Package ‘lineartestr’

June 12, 2020

Type Package
Title Linear Specification Testing
Version 1.0.0
Maintainer Federico Garza <fede.garza.ramirez@gmail.com>
Description Tests whether the linear hypothesis of a model is correct specified using Dominguez-Lobato test. Also Ramsey’s RESET (Regression Equation Specification Error Test) test is implemented and Wald tests can be carried out. Although RESET test is widely used to test the linear hypothesis of a model, Dominguez and Lobato (2019) proposed a novel approach that generalizes well known specification tests such as Ramsey’s. This test relies on wild-bootstrap; this package implements this approach to be usable with any function that fits linear models and is compatible with the update() function such as 'stats':::lm(), 'lfe':::felm() and 'forecast':::Arima(), for ARMA (autoregressive–moving-average) models. Also the package can handle custom statistics such as Cramer von Mises and Kolmogorov Smirnov, described by the authors, and custom distributions such as Mammen (discrete and continuous) and Rademacher.

License GPL (>= 2)
Encoding UTF-8
Depends R (> 3.2)
LazyData true
Imports Matrix, sandwich, dplyr, ggplot2, viridis, tidyr, readr, parallel, forecast
Suggests testthat
RoxygenNote 7.0.2
URL https://github.com/FedericoGarza/lineartestr
BugReports https://github.com/FedericoGarza/lineartestr/issues
NeedsCompilation no
Author Federico Garza [aut, cre] (<https://orcid.org/0000-0001-7015-8186>)
Repository CRAN
Date/Publication 2020-06-12 09:10:20 UTC
R topics documented:

- dominguez_lobato_test .. 2
- plot_dl_test ... 3
- plot_reset_test .. 4
- presiduals ... 4
- reset_test .. 5
- rmammen_cont ... 6
- rmammen_point .. 6
- rrademacher ... 7
- statistic_value .. 7
- updated_model ... 8
- wald_test .. 9

Index 10

dominguez_lobato_test Tests the specification of a linear model using wild-bootstrap.

Description

Tests the specification of a linear model using wild-bootstrap.

Usage

dominguez_lobato_test(
 model,
 distribution = "rnorm",
 statistic = "cvm_value",
 times = 300,
 quantiles = c(0.9, 0.95, 0.99),
 verbose = FALSE,
 n_cores = 1
)

Arguments

- model An existing fit from a model function such as 'lm', 'lfe' and others compatible with 'update'.
- distribution Type of noise added to residuals, ej 'rnorm' or 'rrademacher'.
- statistic Type of statistic to be used, can be one of 'cvm_value' or 'kmv_value'.
- times Number of bootstrap samples.
- quantiles Vector of quantiles to calculate pvalues.
- verbose TRUE to print each bootstrap iteration.
- n_cores Number of cores to be used.
Value

A list with dataframe results and the ordered values of each bootstrap iteration.

References

Examples

```r
x <- 1:10 + rnorm(10)
y <- 1:10
model <- lm(y~x)
dl_test <- dominguez_lobato_test(model)
dl_test <- dominguez_lobato_test(model, distribution = "rmammen_point", statistic = "kmv_value")
dl_test <- dominguez_lobato_test(model, times = 100)
```

plot_dl_test

Plots the Dominguez-Lobato test.

Description

Plots the Dominguez-Lobato test.

Usage

```r
plot_dl_test(x)
```

Arguments

- `x`: An object of class 'dl_test'.

Value

Plot of type ggplot.

Examples

```r
x <- 1:10
y <- 1:10
model <- lm(y~x-1)
dl_test <- dominguez_lobato_test(model)
plot_dl_test(dl_test)
```
plot_reset_test
Plot the reset test.

Description

Plot the reset test.

Usage

```r
plot_reset_test(x)
```

Arguments

- `x`
 An object of class `reset_test`.

Value

Plot of type ggplot.

Examples

```r
x <- 1:10 + rnorm(10)
y <- 1:10
model <- lm(y~x-1)
r_test <- reset_test(model)
plot_reset_test(r_test)
```

presiduals
Calculates the accumulated distribution of residuals at each residual point.

Description

Calculates the accumulated distribution of residuals at each residual point.

Usage

```r
presiduals(fitted_values, resids)
```

Arguments

- `fitted_values`
 Vector of fitted values.
- `resids`
 Residuals vector of each fitted value.

Value

Vector of size `length(resids)`.
Examples

\begin{verbatim}
y_hat <- c(4, 8, 7)
resids <- c(1, 5, 3)
presiduals(y_hat, resids)
\end{verbatim}

\begin{verbatim}
reset_test <- function(model, robust = FALSE, vcov = NULL, max_power = 3, quantiles = c(0.9, 0.95, 0.99))
{
reset_test(residuals)
}
\end{verbatim}

Description

Reset test. Tests the specification of a linear model adding and testing powers of fitted values.

