Package ‘mboost’

August 6, 2020

Title Model-Based Boosting
Version 2.9-3
Date 2020-07-29
Description Functional gradient descent algorithm (boosting) for optimizing general risk functions utilizing component-wise (penalised) least squares estimates or regression trees as base-learners for fitting generalized linear, additive and interaction models to potentially high-dimensional data.
Depends R (>= 3.2.0), methods, stats, parallel, stabs (>= 0.5-0)
Imports Matrix, survival, splines, lattice, nnls, quadprog, utils, graphics, grDevices, partykit (>= 1.2-1)
Suggests TH.data, MASS, fields, BayesX, gbm, mlbench, RColorBrewer, rpart (>= 4.0-3), randomForest, nnet, testthat (>= 0.10.0), kangar00
LazyData yes
License GPL-2
BugReports https://github.com/boost-R/mboost/issues
URL https://github.com/boost-R/mboost
NeedsCompilation yes
Author Torsten Hothorn [aut] (<https://orcid.org/0000-0001-8301-0471>),
 Peter Buehlmann [aut],
 Thomas Kneib [aut],
 Matthias Schmid [aut],
 Benjamin Hofner [aut, cre] (<https://orcid.org/0000-0003-2810-3186>),
 Fabian Sobotka [ctb],
 Fabian Scheipl [ctb],
 Andreas Mayr [ctb]
Maintainer Benjamin Hofner <benjamin.hofner@pei.de>
Repository CRAN
Date/Publication 2020-08-06 13:30:03 UTC
Description

Functional gradient descent algorithm (boosting) for optimizing general risk functions utilizing component-wise (penalized) least squares estimates or regression trees as base-learners for fitting generalized linear, additive and interaction models to potentially high-dimensional data.

Details

- **Package:** mboost
- **Version:** 2.9-3
- **Date:** 2020-07-29
- **License:** GPL-2

This package is intended for modern regression modeling and stands in-between classical generalized linear and additive models, as for example implemented by `lm`, `glm`, or `gam`, and machine-learning approaches for complex interactions models, most prominently represented by `gbm` and `randomForest`.

All functionality in this package is based on the generic implementation of the optimization algorithm (function `mboost_fit`) that allows for fitting linear, additive, and interaction models (and mixtures of those) in low and high dimensions. The response may be numeric, binary, ordered,
censored or count data.
Both theory and applications are discussed by Buehlmann and Hothorn (2007). UseRs without a basic knowledge of boosting methods are asked to read this introduction before analyzing data using this package. The examples presented in this paper are available as package vignette mboost_illustrations.
Note that the model fitting procedures in this package DO NOT automatically determine an appropriate model complexity. This task is the responsibility of the data analyst.
A description of novel features that were introduced in version 2.0 is given in Hothorn et. al (2010).
Hofner et al. (2014) present a comprehensive hands-on tutorial for using the package mboost, which is also available as vignette(package = "mboost","mboost_tutorial").
Ben Taieba and Hyndman (2013) used this package for fitting their model in the Kaggle Global Energy Forecasting Competition 2012. The corresponding research paper is a good starting point when you plan to analyze your data using mboost.

NEWS in 2.9-series

Series 2.9 provides a new family (RCG), uses partykit::ctree instead of party::ctree to be more flexible, allows for multivariate negative gradients, and leave-one-out crossvalidation. Further minor changes were introduced and quite some bugs were fixed.
For more details and other changes see
news(Version >= "2.9-0",package = "mboost")

NEWS in 2.8-series

Series 2.8 allows to fit models with zero boosting steps (i.e., models containing only the offset). Furthermore, cross-validation can now also select a model without base-learners. In a Binomial family one can now specify links via make.link. With Binomial(type = "glm") an alternative implementation of Binomial models is now existing and defines the model along the lines of the glm implementation. Additionally, it works not only with a two-level factor but also with a two-column matrix containing the number of successes and number of failures. Finally, a new base-learner bkernel for kernel boosting was added. The references were updated and a lot of bugs fixed.
For more details and other changes see
news(Version >= "2.8-0",package = "mboost")

NEWS in 2.7-series

Series 2.7 provides a new family (Cindex), variable importance measures (var.imp) and improved plotting facilities. The manual was updated in various places, vignettes were improved and a lot of bugs were fixed.
For more details and other changes see
news(Version >= "2.7-0",package = "mboost")

NEWS in 2.6-series

Series 2.6 includes a lot of bug fixes and improvements. Most notably, the development of the package is now hosted entirely on github in the project boost-R/mboost. Furthermore, the package is now maintained by Benjamin Hofner.
For more details and other changes see
news(Version >= "2.6-0", package = "mboost")

NEWS in 2.5-series

Crossvalidation does not stop on errors in single folds anymore as was sped up by setting `mc.preschedule = FALSE` if parallel computations via `mclapply` are used. The `plot.mboost` function is now documented. Values outside the boundary knots are now better handled (forbidden during fitting, while linear extrapolation is used for prediction). Further performance improvements and a lot of bug fixes have been added.

For more details and other changes see
news(Version >= "2.5-0", package = "mboost")

NEWS in 2.4-series

Bootstrap confidence intervals have been implemented in the novel `confint` function. The stability selection procedure has now been moved to a stand-alone package called `stabs`, which now also implements an interface to use stability selection with other fitting functions. A generic function for "mboost" models is implemented in `mboost`.

For more details and other changes see
news(Version >= "2.4-0", package = "mboost")

NEWS in 2.3-series

The stability selection procedure has been completely rewritten and improved. The code base is now extensively tested. New options allow for a less conservative error control.

Constrained effects can now be fitted using quadratic programming methods using the option `type = "quad.prog"` (default) for highly improved speed. Additionally, new constraints have been added.

Other important changes include:

- A new replacement function `mstop(mod) <- i` as an alternative to `mod[i]` was added (as suggested by Achim Zeileis).
- We added new families Hurdle and Multinomial.
- We added a new argument `stopintern` for internal stopping (based on out-of-bag data) during fitting to `boost_control`.

For more details and other changes see
news(Version >= "2.3-0", package = "mboost")

NEWS in 2.2-series

Starting from version 2.2, the default for the degrees of freedom has changed. Now the degrees of freedom are (per default) defined as

$$\text{df}(\lambda) = \text{trace}(2S - S^TS),$$

with smoother matrix $S = X(X^TX + \lambda K)^{-1}X$ (see Hofner et al., 2011). Earlier versions used the trace of the smoother matrix $\text{df}(\lambda) = \text{trace}(S)$ as degrees of freedom. One can change the old definition using options (`mboost_dftraceS = TRUE`) (see also B. Hofner et al., 2011 and `bols`).

Other important changes include:
We switched from packages multicore and snow to parallel.

We changed the behavior of \texttt{bols(x, intercept = FALSE)} when \texttt{x} is a factor: now the intercept is simply dropped from the design matrix and the coding can be specified as usually for factors. Additionally, a new contrast is introduced: "contr.dummy" (see \texttt{bols} for details).

We changed the computation of B-spline basis at the boundaries; B-splines now also use equidistant knots in the boundaries (per default).

\textbf{For more details and other changes see}
\begin{verbatim}
news(Version >= "2.2-0" & Version < "2.3-0",package = "mboost")
\end{verbatim}

\textbf{NEWS in 2.1-series}

In the 2.1 series, we added multiple new base-learners including \texttt{bmono} (monotonic effects), \texttt{brad} (radial basis functions) and \texttt{bmr}f (Markov random fields), and extended \texttt{bbs} to incorporate cyclic splines (via argument cyclic = TRUE). We also changed the default df for \texttt{bspatial} to 6.

Starting from this version, we now also automatically center the variables in \texttt{glmboost} (argument center = TRUE).

\textbf{For more details and other changes see}
\begin{verbatim}
news(Version >= "2.1-0" & Version < "2.2-0",package = "mboost")
\end{verbatim}

\textbf{NEWS in 2.0-series}

Version 2.0 comes with new features, is faster and more accurate in some aspects. In addition, some changes to the user interface were necessary: Subsetting \texttt{mboost} objects changes the object. At each time, a model is associated with a number of boosting iterations which can be changed (increased or decreased) using the subset operator.

The center argument in \texttt{bols} was renamed to intercept. Argument \texttt{z} renamed to \texttt{by}.

The base-learners \texttt{bns} and \texttt{bss} are deprecated and replaced by \texttt{bbs} (which results in qualitatively the same models but is computationally much more attractive).

New features include new families (for example for ordinal regression) and the which argument to \texttt{the coef} and \texttt{predict} methods for selecting interesting base-learners. Predict methods are much faster now.

The memory consumption could be reduced considerably, thanks to sparse matrix technology in package \texttt{Matrix}. Resampling procedures run automatically in parallel on OSes where parallelization via package \texttt{parallel} is available.

The most important advancement is a generic implementation of the optimizer in function \texttt{mboost_fit}.

\textbf{For more details and other changes see}
\begin{verbatim}
news(Version >= "2.0-0" & Version < "2.1-0",package = "mboost")
\end{verbatim}

\textbf{Author(s)}

Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Matthias Schmid and Benjamin Hofner <<Benjamin.Hofner@pei.de>>
References

http://dx.doi.org/10.1007/s00180-012-0382-5

Available as vignette via: vignette(package = "mboost","mboost_tutorial")

http://dx.doi.org/10.1016/j.ijforecast.2013.07.005

See Also

The main fitting functions include:

- `gamboost` for boosted (generalized) additive models,
- `glmboost` for boosted linear models and
- `blackboost` for boosted trees.

Model tuning is done via cross-validation as implemented in `cvrisk`. See there for more details and further links.

Examples

```r
# Do not run this example automatically as it takes some time (~ 5-10 seconds depending on the system)

data("bodyfat", package = "TH.data")
set.seed(290875)

model <- mboost(DEXfat ~
   bols(age) +
   btree(hipcirc, waistcirc) +
   bbs(kneebreadth),
   data = bodyfat, control = boost_control(mstop = 100))
```
cvm <- cvrisk(model, papply = lapply)

restrict model to mstop(cvm)
model[mstop(cvm), return = FALSE]
mstop(model)

plot age and kneebreadth
layout(matrix(1:2, nc = 2))
plot(model, which = c("age", "kneebreadth"))

plot interaction of hip and waist circumference
attach(bodyfat)
nd <- expand.grid(hipcirc = h <- seq(from = min(hipcirc),
to = max(hipcirc),
length = 100),
waistcirc = w <- seq(from = min(waistcirc),
to = max(waistcirc),
length = 100))
plot(model, which = 2, newdata = nd)
detach(bodyfat)

customized plot
layout(1)
pr <- predict(model, which = "hip", newdata = nd)
persp(x = h, y = w, z = matrix(pr, nrow = 100, ncol = 100))

baselearners

Base-learners for Gradient Boosting

Description

Base-learners for fitting base-models in the generic implementation of component-wise gradient boosting in function *mboost*.

