Package ‘lhs’

September 8, 2021

Title Latin Hypercube Samples
Version 1.1.3
Description Provides a number of methods for creating and augmenting Latin Hypercube Samples and Orthogonal Array Latin Hypercube Samples.
License GPL-3
Encoding UTF-8
Depends R (>= 3.4.0)
LinkingTo Rcpp
Imports Rcpp
Suggests testthat, assertthat, DoE.base, knitr, rmarkdown, covr
URL https://github.com/bertcarnell/lhs
BugReports https://github.com/bertcarnell/lhs/issues
RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation yes
Author Rob Carnell [aut, cre]
Maintainer Rob Carnell <bertcarnell@gmail.com>
Repository CRAN
Date/Publication 2021-09-08 06:50:02 UTC

R topics documented:

 augmentLHS ... 2
 createAddelKemp .. 3
 createAddelKemp3 ... 4
 createAddelKempN ... 5
 createBose ... 6
 createBoseBush .. 7
 createBoseBushl .. 8
augmentLHS

Augment a Latin Hypercube Design

Description

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the latin properties of the design.

Usage

augmentLHS(lhs, m = 1)

Arguments

lhs The Latin Hypercube Design to which points are to be added. Contains an existing latin hypercube design with a number of rows equal to the points in the design (simulations) and a number of columns equal to the number of variables (parameters). The values of each cell must be between 0 and 1 and uniformly distributed

m The number of additional points to add to matrix lhs

Details

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the latin properties of the design. Augmentation is performed in a random manner.

The algorithm used by this function has the following steps. First, create a new matrix to hold the candidate points after the design has been re-partitioned into \((n + m)^2\) cells, where \(n\) is number of points in the original lhs matrix. Then randomly sweep through each column \((1 \ldots k)\) in the
repartitioned design to find the missing cells. For each column (variable), randomly search for an empty row, generate a random value that fits in that row, record the value in the new matrix. The new matrix can contain more filled cells than \(m \) unless \(m = 2n \), in which case the new matrix will contain exactly \(m \) filled cells. Finally, keep only the first \(m \) rows of the new matrix. It is guaranteed to have \(m \) full rows in the new matrix. The deleted rows are partially full. The additional candidate points are selected randomly due to the random search for empty cells.

Value

An \(n \) by \(k \) Latin Hypercube Sample matrix with values uniformly distributed on \([0,1]\)

Author(s)

Rob Carnell

References

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()]] to generate Latin Hypercube Samples. [optAugmentLHS()] and [optSeededLHS()] to modify and augment existing designs.

Examples

```r
set.seed(1234)
a <- randomLHS(4,3)
b <- augmentLHS(a, 2)
```

createAddelKemp

Create an orthogonal array using the Addelman-Kempthorne algorithm.

Description

The `createAddelKemp` function produces an orthogonal array \(OA(2q^2,k,q,2) \), \(k \leq 2q+1 \), for odd prime powers \(q \).

Usage

```r
createAddelKemp(q, ncol, bRandom = TRUE)
```

Arguments

- `q` : the number of symbols in the array
- `ncol` : number of parameters or columns
- `bRandom` : should the array be randomized
createAddelKemp3

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one of q symbols \(0, \ldots, q-1\). The array has strength t if, in every n by t submatrix, the \(q^t\) possible distinct rows, all appear the same number of times. This number is the index of the array, commonly denoted \(\lambda\). Clearly, \(\lambda q^t = n\). The notation for such an array is \(\text{OA}(n, k, q, t)\).

Value

an orthogonal array

References

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createAddelKemp3()], [createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

```r
A <- createAddelKemp(3, 3, TRUE)
B <- createAddelKemp(3, 5, FALSE)
```

Description

The addelkemp3 program produces \(\text{OA}(2q^3, k, q, 2)\), \(k \leq 2q^2+2q+1\), for prime powers \(q\). \(q\) may be an odd prime power, or \(q\) may be 2 or 4.

