas/Principal1/Excel/CCNN/cdr/excel.html
Index

* data
 employment_matrix, 3
 transaction_matrix, 10
 wage_demand_matrix, 11
 augmented_input_requirement, 2
 backward_linkage, 3
 employment_matrix, 3
 employment_multiplier, 4
 employment_number, 4
 equilibrium_output, 5
 forward_linkage, 5
 income_multiplier, 6
 input_requirement, 6
 leontief_inverse, 7
 multiplier_product_matrix, 7
 output_allocation, 8
 output_multiplier, 8
 power_dispersion, 9
 power_dispersion_cv, 9
 sensitivity_dispersion, 9
 sensitivity_dispersion_cv, 10
 transaction_matrix, 10
 wage_demand_matrix, 11