Usage

```r
## linear base-learner
bols(..., by = NULL, index = NULL, intercept = TRUE, df = NULL,
     lambda = 0, contrasts.arg = "contr.treatment")

## smooth P-spline base-learner
bbs(..., by = NULL, index = NULL, knots = 20, boundary.knots = NULL,
     degree = 3, differences = 2, df = 4, lambda = NULL, center = FALSE,
     cyclic = FALSE, constraint = c("none", "increasing", "decreasing"),
     deriv = 0)

## bivariate P-spline base-learner
```
bspatial(..., df = 6)

radial basis functions base-learner
brad(..., by = NULL, index = NULL, knots = 100, df = 4, lambda = NULL,
covFun = fields::stationary.cov,
args = list(Covariance="Matern", smoothness = 1.5, theta=NULL))

(genetic) pathway-based kernel base-learner
bkernel(..., df = 4, lambda = NULL, kernel = c("lin", "sia", "net"),
pathway = NULL, knots = NULL, args = list())

random effects base-learner
brandom(..., by = NULL, index = NULL, df = 4, lambda = NULL,
contrasts.arg = "contr.dummy")

tree based base-learner
btree(..., nmax = Inf, tree_controls = partykit::ctree_control(
 teststat = "quad", testtype = "Teststatistic",
 mincriterion = 0, minsplit = 10, minbucket = 4,
 maxdepth = 1, saveinfo = FALSE))

constrained effects base-learner
bmono(...,
 constraint = c("increasing", "decreasing", "convex", "concave",
 "none", "positive", "negative"),
type = c("quad.prog", "iterative"),
by = NULL, index = NULL, knots = 20, boundary.knots = NULL,
degree = 3, differences = 2, df = 4, lambda = NULL,
lambda2 = 1e6, niter=10, intercept = TRUE,
contrasts.arg = "contr.treatment",
boundary.constraints = FALSE,
cons.arg = list(lambda = 1e+06, n = NULL, diff_order = NULL))

Markov random field base-learner
bmrf(..., by = NULL, index = NULL, bnd = NULL, df = 4, lambda = NULL,
center = FALSE)

user-specified base-learner
buser(X, K = NULL, by = NULL, index = NULL, df = 4, lambda = NULL)

combining single base-learners to form new,
more complex base-learners
bl1 %+% bl2
bl1 %X% bl2
bl1 %O% bl2
Arguments

... one or more predictor variables or one matrix or data frame of predictor variables. For smooth base-learners, the number of predictor variables and the number of columns in the data frame / matrix must be less than or equal to 2. If a matrix (with at least 2 columns) is given to bols or brandom, it is directly used as the design matrix. Especially, no intercept term is added regardless of argument intercept. If the argument has only one column, it is simplified to a vector and an intercept is added or not according to the argument intercept.

by an optional variable defining varying coefficients, either a factor or numeric variable. If by is a factor, the coding is determined by the global options("contrasts") or as specified "locally" for the factor (see contrasts). Per default treatment coding is used. Note that the main effect needs to be specified in a separate base-learner.

index a vector of integers for expanding the variables in For example, bols(x, index = index) is equal to bols(x[index]), where index is an integer of length greater or equal to length(x).

df trace of the hat matrix for the base-learner defining the base-learner complexity. Low values of df correspond to a large amount of smoothing and thus to "weaker" base-learners. Certain restrictions have to be kept for the specification of df since most of the base-learners rely on penalization approaches with a non-trivial null space. For example, for P-splines fitted with bbs, df has to be larger than the order of differences employed in the construction of the penalty term. However, when option center != FALSE, the effect is centered around its unpenalized part and therefore any positive number is admissible for df. For details on the computation of degrees of freedom see section ‘Global Options’.

lambda smoothing penalty, computed from df when df is specified. For details on the computation of degrees of freedom see section ‘Global Options’.

knots either the number of knots or a vector of the positions of the interior knots (for more details see below). For multiple predictor variables, knots may be a named list where the names in the list are the variable names.

boundary.knots boundary points at which to anchor the B-spline basis (default the range of the data). A vector (of length 2) for the lower and the upper boundary knot can be specified. This is only advised for bbs(..., cyclic = TRUE), where the boundary knots specify the points at which the cyclic function should be joined. In analogy to knots a names list can be specified.

degree degree of the regression spline.

differences a non-negative integer, typically 1, 2 or 3. If differences = k, k-th-order differences are used as a penalty (0-th order differences specify a ridge penalty).

intercept if intercept = TRUE an intercept is added to the design matrix of a linear base-learner. If intercept = FALSE, continuous covariates should be (mean-) centered.

center if center != FALSE the corresponding effect is re-parameterized such that the unpenalized part of the fit is subtracted and only the deviation effect is fitted. The unpenalized, parametric part has then to be included in separate base-learners using bols (see the examples below). There are two possible ways to
re-parameterization; center = "differenceMatrix" is based on the difference matrix (the default for bbs with one covariate only) and center = "spectralDecomp" uses a spectral decomposition of the penalty matrix (see Fahrmeir et al., 2004, Section 2.3 for details). The latter option is the default (and currently only option) for bbs with multiple covariates or bmrf.

cyclic if cyclic = TRUE the fitted values coincide at the boundaries (useful for cyclic covariates such as day time etc.). For details see Hofner et al. (2016).

covFun the covariance function (i.e. radial basis) needed to compute the basis functions. Per default stationary.cov function (from package fields) is used.

args a named list of arguments to be passed to cov.function. Thus strongly dependent on the specified cov.function.

kernel one of "lin" (linear kernel), "sia" (size adjusted kernel), or "net" (network kernel). For details see calc_kernel

pathway name of pathway; Pathway needs to be contained in the GWAS data set.

contrasts.arg a named list of characters suitable for input to the contrasts replacement function, or the contrast matrix itself, see model.matrix, or a single character string (or contrast matrix) which is then used as contrasts for all factors in this base-learner (with the exception of factors in by). See also example below for setting contrasts. Note that a special contrasts.arg exists in package mboost, namely "contr.dummy". This contrast is used per default in brandom and can also be used in bols. It leads to a dummy coding as returned by model.matrix(~x-1) were the intercept is implicitly included but each factor level gets a seperate effect estimate (see example below).

nmax integer, maximal number of bins in the predictor variables. Use Inf to switch-off binning.

tree_controls an object of class "TreeControl", which can be obtained using ctree_control. Defines hyper-parameters for the trees which are used as base-learners, stumps are fitted by default. By default, stumps and thus additive models are fitted.

constraint type of constraint to be used. For bmono, the constraint can be either monotonic "increasing" (default), "decreasing", or "convex" or "concave". Additionally, "none" can be used to specify unconstrained P-splines. This is especially of interest in conjunction with boundary.constraints = TRUE. For bbs, the constraint can be "none", monotonic "increasing", or "decreasing". In general it is advisable to use bmono to fit monotonic splines.

type determines how the constrained least squares problem should be solved. If type = "quad.prog", a numeric quadratic programming method (Goldfarb and Idnani, 1982, 1983) is used (see solve.QP in package quadprog). If type = "iterative", the iterative procedure described in Hofner et al. (2011b) is used. The quadratic programming approach is usually much faster than the iterative approach. For details see Hofner et al. (2016).

lambda2 penalty parameter for the (monotonicity) constraint.

niter maximum number of iterations used to compute constraint estimates. Increase this number if a warning is displayed.

boundary.constraints a logical indicating whether additional constraints on the boundaries of the spline should be applied (default: FALSE). This is still experimental.
cons.arg is a named list with additional arguments for boundary constraints. The element lambda specifies the penalty parameter that is used for the additional boundary constraint. The element n specifies the number of knots to be subject to the constraint and can be either a scalar (use same number of constrained knots on each side) or a vector. Per default 10% of the knots on each side are used. The element diff_order can be used to specify the order of the boundary penalty: 1 (constant; default for monotonically constrained effects) or 2 (linear; default for all other effects).

bnd is an object of class bnd, in which the boundaries of a map are defined and from which neighborhood relations can be constructed. See read.bnd. If a boundary object is not available, the neighborhood matrix can also be given directly.

X is the design matrix as it should be used in the penalized least squares estimation. Effect modifiers do not need to be included here (by can be used for convenience).

K is the penalty matrix as it should be used in the penalized least squares estimation. If NULL (default), unpenalized estimation is used.

deriv is an integer; the derivative of the spline of the given order at the data is computed, defaults to zero. Note that this argument is only used to set up the design matrix and cannot be used in the fitting process.

bl1 and bl2 are a linear base-learner or a list of linear base-learners.

Details

bols refers to linear base-learners (potentially estimated with a ridge penalty), while bbs provide penalized regression splines. bspatial fits bivariate surfaces and brandom defines random effects base-learners. In combination with option by, these base-learners can be turned into varying coefficient terms. The linear base-learners are fitted using Ridge Regression where the penalty parameter lambda is either computed from df (default for bbs, bspatial, and brandom) or specified directly (lambda = 0 means no penalization as default for bols).

In bols(x), x may be a numeric vector or factor. Alternatively, x can be a data frame containing numeric or factor variables. In this case, or when multiple predictor variables are specified, e.g., using bols(x1, x2), the model is equivalent to lm(y ~ ., data = x) or lm(y ~ x1 + x2), respectively. By default, an intercept term is added to the corresponding design matrix (which can be omitted using intercept = FALSE). It is strongly advised to (mean-) center continuous covariates, if no intercept is used in bols (see Hofner et al., 2011a). If x is a matrix, it is directly used as the design matrix and no further preprocessing (such as addition of an intercept) is conducted. When df (or lambda) is given, a ridge estimator with df degrees of freedom (see section ‘Global Options’) is used as base-learner. Note that all variables are treated as a group, i.e., they enter the model together if the corresponding base-learner is selected. For ordinal variables, a ridge penalty for the differences of the adjacent categories (Gertheiss and Tutz 2009, Hofner et al. 2011a) is applied.

With bbs, the P-spline approach of Eilers and Marx (1996) is used. P-splines use a squared k-th-order difference penalty which can be interpreted as an approximation of the integrated squared k-th derivative of the spline. In bbs the argument knots specifies either the number of (equidistant) interior knots to be used for the regression spline fit or a vector including the positions of the interior knots. Additionally, boundary.knots can be specified. However, this is only advised if one uses cyclic constraints, where the boundary.knots specify the points where the function is joined (e.g.,
boundary.knots = c(0, 2 * pi) for angles as in a sine function or boundary.knots = c(0, 24) for hours during the day. For details on cyclic splines in the context of boosting see Hofner et al. (2016).

bspatial implements bivariate tensor product P-splines for the estimation of either spatial effects or interaction surfaces. Note that bspatial(x, y) is equivalent to bbs(x, y, df = 6). For possible arguments and defaults see there. The penalty term is constructed based on bivariate extensions of the univariate penalties in x and y directions, see Kneib, Hothorn and Tutz (2009) for details. Note that the dimensions of the penalty matrix increase (quickly) with the number of knots with strong impact on computational time. Thus, both should not be chosen to large. Different knots for x and y can be specified by a named list.

brandom(x) specifies a random effects base-learner based on a factor variable x that defines the grouping structure of the data set. For each level of x, a separate random intercept is fitted, where the random effects variance is governed by the specification of the degrees of freedom df or lambda (see section ‘Global Options’). Note that brandom(...) is essentially a wrapper to bols(..., df = 4, contrasts.arg = "contr.dummy"), i.e., a wrapper that utilizes ridge-penalized categorical effects. For possible arguments and defaults see bols.

For all linear base-learners the amount of smoothing is determined by the trace of the hat matrix, as indicated by df.

If by is specified as an additional argument, a varying coefficients term is estimated, where by is the interaction variable and the effect modifier is given by either x or x and y (specified via ...). If bbs is used, this corresponds to the classical situation of varying coefficients, where the effect of by varies over the co-domain of x. In case of bspatial as base-learner, the effect of by varies with respect to both x and y, i.e. an interaction surface between x and y is specified as effect modifier. For brandom specification of by leads to the estimation of random slopes for covariate by with grouping structure defined by factor x instead of a simple random intercept. In bbs, bspatial and brandom the computation of the smoothing parameter lambda for given df, or vice versa, might become (numerically) instable if the values of the interaction variable by become too large. In this case, we recommend to rescale the interaction covariate e.g. by dividing by max(abs(by)). If bbs or bspatial is specified with a factor variable by with more than two factors, the degrees of freedom are shared for the complete base-learner (i.e., spread over all factor levels). Note that the null space (see next paragraph) increases, as a separate null space for each factor level is present. Thus, the minimum degrees of freedom increase with increasing number of levels of by (if center = FALSE).

For bbs and bspatial, option center != FALSE requests that the fitted effect is centered around its parametric, unpenalized part (the so called null space). For example, with second order difference penalty, a linear effect of x remains unpenalized by bbs and therefore the degrees of freedom for the base-learner have to be larger than two. To avoid this restriction, option center = TRUE subtracts the unpenalized linear effect from the fit, allowing to specify any positive number as df. Note that in this case the linear effect x should generally be specified as an additional base-learner bols(x). For bspatial and, for example, second order differences, a linear effect of x (bols(x)), a linear effect of y (bols(y)), and their interaction (bols(x*y)) are subtracted from the effect and have to be added separately to the model equation. More details on centering can be found in Kneib, Hothorn and Tutz (2009) and Fahrmeir, Kneib and Lang (2004). We strongly recommend to consult the latter reference before using this option.

brad(x) specifies penalized radial basis functions as used in Kriging. If knots is used to specify the number of knots, the function cover.design is used to specify the location of the knots such that they minimize a geometric space-filling criterion. Furthermore, knots can be specified directly
via a matrix. The cov.function allows to specify the radial basis functions. Per default, the flexible Matern correlation function is used. This is specified using cov.function = stationary.cov with Covariance = "Matern" specified via args. If an effective range theta is applicable for the correlation function (e.g., the Matern family) the user can specify this value. Per default (if theta = NULL) the effective range is chosen as \(\theta = \max(||x_i - x_j||)/c \) such that the correlation function \(\rho(c; \theta = 1) = \varepsilon \), where \(\varepsilon = 0.001 \).

bmrf builds a base of a Markov random field consisting of several regions with a neighborhood structure. The input variable is the observed region. The penalty matrix is either construed from a boundary object or must be given directly via the option bnd. In that case the dimnames of the matrix have to be the region names, on the diagonal the number of neighbors have to be given for each region, and for each neighborhood relation the value in the matrix has to be -1, else 0. With a boundary object at hand, the fitted or predicted values can be directly plotted into the map using drawmap.

bkernel can be used to fit linear (kernel = "lin"), size-adjusted (kernel = "sia") or network (kernel = "net") kernels based on genetic pathways for genome-wide association studies. For details see Friedrichs et al. (2017) and check the associated package kangaroo.

buser(X,K) specifies a base-learner with user-specified design matrix X and penalty matrix K, where X and K are used to minimize a (penalized) least squares criterion with quadratic penalty. This can be used to easily specify base-learners that are not implemented (yet). See examples below for details how buser can be used to mimic existing base-learners. Note that for predictions you need to set up the design matrix for the new data manually.