Usage

```r
createAddelKemp3(q, ncol, bRandom = TRUE)
```

Arguments

- `q` the number of symbols in the array
- `ncol` number of parameters or columns
- `bRandom` should the array be randomized
Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one of q symbols $0,\ldots,q-1$. The array has strength t if, in every n by t submatrix, the q^t possible distinct rows, all appear the same number of times. This number is the index of the array, commonly denoted λ. Clearly, $\lambda q^t = n$. The notation for such an array is $OA(n,k,q,t)$.

Value

an orthogonal array

References

See Also

Other methods to create orthogonal arrays [createBushBush()], [createBose()], [createAddelKemp()], [createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

```r
A <- createAddelKemp3(3, 3, TRUE)
B <- createAddelKemp3(3, 5, FALSE)
```

Usage

```r
createAddelKempN(q, ncol, exponent, bRandom = TRUE)
```

Arguments

- `q` the number of symbols in the array
- `ncol` number of parameters or columns
- `exponent` the exponent on q
- `bRandom` should the array be randomized
Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one of q symbols $0, \ldots, q-1$. The array has strength t if, in every n by t submatrix, the q^t possible distinct rows, all appear the same number of times. This number is the index of the array, commonly denoted λ. Clearly, $\lambda q^t = n$. The notation for such an array is $\text{OA}(n, k, q, t)$.

Value

an orthogonal array

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createBUSH()], [createAddelKemp()], [createAddelKemp3()], [createBusht()], [createBoseBushl()]

Examples

```
A <- createAddelKempN(3, 4, 3, TRUE)
B <- createAddelKempN(3, 4, 4, TRUE)
```

createBose

Create an orthogonal array using the Bose algorithm.

Description

The Bose program produces $\text{OA}(q^2, k, q, 2)$, $k \leq q+1$ for prime powers q.

Usage

```
createBose(q, ncol, bRandom = TRUE)
```

Arguments

- `q`: the number of symbols in the array
- `ncol`: number of parameters or columns
- `bRandom`: should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one of q symbols $0, \ldots, q-1$. The array has strength t if, in every n by t submatrix, the q^t possible distinct rows, all appear the same number of times. This number is the index of the array, commonly denoted λ. Clearly, $\lambda q^t = n$. The notation for such an array is $\text{OA}(n, k, q, t)$.

Value

an orthogonal array
createBoseBush

Reference

See Also
Other methods to create orthogonal arrays [createBush()], [createBoseBush()], [createAddelKemp()], [createAddelKemp3()], [createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples
A <- createBose(3, 3, FALSE)
B <- createBose(5, 4, TRUE)

createBoseBush
Create an orthogonal array using the Bose-Bush algorithm.

Description
The bosebush program produces OA(2q^2,k,q,2), k <= 2q+1, for powers of 2, q=2^r.

Usage
createBoseBush(q, ncol, bRandom = TRUE)

Arguments
q the number of symbols in the array
ncol number of parameters or columns
bRandom should the array be randomized

Details
From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible distinct rows, all appear the same number of times. This number is the index of the array, commonly denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n,k,q,t).

Value
an orthogonal array

References
createBoseBushl

Create an orthogonal array using the Bose-Bush algorithm with alternate strength \(\geq 3 \).

Description

The `bosebushl` program produces \(OA(\lambda q^2, k, q, 2) \), \(k \leq \lambda q + 1 \), for prime powers \(q \) and \(\lambda > 1 \). Both \(q \) and \(\lambda \) must be powers of the same prime.

Usage

`createBoseBushl(q, ncol, lambda, bRandom = TRUE)`

Arguments

- `q` the number of symbols in the array
- `ncol` number of parameters or columns
- `lambda` the lambda of the BoseBush algorithm
- `bRandom` should the array be randomized

Details

From Owen: An orthogonal array \(A \) is a matrix of \(n \) rows, \(k \) columns with every element being one of \(q \) symbols \(0, \ldots, q-1 \). The array has strength \(t \) if, in every \(n \) by \(t \) submatrix, the \(q^t \) possible distinct rows, all appear the same number of times. This number is the index of the array, commonly denoted \(\lambda \). Clearly, \(\lambda q^t = n \). The notation for such an array is \(OA(n, k, q, t) \).