Usage

\begin{verbatim}
reset_test(
 model,
 robust = FALSE,
 vcov = NULL,
 max_power = 3,
 quantiles = c(0.9, 0.95, 0.99)
)
\end{verbatim}

Arguments

model An existing fit from a model function such as 'lm', 'lfe' and others compatible with 'update'.
robust Use robust 'varcov' matrix.
vcov Particular variance and covariances matrix.
max_power Max power of fitted values to add.
quantiles Vector of quantiles to calculate pvalues.

Value

A 'tibble' with the Wald value, the corresponding pvalue, and the quantiles of the distribution.

Examples

\begin{verbatim}
x <- 1:10 + rnorm(10)
y <- 1:10
model <- lm(y~x)
r_test <- reset_test(model)
r_test <- reset_test(model, robust = TRUE)
r_test <- reset_test(model, quantiles = c(.97))
r_test <- reset_test(model, max_power = 4)
r_test <- reset_test(model, robust = TRUE, max_power = 4)
\end{verbatim}
rmammen_cont

Random deviates of Mammen continuous distribution.

Description

Random deviates of Mammen continuous distribution.

Usage

`rmammen_cont(n)`

Arguments

- **n**
 Number of observations.

Value

Random deviates of size n.

Examples

`rmammen_cont(10)`

rmammen_point

Random deviates of Mammen distribution.

Description

Random deviates of Mammen distribution.

Usage

`rmammen_point(n)`

Arguments

- **n**
 Number of observations.

Value

Random deviates of size n.

Examples

`rmammen_point(10)`
Description

Random deviates of Rademacher distribution.

Usage

rrademacher(n)

Arguments

n Number of observations.

Value

Random deviates of size n.

Examples

rrademacher(10)

statistic_value

Calculates the Cramer von Mises value or Kolmogorov value given a linear model compatible with ‘fitted.values’ and ‘residuals’ functions.

Description

Calculates the Cramer von Mises value or Kolmogorov value given a linear model compatible with ‘fitted.values’ and ‘residuals’ functions.

Usage

statistic_value(model, value = "cvm_value")

Arguments

model An existing fit from a linear model function.
value Type of value to compute, can be ‘cvm_value’ or ‘kmv_value’.

Value

The statistic value of the model.
Examples

```r
x <- 1:10
y <- 2*x + rnorm(10)
model <- lm(y~x-1)
statistic_value(model)
statistic_value(model, value = "cvm_value")
statistic_value(model, value = "kmv_value")
```

updated_model

*Constructs a new model with noised residuals: y_new = y_fitted + residuals*noise*

Description

Constructs a new model with noised residuals: y_new = y_fitted + residuals*noise

Usage

```r
updated_model(model, fitting_data, distribution = "rnorm")
```

Arguments

- `model`: An existing fit from a model function such as `lm`, `lfe`, `Arima` and others compatible with `update`.
- `fitting_data`: Data used to adjust a linear model.
- `distribution`: Type of noise added to residuals, e.g., "rnorm" or "rrademacher".

Value

Constructed linear model.

Examples

```r
x <- 1:100
y <- 2*x + rnorm(100)
model <- lm(y~x-1)
fitting_data <- model.frame(model)
updated_model(model, fitting_data)
updated_model(model, fitting_data, distribution = "rnorm")
updated_model(model, fitting_data, distribution = "rmammen_point")
updated_model(model, fitting_data, distribution = "rmammen_cont")
updated_model(model, fitting_data, distribution = "rrademacher")

x_arma <- rnorm(100)
arma_model <- forecast::Arima(x_arma, c(1, 0, 1))
fitting_data arma <- model.frame(arma_model)
updated_model(arma_model, fitting_data arma)
```
wald_test

Description

Wald test. Tests restrictions \times \text{coefficients} = \text{value}.

Usage

wald_test(
 model,
 restrictions,
 value,
 robust = FALSE,
 vcov = NULL,
 quantiles = c(0.9, 0.95, 0.99)
)

Arguments

- **model**: Model compatible with ‘fitted’ and ‘residuals’ functions.
- **restrictions**: Matrix of size (number of restrictions) times length(coefficients), for free restrictions use zeros.
- **value**: Values of restrictions.
- **robust**: Use robust ‘varcov’ matrix.
- **vcov**: Particular variance and covariances matrix.
- **quantiles**: Vector of quantiles to calculate pvalues.

Value

A ‘tibble’ with the Wald value, the corresponding pvalue and the quantiles of the distribution.

Examples

```r
x <- 1:10
z <- x**2
y <- 1:10
model <- lm(y~x+z)
restrictions <- diag(3)
value <- as.matrix(c(0, 0, 0))
w_test <- wald_test(model, restrictions, value)
w_test <- wald_test(model, restrictions, value, robust = TRUE)
w_test <- wald_test(model, restrictions, value, quantiles = c(.97))
```
Index

dominguez_lobato_test, 2
plot_dl_test, 3
plot_reset_test, 4
presiduals, 4
reset_test, 5
rmammen_cont, 6
rmammen_point, 6
rrademacher, 7
statistic_value, 7
updated_model, 8
wald_test, 9