For a categorical covariate with non-observed categories bols(x) and brandom(x) both assign a zero effect to these categories. However, the non-observed categories must be listed in levels(x). Thus, predictions are possible for new observations if they correspond to this category.

By default, all linear base-learners include an intercept term (which can be removed using intercept = FALSE for bols). In this case, the respective covariate should be mean centered (if continuous) and an explicit global intercept term should be added to gamboost via bols (see example below). With bols(x, intercept = FALSE) with categorical covariate x a separate effect for each group (mean effect) is estimated (see examples for resulting design matrices).

Smooth estimates with constraints can be computed using the base-learner bmono() which specifies P-spline base-learners with an additional asymmetric penalty enforcing monotonicity or convexity/concavity (see and Eilers, 2005). For more details in the boosting context and monotonic effects of ordinal factors see Hofner, Mueller and Hothorn (2011b). The quadratic-programming based algorithm is described in Hofner et al. (2016). Alternative monotonicity constraints are implemented via T-splines in bbs() (Beliakov, 2000). In general it is advisable to use bmono to fit monotonic splines as T-splines show undesirable behaviour if the observed data deviates from monotonicity.

Two or more linear base-learners can be joined using %+%. A tensor product of two or more linear base-learners is returned by %*%. When the design matrix can be written as the Kronecker product of two matrices \(X = \text{kronecker}(X2,X1) \), then b11 %*% b12 with design matrices X1 and X2, respectively, can be used to efficiently compute Ridge-estimates following Currie, Durban, Eilers (2006). In all cases the overall degrees of freedom of the combined base-learner increase (additive or multiplicative, respectively). These three features are experimental and for expert use only.

btree fits a stump to one or more variables. Note that blackboost is more efficient for boosting stumps. For further references see Hothorn, Hornik, Zeileis (2006) and Hothorn et al. (2010).
Note that the base-learners bns and bss are deprecated (and no longer available). Please use bbs instead, which results in qualitatively the same models but is computationally much more attractive.

Value

An object of class blg (base-learner generator) with a dpp function.

The call of dpp returns an object of class bl (base-learner) with a fit function. The call to fit finally returns an object of class bm (base-model).

Global Options

Three global options affect the base-learners:

options("mboost_useMatrix") defaulting to TRUE indicates that the base-learner may use sparse matrix techniques for its computations. This reduces the memory consumption but might (for smaller sample sizes) require more computing time.

options("mboost_indexmin") is an integer that specifies the minimum sample size needed to optimize model fitting by automatically taking ties into account (default = 10000).

options("mboost_dftraceS") FALSE by default, indicating how the degrees of freedom should be computed. Per default

\[df(\lambda) = \text{trace}(2S - S^T S), \]

with smoother matrix \(S = X(X^T X + \lambda K)^{-1}X \) is used (see Hofner et al., 2011a). If TRUE, the trace of the smoother matrix \(df(\lambda) = \text{trace}(S) \) is used as degrees of freedom.

Note that these formulae specify the relation of \(df \) and \(\lambda \) as the smoother matrix \(S \) depends only on \(\lambda \) (and the (fixed) design matrix \(X \), the (fixed) penalty matrix \(K \)).

References

See Also

- `mboost`

Examples

```r
set.seed(290875)

n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n) + 0.25 * x1
x3 <- as.factor(sample(0:1, 100, replace = TRUE))
x4 <- gl(4, 25)
y <- 3 * sin(x1) + x2^2 + rnorm(n)
weights <- drop(rmultinom(1, n, rep.int(1, n) / n))

### set up base-learners
spline1 <- bbs(x1, knots = 20, df = 4)
evaluate(spline1, "design")[,1:10]
evaluate(spline1, "penalty")
knots.x2 <- quantile(x2, c(0.25, 0.5, 0.75))
spline2 <- bbs(x2, knots = knots.x2, df = 5)
ols3 <- bols(x3)
evaluate(ols3)
ols4 <- bols(x4)

### compute base-models
drop(ols3$dpp(weights)$fit(y)$model) ## same as:
coef(lm(y ~ x3, weights = weights))
```
drop(ols4$dpp(weights)$fit(y)$model) ## same as:
coef(lm(y ~ x4, weights = weights))

fit model, component-wise
mod1 <- mboost_fit(list(spline1, spline2, ols3, ols4), y, weights)

more convenient formula interface
mod2 <- mboost(y ~ bbs(x1, knots = 20, df = 4) +
 bbs(x2, knots = knots.x2, df = 5) +
 bols(x3) + bols(x4), weights = weights)
all.equal(coef(mod1), coef(mod2))

grouped linear effects
center x1 and x2 first
x1 <- scale(x1, center = TRUE, scale = FALSE)
x2 <- scale(x2, center = TRUE, scale = FALSE)
model <- gamboost(y ~ bols(x1, x2, intercept = FALSE) +
 bols(x1, intercept = FALSE) +
 bols(x2, intercept = FALSE),
 control = boost_control(mstop = 50))
coef(model, which = 1) # one base-learner for x1 and x2
coef(model, which = 2:3) # two separate base-learners for x1 and x2
zero because they were (not yet) selected.

example for bspatial
x1 <- runif(250,-pi,pi)
x2 <- runif(250,-pi,pi)
y <- sin(x1) * sin(x2) + rnorm(250, sd = 0.4)
spline3 <- bspatial(x1, x2, knots = 12)
Xmat <- extract(spline3, "design")
12 inner knots + 4 boundary knots = 16 knots per direction
THUS: 16 * 16 = 256 columns
dim(Xmat)
extract(spline3, "penalty")[1:10, 1:10]

specify number of knots separately
form1 <- y ~ bspatial(x1, x2, knots = list(x1 = 12, x2 = 14))

decompose spatial effect into parametric part and
deviation with one df
form2 <- y ~ bols(x1) + bols(x2) + bols(x1, by = x2, intercept = FALSE) +
 bspatial(x1, x2, knots = 12, center = TRUE, df = 1)

##
Do not run and check these examples automatically as
they take some time
mod1 <- gamboost(form1)
plot(mod1)
mod2 <- gamboost(form2)
automated plot function:
plot(mod2)
plot sum of linear and smooth effects:
library(lattice)
df <- expand.grid(x1 = unique(x1), x2 = unique(x2))
df$pred <- predict(mod2, newdata = df)
levelplot(pred ~ x1 * x2, data = df)

specify radial basis function base-learner for spatial effect
and use data-adaptive effective range (theta = NULL, see 'args')
form3 <- y ~ brad(x1, x2)
Now use different settings, e.g. 50 knots and theta fixed to 0.4
(not really a good setting)
form4 <- y ~ brad(x1, x2, knots = 50, args = list(theta = 0.4))

##
Do not run and check these examples automatically as
they take some time
mod3 <- gamboost(form3)
plot(mod3)
dim(extract(mod3, what = "design", which = "brad")[[1]])
knots <- attr(extract(mod3, what = "design", which = "brad")[[1]], "knots")
mod4 <- gamboost(form4)
dim(extract(mod4, what = "design", which = "brad")[[1]])
plot(mod4)

random intercept
id <- factor(rep(1:10, each = 5))
ranef <- brandom(id)
extract(ranef, "design")
extract(ranef, "penalty")

random intercept with non-observed category
set.seed(1907)
y <- rnorm(50, mean = rep(rnorm(10), each = 5), sd = 0.1)
plot(y ~ id)
category 10 not observed
obs <- c(rep(1, 45), rep(0, 5))
model <- gamboost(y ~ brandom(id), weights = obs)
coef(model)
fitted(model)[46:50] # just the grand mean as usual for
random effects models

random slope
z <- runif(50)
ranef <- brandom(id, by = z)
extrait(ranef, "design")
extrait(ranef, "penalty")

specify simple interaction model (with main effect)
n <- 210
x <- rnorm(n)
X <- model.matrix(~ x)
z <- gl(3, n/3)
Z <- model.matrix(~z)
beta <- list(c(0,1), c(-3,4), c(2, -4))
y <- rnorm(length(x), mean = (X * Z[,1]) %% beta[[1]] +
 (X * Z[,2]) %% beta[[2]] +
 (X * Z[,3]) %% beta[[3]])
plot(y ~ x, col = z)

specify main effect and interaction
mod_glm <- gamboost(y ~ bols(x) + bols(x, by = z),
 control = boost_control(mstop = 100))
nd <- data.frame(x, z)
nd <- nd[order(x),]
nd$pred_glm <- predict(mod_glm, newdata = nd)
for (i in seq(along = levels(z))
 with(nd[nd$z == i,], lines(x, pred_glm, col = z))
mod_gam <- gamboost(y ~ bbs(x) + bbs(x, by = z, df = 8),
 control = boost_control(mstop = 100))
nd$pred_gam <- predict(mod_gam, newdata = nd)
for (i in seq(along = levels(z))
 with(nd[nd$z == i,], lines(x, pred_gam, col = z, lty = "dashed"))
convenience function for plotting
par(mfrow = c(1,3))
plot(mod_gam)

remove intercept from base-learner
and add explicit intercept to the model
tmpdata <- data.frame(x = 1:100, y = rnorm(1:100), int = rep(1, 100))
mod <- gamboost(y ~ bols(int, intercept = FALSE) +
 bols(x, intercept = FALSE),
 data = tmpdata,
 control = boost_control(mstop = 1000))
cf <- unlist(coef(mod))
add offset
signif(cf, 3)
signif(coef(lm(y ~ x, data = tmpdata)), 3)

much quicker and better with (mean-) centering
tmpdata$x_center <- tmpdata$x - mean(tmpdata$x)
mod_center <- gamboost(y ~ bols(int, intercept = FALSE) +
 bols(x_center, intercept = FALSE),
 data = tmpdata,
 control = boost_control(mstop = 100))
cf_center <- unlist(coef(mod_center, which=1:2))
due to the shift in x direction we need to subtract
beta_1 * mean(x) to get the correct intercept
cf_center[1] <- cf_center[1] + mod_center$offset -
 cf_center[2] * mean(tmpdata$x)
signif(cf_center, 3)
signif(coef(lm(y ~ x, data = tmpdata)), 3)
##
Do not run and check these examples automatically as
they take some time
large data set with ties
nunique <- 100
xindex <- sample(1:nunique, 1000000, replace = TRUE)
x <- runif(nunique)
y <- rnorm(length(xindex))
w <- rep.int(1, length(xindex))
brute force computations
op <- options()
options(mboost_indexmin = Inf, mboost_useMatrix = FALSE)
data pre-processing
b1 <- bbs(x[xindex])$dpp(w)
model fitting
c1 <- b1$fit(y)$model
options(op)
automatic search for ties, faster
b2 <- bbs(x[xindex])$dpp(w)
c2 <- b2$fit(y)$model
manual specification of ties, even faster
b3 <- bbs(x, index = xindex)$dpp(w)
c3 <- b3$fit(y)$model
all.equal(c1, c2)
all.equal(c1, c3)
End(Not run and test)
cyclic P-splines
set.seed(781)
x <- runif(200, 0,(2*pi))
y <- rnorm(200, mean=sin(x), sd=0.2)
newX <- seq(0,2*pi, length=100)
model without cyclic constraints
mod <- gamboost(y ~ bbs(x, knots = 20))
model with cyclic constraints
mod_cyclic <- gamboost(y ~ bbs(x, cyclic=TRUE, knots = 20, boundary.knots=c(0, 2*pi)))
par(mfrow = c(1,2))
plot(x, y, main = "bbs (non-cyclic)", cex = 0.5)
lines(newX, sin(newX), lty = "dotted")
lines(newX + 2 * pi, sin(newX), lty = "dashed")
lines(newX, predict(mod, data.frame(x = newX)),
col = "red", lwd = 1.5)
lines(newX + 2 * pi, predict(mod, data.frame(x = newX)),
col = "blue", lwd = 1.5)
plot(x, y, main = "bbs (cyclic)", cex = 0.5)
lines(newX, sin(newX), lty = "dotted")
lines(newX + 2 * pi, sin(newX), lty = "dashed")
lines(newX, predict(mod_cyclic, data.frame(x = newX)),
col = "red", lwd = 1.5)
lines(newX + 2 * pi, predict(mod_cyclic, data.frame(x = newX)),
col = "blue", lwd = 1.5)