Value

an orthogonal array

References

createBush

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createBush()], [createAddelKemp()], [createAddelKemp3()], [createAddelKempN()], [createBusht()]

Examples

A <- createBoseBush(3, 3, 3, TRUE)
B <- createBoseBush(4, 4, 16, TRUE)

createBush

Create an orthogonal array using the Bush algorithm.

Description

The bush program produces OA(q^3,k,q,3), k <= q+1 for prime powers q.

Usage

createBush(q, ncol, bRandom = TRUE)

Arguments

q
the number of symbols in the array
ncol
number of parameters or columns
bRandom
should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible distinct rows, all appear the same number of times. This number is the index of the array, commonly denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n,k,q,t).

Value

an orthogonal array

References

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createAddelKemp()], [createAddelKemp3()], [createAddelKempN()], [createBusht()], [createBoseBushl()]
createBusht

Create an orthogonal array using the Bush algorithm with alternate strength.

Description

The busht program produces $\text{OA}(q^t, k, q, t)$, $k \leq q+1$, $t \geq 3$, for prime powers q.

Usage

createBusht(q, ncol, strength, bRandom = TRUE)

Arguments

- **q**: the number of symbols in the array
- **ncol**: number of parameters or columns
- **strength**: the strength of the array to be created
- **bRandom**: should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one of q symbols $0, \ldots, q-1$. The array has strength t if, in every n by t submatrix, the q^t possible distinct rows, all appear the same number of times. This number is the index of the array, commonly denoted λ. Clearly, $\lambda \cdot q^t = n$. The notation for such an array is $\text{OA}(n, k, q, t)$.

Value

an orthogonal array

References

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createAddelKemp()], [createAddelKemp3()], [createAddelKempN()], [createBoseBushl()]
create_galois_field

Examples

```r
set.seed(1234)
A <- createBusht(3, 4, 2, TRUE)
B <- createBusht(3, 4, 3, FALSE)
G <- createBusht(3, 4, 3, TRUE)
```

create_galois_field

Create a Galois field

Description

Create a Galois field

Usage

```r
create_galois_field(q)
```

Arguments

- `q`: The order of the Galois Field \(q = p^n \)

Value

- A GaloisField object containing:
 - `n`: \(q = p^n \)
 - `p`: The prime modulus of the field \(q=p^n \)
 - `q`: The order of the Galois Field \(q = p^n \). \(q \) must be a prime power.
 - `xton`: coefficients of the characteristic polynomial where the first coefficient is on \(x^0 \), the second is on \(x^1 \) and so on
 - `inv`: An index for which row of `poly` (zero based) is the multiplicative inverse of this row. An NA indicates that this row of `poly` has no inverse. e.g. \(c(3, 4) \) means that row \(4=3+1 \) is the inverse of row \(1 \) and row \(5=4+1 \) is the inverse of row \(2 \)
 - `neg`: An index for which row of `poly` (zero based) is the negative or additive inverse of this row. An NA indicates that this row of `poly` has no negative. e.g. \(c(3, 4) \) means that row \(4=3+1 \) is the negative of row \(1 \) and row \(5=4+1 \) is the negative of row \(2 \)
 - `root`: An index for which row of `poly` (zero based) is the square root of this row. An NA indicates that this row of `poly` has no square root. e.g. \(c(3, 4) \) means that row \(4=3+1 \) is the square root of row \(1 \) and row \(5=4+1 \) is the square root of row \(2 \)
 - `plus`: sum table of the Galois Field
 - `times`: multiplication table of the Galois Field
 - `poly`: rows are polynomials of the Galois Field where the entries are the coefficients of the polynomial where the first coefficient is on \(x^0 \), the second is on \(x^1 \) and so on