use buser() to mimic p-spline base-learner:
set.seed(1907)
x <- rnorm(100)
y <- rnorm(100, mean = x^2, sd = 0.1)
mod1 <- gamboost(y ~ bbs(x))
now extract design and penalty matrix
X <- extract(bbs(x), "design")
K <- extract(bbs(x), "penalty")
use X and K in buser()
mod2 <- gamboost(y ~ buser(X, K))
max(abs(predict(mod1) - predict(mod2))) # same results

use buser() to mimic penalized ordinal base-learner:
z <- as.ordered(sample(1:3, 100, replace = TRUE))
y <- rnorm(100, mean = as.numeric(z), sd = 0.1)
X <- extract(bols(z))
K <- extract(bols(z), "penalty")
index <- extract(bols(z), "index")
mod1 <- gamboost(y ~ buser(X, K, df = 1, index = index))
mod2 <- gamboost(y ~ bols(z, df = 1))
max(abs(predict(mod1) - predict(mod2))) # same results

kronecker product for matrix-valued responses
data("volcano", package = "datasets")
layout(matrix(1:2, ncol = 2))

estimate mean of image treating image as matrix
image(volcano, main = "data")
x1 <- 1:nrow(volcano)
x2 <- 1:ncol(volcano)
vol <- as.vector(volcano)
mod <- mboost(vol ~ bbs(x1, df = 3, knots = 10) %O% bbs(x2, df = 3, knots = 10),
control = boost_control(nu = 0.25))
mod[250]
volf <- matrix(fitted(mod), nrow = nrow(volcano))
The `mboost` package in R provides a function `bbs` for fitting basis splines, which can be used in regression trees as base-learners. The following code demonstrates how to use `bbs` within the `mboost` framework for regression tasks:

```r
x <- expand.grid(x1, x2)
modx <- mboost(vol ~ bbs.Var2, df = 3, knots = 10) %>%
  bbs(Var1, df = 3, knots = 10), data = x,
  control = boost_control(nu = 0.25))
modx[250]
max(abs(fitted(mod) - fitted(modx)))
```

This code snippet creates a design matrix `x` by expanding `x1` and `x2`, then fits a boosting model `modx` with basis splines on `Var2` and `Var1` with specified degrees of freedom and knots. It then compares the fitted values from the model `modx` to those from the default model `mod` to check their differences.

blackboost

Gradient Boosting with Regression Trees

Description

Gradient boosting for optimizing arbitrary loss functions where regression trees are utilized as base-learners.
blackboost(formula, data = list(),
weights = NULL, na.action = na.pass,
offset = NULL, family = Gaussian(),
control = boost_control(),
oobweights = NULL,
tree_controls = partykit::ctree_control(
 teststat = "quad",
 testtype = "Teststatistic",
 mincriterion = 0,
 minsplit = 10,
 minbucket = 4,
 maxdepth = 2,
 saveinfo = FALSE),
...)

Arguments

 formula a symbolic description of the model to be fit.
data a data frame containing the variables in the model.
weights an optional vector of weights to be used in the fitting process.
na.action a function which indicates what should happen when the data contain NAs.
offset a numeric vector to be used as offset (optional).
family a Family object.
control a list of parameters controlling the algorithm. For more details see boost_control.
oobweights an additional vector of out-of-bag weights, which is used for the out-of-bag risk (i.e., if boost_control(risk = "oobag")). This argument is also used internally by cvrisk.
tree_controls an object of class "TreeControl", which can be obtained using ctree_control. Defines hyper-parameters for the trees which are used as base-learners. It is wise to make sure to understand the consequences of altering any of its arguments. By default, two-way interactions (but not deeper trees) are fitted.
...
additional arguments passed to mboost_fit, including weights, offset, family and control. For default values see mboost_fit.

Details

This function implements the ‘classical’ gradient boosting utilizing regression trees as base-learners. Essentially, the same algorithm is implemented in package gbm. The main difference is that arbitrary loss functions to be optimized can be specified via the family argument to blackboost whereas gbm uses hard-coded loss functions. Moreover, the base-learners (conditional inference trees, see ctree) are a little bit more flexible.

The regression fit is a black box prediction machine and thus hardly interpretable.

Partial dependency plots are not yet available; see example section for plotting of additive tree models.
Value

An object of class `mboost` with `print` and `predict` methods being available.

References

See Also

See `mboost_fit` for the generic boosting function, `glmboost` for boosted linear models, and `gamboost` for boosted additive models.

See `baselearners` for possible base-learners.

See `cvrisk` for cross-validated stopping iteration.

Furthermore see `boost_control`, `Family` and `methods`.

Examples

```r
### a simple two-dimensional example: cars data
cars.gb <- blackboost(dist ~ speed, data = cars,
                         control = boost_control(mstop = 50))
cars.gb

### plot fit
plot(dist ~ speed, data = cars)
lines(cars$speed, predict(cars.gb), col = "red")
```

```r
# Do not run this example automatically as it takes
# some time (~ 5-10 seconds depending on the system)

### set up and plot additive tree model
if (require("partykit")) {
  ctrl <- ctree_control(maxdepth = 3)
  viris <- subset(iris, Species != "setosa")
  viris$Species <- viris$Species[, drop = TRUE]
  imod <- mboost(Species ~ btree(Sepal.Length, tree_controls = ctrl) +
                 btree(Sepal.Width, tree_controls = ctrl) +
                 btree(Petal.Length, tree_controls = ctrl) +
                 btree(Petal.Width, tree_controls = ctrl))
  plot(imod, data = viris)
  plot(cars, log = "xy")
  lines(cars$speed, predict(cars.gb), col = "red")
  plot(cars, log = "xy")
  lines(cars$speed, predict(imod), col = "blue")
  legend("topright", legend = c("blackboost", "mboost"),
         col = c("red", "blue"), lty = 1)
```

boost_control

Control Hyper-parameters for Boosting Algorithms

Description

Definition of the initial number of boosting iterations, step size and other hyper-parameters for boosting algorithms.

Usage

```r
boost_control(mstop = 100, nu = 0.1, risk = c("inbag", "oobag", "none"), stopintern = FALSE, center = TRUE, trace = FALSE)
```

Arguments

- `mstop`: an integer giving the number of initial boosting iterations. If `mstop = 0`, the offset model is returned.
- `nu`: a double (between 0 and 1) defining the step size or shrinkage parameter. The default is probably too large for many applications with `family = Poisson()` and a smaller value is better.
- `risk`: a character indicating how the empirical risk should be computed for each boosting iteration. `inbag` leads to risks computed for the learning sample (i.e., all non-zero weights), `oobag` to risks based on the out-of-bag (all observations with zero weights) and none to no risk computations at all.
- `stopintern`: a logical that defines if the boosting algorithm stops internally when the out-of-bag risk in one iteration is larger than the out-of-bag risk in the iteration before. Can also be a positive number giving the risk difference that needs to be exceeded.
- `center`: deprecated. A logical indicating if the numerical covariates should be mean centered before fitting. Only implemented for glmboost. In blackboost centering is not needed. In gamboost centering is only needed if bols base-learners are specified without intercept. In this case centering of the covariates is essential and should be done manually (at the moment). Will be removed in favour of a corresponding argument in glmboost in the future (and gives a warning).
- `trace`: a logical triggering printout of status information during the fitting process.
Details

Objects returned by this function specify hyper-parameters of the boosting algorithms implemented in `glmboost`, `gamboost` and `blackboost` (via the control argument).

Value

An object of class `boost_control`, a list.

See Also

`mboost`

Description

Objects of class `boost_family` define negative gradients of loss functions to be optimized.

Objects from the Class

Objects can be created by calls of the form `Family(...)`

Slots

- `ngradient`: a function with arguments `y` and `f` implementing the negative gradient of the loss function.
- `risk`: a risk function with arguments `y`, `f` and `w`, the weighted mean of the loss function by default.
- `offset`: a function with argument `y` and `w` (weights) for computing a scalar offset.
- `weights`: a logical indicating if weights are allowed.
- `check_y`: a function for checking the class / mode of a response variable.
- `nuisance`: a function for extracting nuisance parameters.
- `response`: inverse link function of a GLM or any other transformation on the scale of the response.
- `rclass`: function to derive class predictions from conditional class probabilities (for models with factor response variable).
- `name`: a character giving the name of the loss function for pretty printing.
- `charloss`: a character, the deparsed loss function.

See Also

`Family`

Examples

```
Laplace()
```
confint.mboost

Pointwise Bootstrap Confidence Intervals

Description
Compute and display pointwise confidence intervals

Usage

```r
# S3 method for class 'mboost'
confint(object, parm = NULL, level = 0.95, B = 1000,
         B.mstop = 25, newdata = NULL, which = parm,
         papply = ifelse(B.mstop == 0, mclapply, lapply),
         cvrisk_options = list(), ...)
# S3 method for class 'mboost.ci'
plot(x, which, level = x$level, ylim = NULL, type = "l", col = "black",
     ci.col = rgb(170, 170, 170, alpha = 85, maxColorValue = 255),
     raw = FALSE, print_levelplot = TRUE, ...)
# S3 method for class 'mboost.ci'
lines(x, which, level = x$level,
      col = rgb(170, 170, 170, alpha = 85, maxColorValue = 255),
      raw = FALSE, ...)
# S3 method for class 'glmboost'
confint(object, parm = NULL, level = 0.95,
         B = 1000, B.mstop = 25, which = parm, ...)
# S3 method for class 'glmboost.ci'
print(x, which = NULL, level = x$level, pe = FALSE, ...)
```

Arguments

- `object` a fitted model object of class `glmboost`, `gamboost` or `mboost` for which the confidence intervals should be computed.
- `parm, which` a subset of base-learners to take into account for computing confidence intervals. See `mboost_methods` for details. `parm` is just a synonyme for which to be in line with the generic `confint` function. Preferably use which.
- `level` the confidence level required.
- `B` number of outer bootstrap replicates used to compute the empirical bootstrap confidence intervals.
- `B.mstop` number of inner bootstrap replicates used to determine the optimal mstop on each of the B bootstrap samples.
- `newdata` optionally, a data frame on which to compute the predictions for the confidence intervals.
`confint.mboost` (parallel) apply function for the outer bootstrap, defaults to `mclapply` if no inner bootstrap is used to determine the optimal stopping iteration. For details see argument `papply` in `cvrisk`. Be careful with your computing resources if you use parallel computing for both, the inner and the outer bootstrap.

`cvrisk_options` (optionally) specify a named list with arguments to the inner bootstrap. For example use `cvrisk_options = list(mc.cores = 2)` to specify that the `mclapply` function within `cvrisk` uses 2 cores to compute the optimal `mstop`.

`x` a confidence interval object.

`ylim` limits of the y scale. Per default computed from the data to plot.

`type` type of graphic for the point estimate, i.e., for the predicted function. Per default a line is plotted.

`col` color of the point estimate, i.e., for the predicted function.

`ci.col` color of the confidence interval.

`raw` logical, should the raw function estimates or the derived confidence estimates be plotted?

`print_levelplot` logical, should the `lattice levelplot` be printed or simply returned for further modifications. This argument is only considered if bivariate effect estimates are plotted. If `print_levelplot` is set to `FALSE`, a list with objects `mean`, `lowerPI` and `upperPI` is returned containing the three `levelplot` objects.

`pe` logical, should the point estimate (PE) be also returned?

`...` additional arguments to the outer bootstrap such as `mc.cores`.

Details

Use a nested bootstrap approach to compute pointwise confidence intervals for the predicted partial functions or regression parameters. The approach is further described in Hofner et al. (2016).

Value

An object of class `glmboost.ci` or `mboost.ci` with special `print` and/or `plot` functions.