Examples

```r
gf <- create_galois_field(4);
```
create_oalhs Create an orthogonal array Latin hypercube

Description
Create an orthogonal array Latin hypercube

Usage
create_oalhs(n, k, bChooseLargerDesign, bverbose)

Arguments
n the number of samples or rows in the LHS (integer)
k the number of parameters or columns in the LHS (integer)
bChooseLargerDesign should a larger oa design be chosen than the n and k requested?
bverbose should information be printed with execution

Value
a numeric matrix which is an orthogonal array Latin hypercube sample

Examples
set.seed(34)
A <- create_oalhs(9, 4, TRUE, FALSE)
B <- create_oalhs(9, 4, TRUE, FALSE)

geneticLHS Latin Hypercube Sampling with a Genetic Algorithm

Description
Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin Hypercube Design. This function attempts to optimize the sample with respect to the S optimality criterion through a genetic type algorithm.
Usage

```r
geneticLHS(
  n = 10,
  k = 2,
  pop = 100,
  gen = 4,
  pMut = 0.1,
  criterium = "S",
  verbose = FALSE
)
```

Arguments

- **n** The number of partitions (simulations or design points or rows)
- **k** The number of replications (variables or columns)
- **pop** The number of designs in the initial population
- **gen** The number of generations over which the algorithm is applied
- **pMut** The probability with which a mutation occurs in a column of the progeny
- **criterium** The optimality criterium of the algorithm. Default is "S". Maximin is also supported
- **verbose** Print informational messages. Default is FALSE

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parameter values from a multidimensional distribution. A square grid containing possible sample points is a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the generalisation of this concept to an arbitrary number of dimensions. When sampling a function of k variables, the range of each variable is divided into n equally probable intervals. n sample points are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n integers in each of k columns and then transforming those integers into n sections of a standard uniform distribution. Random values are then sampled from within each of the n sections. Once the sample is generated, the uniform sample from a column can be transformed to any distribution by using the quantile functions, e.g. qnorm(). Different columns can have different distributions.

S-optimality seeks to maximize the mean distance from each design point to all the other points in the design, so the points are as spread out as possible.

Genetic Algorithm:

1. Generate pop random latin hypercube designs of size n by k
2. Calculate the S optimality measure of each design
3. Keep the best design in the first position and throw away half of the rest of the population
4. Take a random column out of the best matrix and place it in a random column of each of the other matrices, and take a random column out of each of the other matrices and put it in copies of the best matrix thereby causing the progeny
get_library_versions

5. For each of the progeny, cause a genetic mutation p_{Mut} percent of the time. The mutation is accomplished by switching two elements in a column.

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

Author(s)

Rob Carnell

References

See Also

[randomLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()] to generate Latin Hypercube Samples. [optAugmentLHS()], [optSeededLHS()], and [augmentLHS()] to modify and augment existing designs.

Examples

```r
set.seed(1234)
A <- geneticLHS(4, 3, 50, 5, .25)
```
improvedLHS

Improved Latin Hypercube Sample

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin Hypercube Design. This function attempts to optimize the sample with respect to an optimum euclidean distance between design points.

Usage

`improvedLHS(n, k, dup = 1)`

Arguments

- `n`: The number of partitions (simulations or design points or rows)
- `k`: The number of replications (variables or columns)
- `dup`: A factor that determines the number of candidate points used in the search. A multiple of the number of remaining points than can be added.

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parameter values from a multidimensional distribution. A square grid containing possible sample points is a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the generalisation of this concept to an arbitrary number of dimensions. When sampling a function of `k` variables, the range of each variable is divided into `n` equally probable intervals. `n` sample points are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first `n` integers in each of `k` columns and then transforming those integers into `n` sections of a standard uniform distribution. Random values are then sampled from within each of the `n` sections. Once the sample is generated, the uniform sample from a column can be transformed to any distribution by using the quantile functions, e.g. `qnorm()`. Different columns can have different distributions.

This function attempts to optimize the sample with respect to an optimum euclidean distance between design points.

\[
Optimum distance = \frac{n^{1.0}}{k}
\]

Value

An `n` by `k` Latin Hypercube Sample matrix with values uniformly distributed on [0,1]
maximinLHS

References

This function is based on the MATLAB program written by John Burkardt and modified 16 Feb 2005 https://people.math.sc.edu/Burkardt/m_src/ihs/ihs.html

See Also

[randomLHS()], [geneticLHS()], [maximinLHS()], and [optimumLHS()] to generate Latin Hypercube Samples. [optAugmentLHS()], [optSeededLHS()], and [augmentLHS()] to modify and augment existing designs.

Examples

```r
set.seed(1234)
A <- improvedLHS(4, 3, 2)
```

maximinLHS

Maximin Latin Hypercube Sample

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin Hypercube Design. This function attempts to optimize the sample by maximizing the minimum distance between design points (maximin criteria).

Usage

```r
maximinLHS(
  n, 
  k, 
  method = "build", 
  dup = 1, 
  eps = 0.05, 
  maxIter = 100, 
  optimize.on = "grid", 
  debug = FALSE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>n</code></td>
<td>The number of partitions (simulations or design points or rows)</td>
</tr>
<tr>
<td><code>k</code></td>
<td>The number of replications (variables or columns)</td>
</tr>
<tr>
<td><code>method</code></td>
<td>build or iterative is the method of LHS creation. build finds the next best point while constructing the LHS. iterative optimizes the resulting sample on [0,1] or sample grid on [1,N]</td>
</tr>
</tbody>
</table>
maximinLHS

dup A factor that determines the number of candidate points used in the search. A multiple of the number of remaining points than can be added. This is used when method="build"

eps The minimum percent change in the minimum distance used in the iterative method

maxIter The maximum number of iterations to use in the iterative method

optimize.on grid or result gives the basis of the optimization. grid optimizes the LHS on the underlying integer grid. result optimizes the resulting sample on [0,1]
debug prints additional information about the process of the optimization

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parameter values from a multidimensional distribution. A square grid containing possible sample points is a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the generalisation of this concept to an arbitrary number of dimensions. When sampling a function of k variables, the range of each variable is divided into n equally probable intervals. n sample points are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n integers in each of k columns and then transforming those integers into n sections of a standard uniform distribution. Random values are then sampled from within each of the n sections. Once the sample is generated, the uniform sample from a column can be transformed to any distribution by using the quantile functions, e.g. qnorm(). Different columns can have different distributions.

Here, values are added to the design one by one such that the maximin criteria is satisfied.

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

This function is motivated by the MATLAB program written by John Burkardt and modified 16 Feb 2005 https://people.math.sc.edu/Burkardt/m_src/ihs/ihs.html

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()] and [optimumLHS()] to generate Latin Hypercube Samples. [optAugmentLHS()], [optSeededLHS()], and [augmentLHS()] to modify and augment existing designs.

Examples

```
set.seed(1234)
A1 <- maximinLHS(4, 3, dup=2)
A2 <- maximinLHS(4, 3, method="build", dup=2)
```
A3 <- maximinLHS(4, 3, method="iterative", eps=0.05, maxIter=100, optimize.on="grid")
A4 <- maximinLHS(4, 3, method="iterative", eps=0.05, maxIter=100, optimize.on="result")

oa_to_oalhs

Create a Latin hypercube from an orthogonal array

Description

Create a Latin hypercube from an orthogonal array

Usage

```r
oa_to_oalhs(n, k, oa)
```

Arguments

- `n`: the number of samples or rows in the LHS (integer)
- `k`: the number of parameters or columns in the LHS (integer)
- `oa`: the orthogonal array to be used as the basis for the LHS (matrix of integers) or `data.frame` of factors

Value

a numeric matrix which is a Latin hypercube sample

Examples