Author(s)

Benjamin Hofner <benjamin.hofner@pei.de>

References

See Also

`cvrisk` for crossvalidation approaches and `mboost_methods` for other methods.
Examples

Do not run these examples automatically as they take
some time (~ 30 seconds depending on the system)

a simple linear example
set.seed(1907)
data <- data.frame(x1 = rnorm(100), x2 = rnorm(100),
 z = factor(sample(1:3, 100, replace = TRUE)))
data$y <- rnorm(100, mean = data$x1 - data$x2 - 1 * (data$z == 2) +
 1 * (data$z == 3), sd = 0.1)
linmod <- glmboost(y ~ x1 + x2 + z, data = data,
 control = boost_control(mstop = 200))

compute confidence interval from 10 samples. Usually one should use
at least 1000 samples.
CI <- confint(linmod, B = 10, level = 0.9)
CI

to compute a confidence interval for another level simply change the
level in the print function:
print(CI, level = 0.8)
or print a subset (with point estimates):
print(CI, level = 0.8, pe = TRUE, which = "z")

a simple smooth example
set.seed(1907)
data <- data.frame(x1 = rnorm(100), x2 = rnorm(100))
data$y <- rnorm(100, mean = data$x1^2 - sin(data$x2), sd = 0.1)
gam <- gamboost(y ~ x1 + x2, data = data,
 control = boost_control(mstop = 200))

compute confidence interval from 10 samples. Usually one should use
at least 1000 samples.
CI_gam <- confint(gam, B = 10, level = 0.9)
par(mfrow = c(1, 2))
plot(CI_gam, which = 1)
plot(CI_gam, which = 2)
to compute a confidence interval for another level simply change the
level in the plot or lines function:
lines(CI_gam, which = 2, level = 0.8)

cvrisk
Cross-Validation

Description

Cross-validated estimation of the empirical risk for hyper-parameter selection.
Usage

```r
## S3 method for class 'mboost'
cvrisk(object, folds = cv(model.weights(object)),
       grid = 0:mstop(object),
       papply = mclapply,
       fun = NULL, mc.preschedule = FALSE, ...)
cv(weights, type = c("bootstrap", "kfold", "subsampling"),
    B = ifelse(type == "kfold", 10, 25), prob = 0.5, strata = NULL)
```

Plot cross-validation results

```r
## S3 method for class 'cvrisk'
plot(x,
     xlab = "Number of boosting iterations", ylab = attr(x, "risk"),
     ylim = range(x), main = attr(x, "type"), ...)
```

Arguments

- **object**: an object of class `mboost`.
- **folds**: a weight matrix with number of rows equal to the number of observations. The number of columns corresponds to the number of cross-validation runs. Can be computed using function `cv` and defaults to 25 bootstrap samples.
- **grid**: a vector of stopping parameters the empirical risk is to be evaluated for.
- **papply**: (parallel) apply function, defaults to `mclapply`. Alternatively, `parLapply` can be used. In the latter case, usually more setup is needed (see example for some details). To run `cvrisk` sequentially (i.e. not in parallel), one can use `lapply`.
- **fun**: if `fun` is NULL, the out-of-sample risk is returned. `fun`, as a function of `object`, may extract any other characteristic of the cross-validated models. These are returned as is.
- **mc.preschedule**: preschedule tasks if are parallelized using `mclapply` (default: FALSE)? For details see `mclapply`.
- **weights**: a numeric vector of weights for the model to be cross-validated.
- **type**: character argument for specifying the cross-validation method. Currently (stratified) bootstrap, k-fold cross-validation and subsampling are implemented.
- **B**: number of folds, per default 25 for bootstrap and subsampling and 10 for kfold.
- **prob**: percentage of observations to be included in the learning samples for subsampling.
- **strata**: a factor of the same length as weights for stratification.
- **x**: an object of class `cvrisk`.
- **xlab, ylab**: axis labels.
- **ylim**: limits of y-axis.
- **main**: main title of graphic.
- **...**: additional arguments passed to `mclapply` or `plot`.
Details

The number of boosting iterations is a hyper-parameter of the boosting algorithms implemented in this package. Honest, i.e., cross-validated, estimates of the empirical risk for different stopping parameters `mstop` are computed by this function which can be utilized to choose an appropriate number of boosting iterations to be applied.

Different forms of cross-validation can be applied, for example 10-fold cross-validation or bootstrapping. The weights (zero weights correspond to test cases) are defined via the folds matrix.

cvrisk runs in parallel on OSes where forking is possible (i.e., not on Windows) and multiple cores/processors are available. The scheduling can be changed by the corresponding arguments of `mclapply` (via the dot arguments).

The function `cv` can be used to build an appropriate weight matrix to be used with `cvrisk`. If `strata` is defined sampling is performed in each stratum separately thus preserving the distribution of the `strata` variable in each fold.

There exist various functions to display and work with cross-validation results. One can `print` and `plot` (see above) results and extract the optimal iteration via `mstop`.

Value

An object of class `cvrisk` (when `fun` wasn’t specified), basically a matrix containing estimates of the empirical risk for a varying number of bootstrap iterations. `plot` and `print` methods are available as well as a `mstop` method.

References

DOI: http://dx.doi.org/10.3414/ME11-02-0030

See Also

`AIC.mboost` for AIC based selection of the stopping iteration. Use `mstop` to extract the optimal stopping iteration from `cvrisk` object.

Examples

```r
data("bodyfat", package = "TH.data")

### fit linear model to data
model <- glmboost(DEXfat ~ ., data = bodyfat, center = TRUE)

### AIC-based selection of number of boosting iterations
maic <- AIC(model)
maic
```

inspect coefficient path and AIC-based stopping criterion

```r
par(mai = par("mai") * c(1, 1, 1, 1.8))
plot(model)
abline(v = mstop(maic), col = "lightgray")
```

10-fold cross-validation

```r
cv10f <- cv(model.weights(model), type = "kfold")
cvm <- cvrisk(model, folds = cv10f, papply = lapply)
print(cvm)
mstop(cvm)
plot(cvm)
```

25 bootstrap iterations (manually)

```r
set.seed(290875)
n <- nrow(bodyfat)
bs25 <- rmultinom(25, n, rep(1, n)/n)
cvm <- cvrisk(model, folds = bs25, papply = lapply)
print(cvm)
mstop(cvm)
plot(cvm)
```

same by default

```r
set.seed(290875)
cvrisk(model, papply = lapply)
```

25 bootstrap iterations (using cv)

```r
set.seed(290875)
bs25_2 <- cv(model.weights(model), type="bootstrap")
all(bs25 == bs25_2)
```

###
Do not run this example automatically as it takes
some time (~ 5 seconds depending on the system)

trees

```r
blackbox <- blackboost(DEXfat ~ ., data = bodyfat)
cvtree <- cvrisk(blackbox, papply = lapply)
plot(cvtree)
```

cvrisk in parallel modes:

Not run:

at least not automatically

```r
cvrisk(model, mc.cores = 2)
```
infrastructure needs to be set up in advance

```r
cl <- makeCluster(25)  # e.g. to run cvrisk on 25 nodes via PVM
myApply <- function(X, FUN, ...) {
  myFun <- function(...) {
    library("mboost")  # load mboost on nodes
    FUN(...)
  }
  ## further set up steps as required
  parLapply(cl = cl, X, myFun, ...)
}
cvrisk(model, papply = myApply)
stopCluster(cl)
```

End(Not run)

Family

Gradient Boosting Families

Description

boost_family objects provide a convenient way to specify loss functions and corresponding risk functions to be optimized by one of the boosting algorithms implemented in this package.

Usage

```r
Family(ngradient, loss = NULL, risk = NULL,
  offset = function(y, w) optimize(risk, interval = range(y),
    y = y, w = w)$minimum,
  check_y = function(y) y,
  weights = c("any", "none", "zeroone", "case"),
  nuisance = function() return(NA),
  name = "user-specifed", fW = NULL,
  response = function(f) NA,
  rclass = function(f) NA)
```

- AdaExp()
- AUC()
- Binomial(type = c("adaboost", "glm"),
 link = c("logit", "probit", "cloglog", "cauchit", "log"), ...)
- GaussClass()
- GaussReg()
- Gaussian()
- Huber(d = NULL)
- Laplace()
- Poisson()
Family

\begin{verbatim}
GammaReg(nuirange = c(0, 100))
CoxPH()
QuantReg(tau = 0.5, qoffset = 0.5)
ExpectReg(tau = 0.5)
NBinomial(nuirange = c(0, 100))
PropOdds(nuirange = c(-0.5, -1), offrange = c(-5, 5))
Weibull(nuirange = c(0, 100))
Loglog(nuirange = c(0, 100))
Lognormal(nuirange = c(0, 100))
Gehan()
Hurdle(nuirange = c(0, 100))
Multinomial()
Cindex(sigma = 0.1, ipcw = 1)
RCG(nuirange = c(0, 1), offrange = c(-5, 5))
\end{verbatim}

Arguments

- `ngradient`: a function with arguments `y`, `f` and `w` implementing the *negative* gradient of the loss function (which is to be minimized).
- `loss`: an optional loss function with arguments `y` and `f`.
- `risk`: an optional risk function with arguments `y`, `f` and `w` to be minimized (!), the weighted mean of the loss function by default.
- `offset`: a function with argument `y` and `w` (weights) for computing a *scalar* offset.
- `fW`: transformation of the fit for the diagonal weights matrix for an approximation of the boosting hat matrix for loss functions other than squared error.
- `response`: inverse link function of a GLM or any other transformation on the scale of the response.
- `rclass`: function to derive class predictions from conditional class probabilities (for models with factor response variable).
- `check_y`: a function for checking and transforming the class / mode of a response variable.
- `nuisance`: a function for extracting nuisance parameters from the family.
- `weights`: a character indicating what type of weights are allowed. These can be either arbitrary (non-negative) weights code "any", only zero and one weights "zeroone", (non-negative) integer weights "case", or no weights are allowed "none".
- `name`: a character giving the name of the loss function for pretty printing.
- `type`: which parameterization of Binomial should be used?b
- `link`: link function. For possible values see Usage section.
- `d`: delta parameter for Huber loss function. If omitted, it is chosen adaptively.
- `tau`: the quantile or expectile to be estimated, a number strictly between 0 and 1.
- `qoffset`: quantile of response distribution to be used as offset, i.e., starting values for the intercept. Per default the median of the response is used, which is in general a good choice (see Fenske et al. 2011, for details).
nuirange a vector containing the end-points of the interval to be searched for the minimum risk w.r.t. the nuisance parameter. In case of PropOdds, the starting values for the nuisance parameters.

offrange interval to search in for offset.

sigma smoothness parameter for sigmoid functions inside Cindex.

ipcw vector containing inverse probability of censoring weights for all observations. If omitted, it is estimated inside Cindex family.

... additional arguments to link functions.

Details

The boosting algorithm implemented in mboost minimizes the (weighted) empirical risk function \(\text{risk}(y,f,w) \) with respect to \(f \). By default, the risk function is the weighted sum of the loss function \(\text{loss}(y,f) \) but can be chosen arbitrarily. The \(\text{ngradient}(y,f) \) function is the negative gradient of \(\text{loss}(y,f) \) with respect to \(f \).

Pre-fabricated functions for the most commonly used loss functions are available as well. Buehlmann and Hothorn (2007) give a detailed overview of the available loss functions. An updated overview can be found in Hofner et al (2014).

The offset function returns the population minimizers evaluated at the response, i.e., \(\frac{1}{2} \log(p/(1-p)) \) for Binomial() or AdaExp() and \((\sum w_i)^{-1} \sum w_i y_i \) for Gaussian() and the median for Huber() and Laplace(). The offset is used as starting value for the boosting algorithm.

Note that all families are functions and thus need to be specified either with empty brackets (e.g., \(\text{family} = \text{Gaussian()} \) for Gaussian regression) or with additional arguments if these are supported by the respective family (e.g., \(\text{family} = \text{QuantReg}(\tau = 0.2) \) for quantile regression for the 20% quantile).

A short summary of the available families is given in the following paragraphs:

AdaExp(), Binomial() and AUC() implement families for binary classification. AdaExp() uses the exponential loss, which essentially leads to the AdaBoost algorithm of Freund and Schapire (1996). Binomial() implements the negative binomial log-likelihood of a logistic regression model as loss function. Thus, using Binomial family closely resembles to fitting a logistic model. Alternative link functions can be specified.

However, the coefficients resulting from boosting with family Binomial(link = "logit") are 1/2 of the coefficients of a logit model obtained via glm. Buehlmann and Hothorn (2007) argue that the family Binomial is the preferred choice for binary classification. For binary classification problems the response \(y \) has to be a factor. Internally \(y \) is re-coded to \(-1 \) and \(+1 \) (Buehlmann and Hothorn 2007).

Binomial(type = "glm") is an alternative to Binomial() leading to coefficients of the same size as coefficients from a classical logit model via glm. Additionally, it works not only with a two-level factor but also with a two-column matrix containing the number of successes and number of failures (again, similar to glm).

AUC() uses \(1 - AUC(y,f) \) as the loss function. The area under the ROC curve (AUC) is defined as \(AUC = (n_{-1} n_{1})^{-1} \sum_{y_{i} = 1} \sum_{y_{j} = -1} I(f_{i} > f_{j}) \). Since this is not differentiable in \(f \), we approximate the jump function \(I((f_{i} - f_{j}) > 0) \) by the distribution function of the triangular distribution on \([-1,1]\] with mean 0, similar to the logistic distribution approximation used in Ma and Huang (2005).
Gaussian() is the default family in `mboost`. It implements L_2-Boosting for continuous response. Note that families GaussReg() and GaussClass() (for regression and classification) are deprecated now. Huber() implements a robust version for boosting with continuous response, where the Huber-loss is used. Laplace() implements another strategy for continuous outcomes and uses the L_1-loss instead of the L_2-loss as used by Gaussian().

Poisson() implements a family for fitting count data with boosting methods. The implemented loss function is the negative Poisson log-likelihood. Note that the natural link function $\log(\mu) = \eta$ is assumed. The default step-site $nu = 0.1$ is probably too large for this family (leading to infinite residuals) and smaller values are more appropriate.

GammaReg() implements a family for fitting nonnegative response variables. The implemented loss function is the negative Gamma log-likelihood with logarithmic link function (instead of the natural link).

CoxPH() implements the negative partial log-likelihood for Cox models. Hence, survival models can be boosted using this family.

QuantReg() implements boosting for quantile regression, which is introduced in Fenske et al. (2009). ExpectReg works in analogy, only for expectiles, which were introduced to regression by Newey and Powell (1987).

Families with an additional scale parameter can be used for fitting models as well: PropOdds() leads to proportional odds models for ordinal outcome variables (Schmid et al., 2011). When using this family, an ordered set of threshold parameters is re-estimated in each boosting iteration. An example is given below which also shows how to obtain the thresholds. NBinomial() leads to regression models with a negative binomial conditional distribution of the response. Weibull(), Loglog(), and Lognormal() implement the negative log-likelihood functions of accelerated failure time models with Weibull, log-logistic, and lognormal distributed outcomes, respectively. Hence, parametric survival models can be boosted using these families. For details see Schmid and Hothorn (2008) and Schmid et al. (2010).

Gehan() implements rank-based estimation of survival data in an accelerated failure time model. The loss function is defined as the sum of the pairwise absolute differences of residuals. The response needs to be defined as `Surv(y,delta)`, where y is the observed survival time (subject to censoring) and $delta$ is the non-censoring indicator (see `Surv` for details). For details on Gehan() see Johnson and Long (2011).

Cindex() optimizes the concordance-index for survival data (often denoted as Harrell’s C or C-index). The concordance index evaluates the rank-based concordance probability between the model and the outcome. The C-index measures whether large values of the model are associated with short survival times and vice versa. The interpretation is similar to the AUC: A C-index of 1 represents a perfect discrimination while a C-index of 0.5 will be achieved by a completely non-informative marker. The Cindex() family is based on an estimator by Uno et al. (2011), which incorporates inverse probability of censoring weighting `ipcw`. To make the estimator differentiable, sigmoid functions are applied; the corresponding smoothness can be controlled via `sigma`. For details on Cindex() see Mayr and Schmid (2014).

Hurdle models for zero-inflated count data can be fitted by using a combination of the Binomial() and Hurdle() families. While the Binomial() family allows for fitting the zero-generating process of the Hurdle model, Hurdle() fits a negative binomial regression model to the non-zero counts. Note that the specification of the Hurdle model allows for using Binomial() and Hurdle() independently of each other.
Linear or additive multinomial logit models can be fitted using `Multinomial()`: although is family requires some extra effort for model specification (see example). More specifically, the predictor must be in the form of a linear array model (see %O%). Note that this family does not work with tree-based base-learners at the moment. The class corresponding to the last level of the factor coding of the response is used as reference class.

`RCG()` implements the ratio of correlated gammas (RCG) model proposed by Weinhold et al. (2016).

Value

An object of class `boost_family`.

Warning

The coefficients resulting from boosting with family `Binomial(link = "logit")` are 1/2 of the coefficients of a logit model obtained via `glm` (see above).

For `AUC()`, variables should be centered and scaled and observations with weight > 0 must not contain missing values. The estimated coefficients for `AUC()` have no probabilistic interpretation.

Author(s)

`ExpectReg()` was donated by Fabian Sobotka. `AUC()` was donated by Fabian Scheipl.

References

Family

http://dx.doi.org/10.1007/s00180-012-0382-5

Available as vignette via: vignette(package = "mboost","mboost_tutorial")

See Also

mboost for the usage of Family.

See boost_family-class for objects resulting from a call to Family.

Examples

```r
### Define a new family
MyGaussian <- function(){
  Family(ngradient = function(y, f, w = 1) y - f,
         loss = function(y, f) (y - f)^2,
         name = "My Gauss Variant")
}
# Now use the new family
data(bodyfat, package = "TH.data")
mod <- mboost(DEXfat ~ ., data = bodyfat, family = MyGaussian())
# N.B. that the family needs to be called with empty brackets

############################################################
## Do not run and check these examples automatically as
## they take some time

### Proportional odds model
data(iris)
iris$Species <- factor(iris$Species, ordered = TRUE)
if (require("MASS")) {
  (mod.polr <- polr(Species ~ Sepal.Length, data = iris))
}
mod.PropOdds <- glmboost(Species ~ Sepal.Length, data = iris,
                         family = PropOdds(nuirange = c(-0.5, 3)))
mstop(mod.PropOdds) <- 1000
## thresholds are treated as nuisance parameters, to extract these use
nuisance(mod.PropOdds)
## effect estimate
coef(mod.PropOdds)["Sepal.Length"]
```
make thresholds comparable to a model without intercept
nuisance(mod.PropOdds) - coef(mod.PropOdds)["(Intercept)"] -
attr(coef(mod.PropOdds), "offset")

End(Not run and test)

Multinomial logit model via a linear array model
One needs to convert the data to a list
myiris <- as.list(iris)
... and define a dummy vector with one factor level less
than the outcome, which is used as reference category.
myiris$class <- factor(levels(iris$Species)[-nlevels(iris$Species)])
Now fit the linear array model
mlm <- mboost(Species ~ bols(Sepal.Length, df = 2) *%
bols(class, df = 2, contrasts.arg = "contr.dummy"),
data = myiris,
family = Multinomial())
coef(mlm) ## one should use more boosting iterations.
head(round(pred <- predict(mlm, type = "response"), 2))

Prediction with new data:
newdata <- as.list(iris[1,])
One always needs to keep the dummy vector class as above!
newdata$class <- factor(levels(iris$Species)[-nlevels(iris$Species)])
pred2 <- predict(mlm, type = "response", newdata = newdata)
check results
pred[1,]
pred2

##
Do not run and check these examples automatically as
they take some time

Compare results with nnet::multinom
if (require("nnet")) {
 mlnm <- multinom(Species ~ Sepal.Length, data = iris)
 max(abs(fitted(mlm[1000], type = "response") -
 fitted(mlnm, type = "prob")))
}

End(Not run and test)

##
Do not run and check these examples automatically as
they take some time

Example for RCG model
generate covariate values
set.seed(12345)
x1 <- rnorm(500)
x2 <- rnorm(500)
generate linear predictors
zetaM <- 0.1 + 0.3 * x1 - 0.5 * x2
zetaU <- 0.1 - 0.1 * x1 + 0.2 * x2
generate beta values
M <- rgamma(500, shape = 2, rate = exp(zetaM))
U <- rgamma(500, shape = 2, rate = exp(zetaU))
y <- M / (M + U)

fit RCG model
data <- data.frame(y, x1, x2)
RCGmodel <- glmboost(y ~ x1 + x2, data = data, family = RCG(),
 control = boost_control(mstop = 2000,
 trace = TRUE, nu = 0.01))

true coefficients: gamma = (0.0, 0.4, -0.7),
alpha (= shape) = 2,
rho = 0
compare to coefficient estimates
coef(RCGmodel)
 nuisance(RCGmodel)

compute downstream tests
(only suitable without early stopping, i.e., if likelihood based model converged)
downstream.test(RCGmodel)

compute conditional expectations
predictions <- predict(RCGmodel, type = "response")
plot(predictions, y)
abline(0,1)

End(Not run and test)

FP

Fractional Polynomials

Description

Fractional polynomials transformation for continuous covariates.

Usage

```r
FP(x, p = c(-2, -1, -0.5, 0.5, 1, 2, 3), scaling = TRUE)
```
Arguments

- **x**: a numeric vector.
- **p**: all powers of x to be included.
- **scaling**: a logical indicating if the measurements are scaled prior to model fitting.

Details

A fractional polynomial refers to a model \(\sum_{j=1}^{k} (\beta_j x^{p_j} + \gamma_j x^{p_j} \log(x)) + \beta_{k+1} \log(x) + \gamma_{k+1} \log(x)^2 \), where the degree of the fractional polynomial is the number of non-zero regression coefficients \(\beta \) and \(\gamma \).

Value

A matrix including all powers \(p \) of \(x \), all powers \(p \) of \(\log(x) \), and \(\log(x) \).

References

See Also

- `gamboost` to fit smooth models, `bbs` for P-spline base-learners

Examples

```r
data("bodyfat", package = "TH.data")
tbodyfat <- bodyfat

### map covariates into [1, 2]
indep <- names(tbodyfat)[-2]
tbodyfat[indep] <- lapply(bodyfat[indep], function(x) {
  x <- x - min(x)
  x / max(x) + 1
})

### generate formula
fpfm <- as.formula(paste("DEXfat ~ ",
  paste("FP(", indep, ", scaling = FALSE)", collapse = "+")))

### fit linear model
bf_fp <- glmboost(fpfm, data = tbodyfat,
  control = boost_control(mstop = 3000))

### when to stop
mstop(aic <- AIC(bf_fp))
plot(aic)
```
coefficients

cf <- coef(bf_fp[mstop(aic)])
length(cf)

```r

glmboost

**Gradient Boosting with Component-wise Linear Models**

**Description**

Gradient boosting for optimizing arbitrary loss functions where component-wise linear models are utilized as base-learners.

**Usage**

```r

S3 method for class 'formula'
glmboost(formula, data = list(), weights = NULL,
 offset = NULL, family = Gaussian(),
 na.action = na.pass, contrasts.arg = NULL,
 center = TRUE, control = boost_control(), oobweights = NULL, ...)

S3 method for class 'matrix'
glmboost(x, y, center = TRUE, weights = NULL,
 offset = NULL, family = Gaussian(),
 na.action = na.pass, control = boost_control(), oobweights = NULL, ...)

Default S3 method:
glmboost(x, ...)