```r
oa <- createBose(3, 4, TRUE)
B <- oa_to_oalhs(9, 4, oa)
```

optAugmentLHS

Optimal Augmented Latin Hypercube Sample

Description

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the *latin* properties of the design. This function attempts to add the points to the design in an optimal way.

Usage

```r
optAugmentLHS(lhs, m = 1, mult = 2)
```
optimumLHS

Arguments

- **lhs**: The Latin Hypercube Design to which points are to be added
- **m**: The number of additional points to add to matrix `lhs`
- **mult**: $m \times \text{mult}$ random candidate points will be created.

Details

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the Latin properties of the design. This function attempts to add the points to the design in a way that maximizes S optimality.

S-optimality seeks to maximize the mean distance from each design point to all the other points in the design, so the points are as spread out as possible.

Value

An $n \times k$ Latin Hypercube Sample matrix with values uniformly distributed on $[0,1]$

References

See Also

[randomLHS()](#), [geneticLHS()](#), [improvedLHS()](#), [maximinLHS()](#), and [optimumLHS()](#) to generate Latin Hypercube Samples. [optSeededLHS()](#) and [augmentLHS()](#) to modify and augment existing designs.

Examples

```r
set.seed(1234)
a <- randomLHS(4, 3)
b <- optAugmentLHS(a, 2, 3)
```

optimumLHS

Optimum Latin Hypercube Sample

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin Hypercube Design. This function uses the Columnwise Pairwise (CP) algorithm to generate an optimal design with respect to the S optimality criterion.

Usage

```r
optimumLHS(n = 10, k = 2, maxSweeps = 2, eps = 0.1, verbose = FALSE)
```
Arguments

- **n**: The number of partitions (simulations or design points or rows)
- **k**: The number of replications (variables or columns)
- **maxSweeps**: The maximum number of times the CP algorithm is applied to all the columns.
- **eps**: The optimal stopping criterion. Algorithm stops when the change in optimality measure is less than eps*100% of the previous value.
- **verbose**: Print informational messages

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parameter values from a multidimensional distribution. A square grid containing possible sample points is a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the generalisation of this concept to an arbitrary number of dimensions. When sampling a function of \(k \) variables, the range of each variable is divided into \(n \) equally probable intervals. \(n \) sample points are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first \(n \) integers in each of \(k \) columns and then transforming those integers into \(n \) sections of a standard uniform distribution. Random values are then sampled from within each of the \(n \) sections. Once the sample is generated, the uniform sample from a column can be transformed to any distribution by using the quantile functions, e.g. `qnorm()`. Different columns can have different distributions.

S-optimality seeks to maximize the mean distance from each design point to all the other points in the design, so the points are as spread out as possible.

This function uses the CP algorithm to generate an optimal design with respect to the S optimality criterion.

Value

An \(n \) by \(k \) Latin Hypercube Sample matrix with values uniformly distributed on \([0,1]\)

References

See Also

- `randomLHS()`, `geneticLHS()`, `improvedLHS()` and `maximinLHS()` to generate Latin Hypercube Samples.
- `optAugmentLHS()`, `optSeededLHS()`, and `augmentLHS()` to modify and augment existing designs.

Examples

```R
A <- optimumLHS(4, 3, 5, .05)
```
optSeededLHS

Optimum Seeded Latin Hypercube Sample

Description

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the *latin* properties of the design. This function then uses the columnwise pairwise (CP) algorithm to optimize the design. The original design is not necessarily maintained.

Usage

```r
optSeededLHS(seed, m = 0, maxSweeps = 2, eps = 0.1, verbose = FALSE)
```

Arguments

- `seed`: The number of partitions (simulations or design points)
- `m`: The number of additional points to add to the seed matrix seed. Default value is zero. If `m` is zero then the seed design is optimized.
- `maxSweeps`: The maximum number of times the CP algorithm is applied to all the columns.
- `eps`: The optimal stopping criterion
- `verbose`: Print informational messages

Details

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the *latin* properties of the design. This function then uses the CP algorithm to optimize the design. The original design is not necessarily maintained.

Value

An \(n \times k \) Latin Hypercube Sample matrix with values uniformly distributed on \([0,1]\)

References

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()]

to generate Latin Hypercube Samples. [optAugmentLHS()] and [augmentLHS()] to modify and augment existing designs.

Examples