Arguments

- `formula` a symbolic description of the model to be fit.
- `data` a data frame containing the variables in the model.
- `weights` an optional vector of weights to be used in the fitting process.
- `offset` a numeric vector to be used as offset (optional).
- `family` a `Family` object.
- `na.action` a function which indicates what should happen when the data contain NAs.
- `contrasts.arg` a list, whose entries are contrasts suitable for input to the contrasts replacement function and whose names are the names of columns of data containing factors. See `model.matrix.default`.
- `center` logical indicating of the predictor variables are centered before fitting.
- `control` a list of parameters controlling the algorithm. For more details see `boost_control`.
- `oobweights` an additional vector of out-of-bag weights, which is used for the out-of-bag risk (i.e., if `boost_control(risk = "oobag")`). This argument is also used internally by `cvarisk`.

```
x  design matrix. Sparse matrices of class Matrix can be used as well.
y  vector of responses.
...  additional arguments passed to mboost_fit; currently none.

Details
A (generalized) linear model is fitted using a boosting algorithm based on component-wise univariate linear models. The fit, i.e., the regression coefficients, can be interpreted in the usual way. The methodology is described in Buehlmann and Yu (2003), Buehlmann (2006), and Buehlmann and Hothorn (2007). Examples and further details are given in Hofner et al (2014).

Value
An object of class glmboost with print, coef, AIC and predict methods being available. For inputs with longer variable names, you might want to change par("mai") before calling the plot method of glmboost objects visualizing the coefficients path.

References
http://dx.doi.org/10.1007/s00180-012-0382-5
Available as vignette via: vignette(package = "mboost","mboost_tutorial")

See Also
See mboost_fit for the generic boosting function, gamboost for boosted additive models, and blackboost for boosted trees.
See baselearners for possible base-learners.
See cvrisk for cross-validated stopping iteration.
Furthermore see boost_control,Family and methods.

Examples

### a simple two-dimensional example: cars data
cars.gb <- glmboost(dist ~ speed, data = cars,
  control = boost_control(mstop = 2000),
library(glmboost)
cars.gb

### coefficients should coincide
cf <- coef(cars.gb, off2int = TRUE)  ## add offset to intercept
cf + c(cars.gb$offset, 0)  ## add offset to intercept (by hand)

signif(cf, 3)
signif(coef(lm(dist ~ speed, data = cars)), 3)

## almost converged. With higher mstop the results get even better

### now we center the design matrix for
### much quicker "convergence"
cars.gb_centered <- glmboost(dist ~ speed, data = cars,
  control = boost_control(mstop = 2000),
  center = TRUE)

### plot coefficient paths of glmboost
par(mfrow = c(1, 2), mai = par("mai") * c(1, 1, 1, 2.5))
plot(cars.gb, main = "without centering")
plot(cars.gb_centered, main = "with centering")

### alternative loss function: absolute loss
cars.gbl <- glmboost(dist ~ speed, data = cars,
  control = boost_control(mstop = 1000),
  family = Laplace())

cof(cars.gbl, off2int = TRUE)

### plot fit
par(mfrow = c(1, 1))

plot(dist ~ speed, data = cars)
lines(cars$speed, predict(cars.gb), col = "red")  ## quadratic loss
lines(cars$speed, predict(cars.gbl), col = "green")  ## absolute loss

### Huber loss with adaptive choice of delta

cars.gbh <- glmboost(dist ~ speed, data = cars,
  control = boost_control(mstop = 1000),
  family = Huber())

lines(cars$speed, predict(cars.gbh), col = "blue")  ## Huber loss
legend("topleft", col = c("red", "green", "blue"), lty = 1,
  legend = c("Gaussian", "Laplace", "Huber"), bty = "n")

### sparse high-dimensional example that makes use of the matrix
### interface of glmboost and uses the matrix representation from
### package Matrix

library("Matrix")
n <- 100
p <- 10000
ptrue <- 10
X <- Matrix(0, nrow = n, ncol = p)
X[ sample(1: (n * p), floor(n * p / 20))] <- runif(flo p(n * p / 20))
beta <- numeric(p)
beta[sample(1:p, ptrue)] <- 10
y <- drop(X %*% beta + rnorm(n, sd = 0.1))
mod <- glmboost(y = y, x = X, center = TRUE) ### mstop needs tuning
coeff(mod, which = which(beta > 0))

---

**IPCweights**

**Inverse Probability of Censoring Weights**

**Description**
Compute weights for censored regression via the inverted probability of censoring principle.

**Usage**

IPCweights(x, maxweight = 5)

**Arguments**

x: an object of class Surv.

maxweight: the maximal value of the returned weights.

**Details**
Inverse probability of censoring weights are one possibility to fit models formulated in the full data world in the presence of censoring, i.e., the observed data world, see van der Laan and Robins (2003) for the underlying theory and Hothorn et al. (2006) for an application to survival analysis.

**Value**

A vector of numeric weights.

**References**


**mboost**

**Gradient Boosting for Additive Models**

**Description**

Gradient boosting for optimizing arbitrary loss functions, where component-wise arbitrary base-learners, e.g., smoothing procedures, are utilized as additive base-learners.

**Usage**

```r
mboost(formula, data = list(), na.action = na.omit, weights = NULL,
 offset = NULL, family = Gaussian(), control = boost_control(),
 oobweights = NULL, baselearner = c("bbs", "bols", "btree", "bss", "bns"),
 ...)
gamboost(formula, data = list(), na.action = na.omit, weights = NULL,
 offset = NULL, family = Gaussian(), control = boost_control(),
 oobweights = NULL, baselearner = c("bbs", "bols", "btree", "bss", "bns"),
 dfbase = 4, ...)
```

**Arguments**

- `formula` a symbolic description of the model to be fit.
- `data` a data frame containing the variables in the model.
- `na.action` a function which indicates what should happen when the data contain NAs.
- `weights` (optional) a numeric vector of weights to be used in the fitting process.
- `offset` a numeric vector to be used as offset (optional).
- `family` a `Family` object.
- `control` a list of parameters controlling the algorithm. For more details see `boost_control`.
- `oobweights` an additional vector of out-of-bag weights, which is used for the out-of-bag risk (i.e., if `boost_control(risk = "oobag")`). This argument is also used internally by `cvrisk`.
- `baselearner` a character specifying the component-wise base learner to be used: `bbs` means P-splines with a B-spline basis (see Schmid and Hothorn 2008), `bols` linear models and `btree` boosts stumps. `bss` and `bns` are deprecated. Component-wise smoothing splines have been considered in Buehlmann and Yu (2003) and Schmid and Hothorn (2008) investigate P-splines with a B-spline basis. Kneib, Hothorn and Tutz (2009) also utilize P-splines with a B-spline basis, supplement them with their bivariate tensor product version to estimate interaction surfaces and spatial effects and also consider random effects base learners.
- `dfbase` a single integer giving the degrees of freedom for P-spline base-learners (`bbs`) globally.
- `...` additional arguments passed to `mboost_fit`; currently none.
Details

A (generalized) additive model is fitted using a boosting algorithm based on component-wise base-learners.

The base-learners can either be specified via the formula object or via the baselearner argument. The latter argument is the default base-learner which is used for all variables in the formula, without explicit base-learner specification (i.e., if the base-learners are explicitly specified in formula, the baselearner argument will be ignored for this variable).

Of note, "bss" and "bns" are deprecated and only in the list for backward compatibility.

Note that more base-learners (i.e., in addition to the ones provided via baselearner) can be specified in formula. See baselearners for details.

The only difference when calling mboost and gamboost is that the latter function allows one to specify default degrees of freedom for smooth effects specified via baselearner = "bbs". In all other cases, degrees of freedom need to be set manually via a specific definition of the corresponding base-learner.

Value

An object of class mboost with print, AIC, plot and predict methods being available.

References


Available as vignette via: vignette(package = "mboost","mboost_tutorial")

See Also

See mboost_fit for the generic boosting function, glmboost for boosted linear models, and blackboost for boosted trees.

See baselearners for possible base-learners.

See cvrisk for cross-validated stopping iteration.

Furthermore see boost_control, Family and methods.
### a simple two-dimensional example: cars data

```r
cars.gb <- gamboost(dist ~ speed, data = cars, dfbase = 4,
 control = boost_control(mstop = 50))
cars.gb
AIC(cars.gb, method = "corrected")
```

### plot fit for mstop = 1, ..., 50

```r
plot(dist ~ speed, data = cars)
tmp <- sapply(1:mstop(AIC(cars.gb)), function(i)
 lines(cars$speed, predict(cars.gb[i]), col = "red"))
lines(cars$speed, predict(smooth.spline(cars$speed, cars$dist),
 cars$speed)$y, col = "green")
```

### artificial example: sinus transformation

```r
x <- sort(runif(100)) * 10
y <- sin(x) + rnorm(length(x), sd = 0.25)
plot(x, y)
linear model
lines(x, fitted(lm(y ~ sin(x) - 1)), col = "red")
GAM
lines(x, fitted(gamboost(y ~ x,
 control = boost_control(mstop = 500))),
 col = "green")
```

---

**mboost_fit**

**Model-based Gradient Boosting**

**Description**

Work-horse for gradient boosting for optimizing arbitrary loss functions, where component-wise models are utilized as base-learners. Usually, this function is not called directly by the user.

**Usage**