```r
set.seed(1234)
a <- randomLHS(4, 3)
b <- optSeededLHS(a, 2, 2, 0.1)
```
poly2int

Convert polynomial to integer in <code>0..q-1</code>

Description

Convert polynomial to integer in <code>0..q-1</code>

Usage

```r
poly2int(p, n, poly)
```

Arguments

- `p`
 modulus
- `n`
 the length of poly
- `poly`
 the polynomial vector

Value

an integer

Examples

```r
gf <- create_galois_field(4)
stopifnot(poly2int(gf$p, gf$n, c(0, 0)) == 0)
```

poly_prod

Multiplication in polynomial representation

Description

Multiplication in polynomial representation

Usage

```r
poly_prod(p, n, xton, p1, p2)
```

Arguments

- `p`
 modulus
- `n`
 length of polynomials
- `xton`
 characteristic polynomial vector for the field (x to the n power)
- `p1`
 polynomial vector 1
- `p2`
 polynomial vector 2
poly_sum

Value

the product of p1 and p2

Examples

```r
gf <- create_galois_field(4)
a <- poly_prod(gf$p, gf$n, c(1, 0), c(0, 1))
stopifnot(all(a == c(0, 1)))
```

poly_sum

Addition in polynomial representation

Description

Addition in polynomial representation

Usage

`poly_sum(p, n, p1, p2)`

Arguments

- `p`: modulus
- `n`: length of polynomial 1 and 2
- `p1`: polynomial vector 1
- `p2`: polynomial vector 2

Value

the sum of p1 and p2

Examples

```r
gf <- create_galois_field(4)
a <- poly_sum(gf$p, gf$n, c(1, 0), c(0, 1))
stopifnot(all(a == c(1, 1)))
```
randomLHS

Construct a random Latin hypercube design

Description

randomLHS(4, 3) returns a 4x3 matrix with each column constructed as follows: A random permutation of (1,2,3,4) is generated, say (3,1,2,4) for each of K columns. Then a uniform random number is picked from each indicated quartile. In this example a random number between .5 and .75 is chosen, then one between 0 and .25, then one between .25 and .5, finally one between .75 and 1.

Usage

randomLHS(n, k, preserveDraw = FALSE)

Arguments

n the number of rows or samples
k the number of columns or parameters/variables
preserveDraw should the draw be constructed so that it is the same for variable numbers of columns?

Value

a Latin hypercube sample

Examples

a <- randomLHS(5, 3)

runifint

Create a Random Sample of Uniform Integers

Description

Create a Random Sample of Uniform Integers

Usage

runifint(n = 1, min_int = 0, max_int = 1)

Arguments

n The number of samples
min_int the minimum integer x >= min_int
max_int the maximum integer x <= max_int
runifint

Value

the sample sample of size n
Index

* design
 - augmentLHS, 2
 - geneticLHS, 12
 - improvedLHS, 15
 - maximinLHS, 16
 - optAugmentLHS, 18
 - optimumLHS, 19
 - optSeededLHS, 21

augmentLHS, 2

create_galois_field, 11
create_oalhs, 12
createAddelKemp, 3
createAddelKemp3, 4
createAddelKempN, 5
createBose, 6
createBoseBush, 7
createBoseBushl, 8
createBush, 9
createBusht, 10

genericLHS, 12
get_library_versions, 14

improvedLHS, 15

maximinLHS, 16

oa_to_oalhs, 18
optAugmentLHS, 18
optimumLHS, 19
optSeededLHS, 21

poly2int, 22
poly_prod, 22
poly_sum, 23

randomLHS, 24
runifint, 24