```r
mboost_fit(blgl, response, weights = rep(1, NROW(response)), offset = NULL,
 family = Gaussian(), control = boost_control(), oobweights =
 as.numeric(weights == 0))
```

**Arguments**

- `blgl` a list of objects of elements of class blgl, as returned by all base-learners.
- `response` the response variable.
- `weights` (optional) a numeric vector of weights to be used in the fitting process.
- `offset` a numeric vector to be used as offset (optional).
- `family` a Family object.
control a list of parameters controlling the algorithm. For more details see `boost_control`.

`oobweights` an additional vector of out-of-bag weights, which is used for the out-of-bag risk (i.e., if `boost_control(risk = "oobag")`). This argument is also used internally by `cvrisk`.

**Details**

The function implements component-wise functional gradient boosting in a generic way. This function is the main work horse and used as back-end by all boosting algorithms in a unified way. Usually, this function is not called directly. Note that the more convenient modelling interfaces `gamboost`, `glmboost` and `blackboost` all call `mboost_fit`.

Basically, the algorithm is initialized with a function for computing the negative gradient of the loss function (via its `family` argument) and one or more base-learners (given as `blg`). Usually `blg` and `response` are computed in the functions `gamboost`, `glmboost`, `blackboost` or `mboost`. See there for details on the specification of base-learners.

The algorithm minimized the in-sample empirical risk defined as the weighted sum (by `weights`) of the loss function (corresponding to the negative gradient) evaluated at the data.

The structure of the model is determined by the structure of the base-learners. If more than one base-learner is given, the model is additive in these components.

Base-learners can be specified via a formula interface (function `mboost`) or as a list of objects of class `bl`, see, e.g., `bols`.

`oobweights` is a vector used internally by `cvrisk`. When carrying out cross-validation to determine the optimal stopping iteration of a boosting model, the default value of `oobweights` (out-of-bag weights) assures that the cross-validated risk is computed using the same observation weights as those used for fitting the boosting model. It is strongly recommended to leave this argument unspecified.

**Value**

An object of class `mboost` with `print`, `AIC`, `plot` and `predict` methods being available.

**References**


3–35.
http://dx.doi.org/10.1007/s00180-012-0382-5
Available as vignette via: vignette(package = "mboost","mboost_tutorial")

See Also

glmboost for boosted linear models and blackboost for boosted trees. See e.g. bbs for possible
base-learners. See cvrisk for cross-validated stopping iteration. Furthermore see boost_control,
Family and methods.

Examples

data("bodyfat", package = "TH.data")

### formula interface: additive Gaussian model with
### a non-linear step-function in `age`, a linear function in `waistcirc`
### and a smooth non-linear smooth function in `hipcirc`
mod <- mboost(DEXfat ~ btree(age) + bols(waistcirc) + bbs(hipcirc),
data = bodyfat)
layout(matrix(1:6, nc = 3, byrow = TRUE))
plot(mod, main = "formula")

### the same
with(bodyfat,
    mod <- mboost_fit(list(btree(age), bols(waistcirc), bbs(hipcirc)),
                      response = DEXfat))
plot(mod, main = "base-learner")
## S3 method for class 'glmboost'
coef(object, which = NULL, 
    aggregate = c("sum", "cumsum", "none"), off2int = FALSE, ...)

## S3 method for class 'mboost'
x[i, return = TRUE, ...]
mstop(x) <- value

## S3 method for class 'mboost'
AIC(object, method = c("corrected", "classical", "gMDL"),
    df = c("trace", "actset"), ..., k = 2)

## S3 method for class 'mboost'
mstop(object, ...)
## S3 method for class 'gbAIC'
mstop(object, ...)
## S3 method for class 'cvrisk'
mstop(object, ...)

## S3 method for class 'mboost'
predict(object, newdata = NULL,
    type = c("link", "response", "class"), which = NULL, 
    aggregate = c("sum", "cumsum", "none"), ...)

## S3 method for class 'glmboost'
predict(object, newdata = NULL,
    type = c("link", "response", "class"), which = NULL, 
    aggregate = c("sum", "cumsum", "none"), ...)

## S3 method for class 'mboost'
fitted(object)

## S3 method for class 'mboost'
residuals(object)
## S3 method for class 'mboost'
resid(object)

## S3 method for class 'glmboost'
variable.names(object, which = NULL, usedonly = FALSE, ...)

## S3 method for class 'mboost'
variable.names(object, which = NULL, usedonly = FALSE, ...)

## S3 method for class 'mboost'
extract(object, what = c("design", "penalty", "lambda", "df", 
    "coefficients", "residuals", 
    "variable.names", "bnames", "offset", 
    "nuisance", "weights", "index", "control"), 
    which = NULL, ...)

## S3 method for class 'glmboost'
extract(object, what = c("design", "coefficients", "residuals", "variable.names", "offset", "nuisance", "weights", "control"), which = NULL, asmatrix = FALSE, ...)  
## S3 method for class 'big'  
extract(object, what = c("design", "penalty", "index"), asmatrix = FALSE, expand = FALSE, ...)  
## S3 method for class 'mboost'  
logLik(object, ...)  
## S3 method for class 'gamboost'  
hatvalues(model, ...)  
## S3 method for class 'glmboost'  
hatvalues(model, ...)  
## S3 method for class 'mboost'  
selected(object, ...)  
## S3 method for class 'mboost'  
risk(object, ...)  
## S3 method for class 'mboost'  
nuisance(object)  
downstream.test(object, ...)  

Arguments  
  
object  objects of class glmboost, gamboost, blackboost or gbAIC.  
x  objects of class glmboost or gamboost.  
model  objects of class mboost  
newdata  optionally, a data frame in which to look for variables with which to predict. In case the model was fitted using the matrix interface to glmboost, newdata must be a matrix as well (an error is given otherwise).  
which  a subset of base-learners to take into account for computing predictions or coefficients. If which is given (as an integer vector or characters corresponding to base-learners) a list or matrix is returned.  
usedonly  logical. Indicating whether all variable names should be returned or only those selected in the boosting algorithm.  
type  the type of prediction required. The default is on the scale of the predictors; the alternative "response" is on the scale of the response variable. Thus for a binomial model the default predictions are of log-odds (probabilities on logit scale) and type = "response" gives the predicted probabilities. The "class" option returns predicted classes.  
aggregate  a character specifying how to aggregate predictions or coefficients of single base-learners. The default returns the prediction or coefficient for the final number of boosting iterations. "cumsum" returns a list with matrices (one per
base-learner) with the cumulative coefficients for all iterations simultaneously (in columns). "none" returns a list of matrices where the jth columns of the respective matrix contains the predictions of the base-learner of the jth boosting iteration (and zero if the base-learner is not selected in this iteration).

off2int logical. Indicating whether the offset should be added to the intercept (if there is any) or if the offset is returned as attribute of the coefficient (default).

i integer. Index specifying the model to extract. If i = 0, the offset model is returned. If i is smaller than the initial mstop, a subset is used. If i is larger than the initial mstop, additional boosting steps are performed until step i is reached. See details for more information.

value integer. See i.

return a logical indicating whether the changed object is returned.

method a character specifying if the corrected AIC criterion or a classical (-2 logLik + k * df) should be computed.

df a character specifying how degrees of freedom should be computed: trace defines degrees of freedom by the trace of the boosting hat matrix and actset uses the number of non-zero coefficients for each boosting iteration.

k numeric, the penalty per parameter to be used; the default k = 2 is the classical AIC. Only used when method = "classical".

what a character specifying the quantities to extract. Depending on object this can be a subset of "design" (default: design matrix), "penalty" (penalty matrix), "lambda" (smoothing parameter), "df" (degrees of freedom), "coefficients", "residuals", "variable.names", "bnames" (names of the base-learners), "offset", "nuisance", "weights", "index" (index of ties used to expand the design matrix) and "control". In future versions additional extractors might be specified.

asmatrix a logical indicating whether the returned matrix should be coerced to a matrix (default) or if the returned object stays as it is (i.e., potentially a sparse matrix). This option is only applicable if extract returns matrices, i.e., what = "design" or what = "penalty".

expand a logical indicating whether the design matrix should be expanded (default: FALSE). This is useful if ties where taken into account either manually (via argument index in a base-learner) or automatically for data sets with many observations. expand = TRUE is equivalent to extract(B)[extract(B,what = "index"),] for a base-learner B.

... additional arguments passed to callies.

Details

These functions can be used to extract details from fitted models. print shows a dense representation of the model fit and summary gives a more detailed representation.

The function coef extracts the regression coefficients of a linear model fitted using the glmboost function or an additive model fitted using the gamboost. Per default, only coefficients of selected base-learners are returned. However, any desired coefficient can be extracted using the which argument (see examples for details). Per default, the coefficient of the final iteration is returned
methods

(aggregate = "sum") but it is also possible to return the coefficients from all iterations simultaneously (aggregate = "cumsum"). If aggregate = "none" is specified, the coefficients of the selected base-learners are returned (see examples below). For models fitted via glmboost with option center = TRUE the intercept is rarely selected. However, it is implicitly estimated through the centering of the design matrix. In this case the intercept is always returned except which is specified such that the intercept is not selected. See examples below.

The predict function can be used to predict the status of the response variable for new observations whereas fitted extract the regression fit for the observations in the learning sample. For predict newdata can be specified, otherwise the fitted values are returned. If which is specified, marginal effects of the corresponding base-learner(s) are returned. The argument type can be used to make predictions on the scale of the link (i.e., the linear predictor \(X\beta\)), the response (i.e. \(h(X\beta)\)) where \(h\) is the response function) or the class (in case of classification). Furthermore, the predictions can be aggregated analogously to coef by setting aggregate to either sum (default; predictions of the final iteration are given), cumsum (predictions of all iterations are returned simultaneously) or none (change of prediction in each iteration). If applicable the offset is added to the predictions. If marginal predictions are requested the offset is attached to the object via attr(..., "offset") as adding the offset to one of the marginal predictions doesn’t make much sense.

The [.mboost function can be used to enhance or restrict a given boosting model to the specified boosting iteration \(i\). Note that in both cases the original \(x\) will be changed to reduce the memory footprint. If the boosting model is enhanced by specifying an index that is larger than the initial \(mstop\), only the missing \(mstop - i\) steps are fitted. If the model is restricted, the spare steps are not dropped, i.e., if we increase \(i\) again, these boosting steps are immediately available. Alternatively, the same operation can be done by \(\text{mstop}(x) \leftarrow i\).

The residuals function can be used to extract the residuals (i.e., the negative gradient of the current iteration). resid is an alias for residuals.

Variable names (including those of interaction effects specified via by in a base-learner) can be extracted using the generic function variable.names, which has special methods for boosting objects.

The generic extract function can be used to extract various characteristics of a fitted model or a base-learner. Note that the sometimes a penalty function is returned (e.g. by extract(bols(x), what = "penalty")) even if the estimation is unpenalized. However, in this case the penalty parameter \(\lambda\) is set to zero. If a matrix is returned by extract one can to set asmatrix = TRUE if the returned matrix should be coerced to class matrix. If asmatrix = FALSE one might get a sparse matrix as implemented in package Matrix. If one requests the design matrix (what = "design") expand = TRUE expands the resulting matrix by taking the duplicates handled via index into account.

The ids of base-learners selected during the fitting process can be extracted using selected(). The nuisance() method extracts nuisance parameters from the fit that are handled internally by the corresponding family object, see "boost_family". The risk() function can be used to extract the computed risk (either the "inbag" risk or the "oobag" risk, depending on the control argument; see boost_control).

For (generalized) linear and additive models, the AIC function can be used to compute both the classical AIC (only available for family = Binomial() and family = Poisson()) and corrected AIC (Hurvich et al., 1998, only available when family = Gaussian() was used). Details on the used approximations for the hat matrix can be found in Buehlmann and Hothorn (2007). The AIC is useful for the determination of the optimal number of boosting iterations to be applied (which can
The degrees of freedom are either computed via the trace of the boosting hat matrix (which is rather slow even for moderate sample sizes) or the number of variables (non-zero coefficients) that entered the model so far (faster but only meaningful for linear models fitted via `gamboost` (see Hastie, 2007)). For a discussion of the use of AIC based stopping see also Mayr, Hofner and Schmid (2012).

In addition, the general Minimum Description Length criterion (Buehlmann and Yu, 2006) can be computed using function `AIC`.

Note that `logLik` and `AIC` only make sense when the corresponding `Family` implements the appropriate loss function.

downstream.test computes tests for linear models fitted via `glmboost` with a likelihood based loss function and only suitable without early stopping, i.e., if likelihood based model converged. In order to work, the Fisher matrix must be implemented in the `Family`; currently this is only the case for family `RCG`.

**Warning**

The coefficients resulting from boosting with family `Binomial(link = "logit")` are 1/2 of the coefficients of a logit model obtained via `glm` (see `Binomial`).

**Note**

The `[.mboost` function changes the original object, i.e. gbmodel[10] changes gbmodel directly!

**References**


Andreas Mayr, Benjamin Hofner, and Matthias Schmid (2012). The importance of knowing when to stop - a sequential stopping rule for component-wise gradient boosting. *Methods of Information in Medicine, 51*, 178–186. DOI: [http://dx.doi.org/10.3414/ME11-02-0030](http://dx.doi.org/10.3414/ME11-02-0030)

**See Also**

`gamboost`, `glmboost` and `blackboost` for model fitting.

`plot.mboost` for plotting methods.
cvrisk for cross-validated stopping iteration.

Examples

```r
a simple two-dimensional example: cars data
cars.gb <- glmboost(dist ~ speed, data = cars,
control = boost_control(mstop = 2000),
center = FALSE)
cars.gb

initial number of boosting iterations
mstop(cars.gb)

AIC criterion
aic <- AIC(cars.gb, method = "corrected")
aic

extract coefficients for glmboost
coe(cars.gb)
cefl(cars.gb, off2int = TRUE) # offset added to intercept
coe(lm(dist ~ speed, data = cars)) # directly comparable

cars.gb_centered <- glmboost(dist ~ speed, data = cars,
center = TRUE)
selected(cars.gb_centered) # intercept never selected
coe(cars.gb_centered) # intercept implicitly estimated
and thus returned

t # intercept is internally corrected for mean-centering
- mean(cars$speed) * coe(cars.gb_centered, which="speed") # = intercept
not asked for intercept thus not returned
coe(cars.gb_centered, which="speed")
explicitly asked for intercept
coe(cars.gb_centered, which=c("Intercept", "speed"))

enhance or restrict model
cars.gb <- gamboost(dist ~ speed, data = cars,
control = boost_control(mstop = 100, trace = TRUE))
cars.gs[10]
cars.gs[100, return = FALSE] # no refitting required
cars.gs[150, return = FALSE] # only iterations 101 to 150
are newly fitted

coefficients for optimal number of boosting iterations
coe(cars.gs[mstop(aic)])
plot(cars$dist, predict(cars.gs[mstop(aic)]),
ylim = range(cars$dist))
abline(a = 0, b = 1)

example for extraction of coefficients
set.seed(1907)
n <- 100
x1 <- rnorm(n)
```
x2 <- rnorm(n)
x3 <- rnorm(n)
x4 <- rnorm(n)
int <- rep(1, n)
y <- 3 * x1^2 - 0.5 * x2 + rnorm(n, sd = 0.1)
data <- data.frame(y = y, int = int, x1 = x1, x2 = x2, x3 = x3, x4 = x4)

model <- gamboost(y ~ bols(int, intercept = FALSE) +
                   bbs(x1, center = TRUE, df = 1) +
                   bols(x1, intercept = FALSE) +
                   bols(x2, intercept = FALSE) +
                   bols(x3, intercept = FALSE) +
                   bols(x4, intercept = FALSE),
data = data, control = boost_control(mstop = 500))

coef(model) # standard output (only selected base-learners)
coef(model, which = 1:length(variable.names(model))) # all base-learners
coef(model, which = "x1") # shows all base-learners for x1
cf1 <- coef(model, which = c(1,3,4), aggregate = "cumsum")
tmp <- sapply(cf1, function(x) x)
matplot(tmp, type = "l", main = "Coefficient Paths")

cf1_all <- coef(model, aggregate = "cumsum")
cf1_all <- lapply(cf1_all, function(x) x[, ncol(x)]) # last element
## same as coef(model)

cf2 <- coef(model, aggregate = "none")
cf2 <- lapply(cf2, rowSums) # same as coef(model)

### example continued for extraction of predictions

yhat <- predict(model) # standard prediction; here same as fitted(model)
p1 <- predict(model, which = "x1") # marginal effects of x1
orderX <- order(data$x1)
## rowSums needed as p1 is a matrix
plot(data$x1[orderX], rowSums(p1)[orderX], type = "b")

## better: predictions on a equidistant grid
new_data <- data.frame(x1 = seq(min(data$x1), max(data$x1), length = 100))
p2 <- predict(model, newdata = new_data, which = "x1")
lines(new_data$x1, rowSums(p2), col = "red")

### extraction of model characteristics

extract(model, which = "x1") # design matrices for x1
extract(model, what = "penalty", which = "x1") # penalty matrices for x1
extract(model, what = "lambda", which = "x1") # df and corresponding lambda for x1
## note that bols(x1, intercept = FALSE) is unpenalized

extract(model, what = "bnames") # name of complete base-learner
extract(model, what = "variable.names") # only variable names
variable.names(model) # the same
### extract from base-learners

```r
extract(bbs(x1), what = "design")
extract(bbs(x1), what = "penalty")
```

## weights and lambda can only be extracted after using dpp

```r
weights <- rep(1, length(x1))
extrait(bbs(x1)$dpp(weights), what = "lambda")
```

---

**Description**

Plot coefficient plots for `glmboost` models and partial effect plots for all other `mboost` models.

**Usage**

```r
S3 method for class 'glmboost'
plot(x, main = deparse(x$call), col = NULL,
 off2int = FALSE, ...)

S3 method for class 'mboost'
plot(x, which = NULL, newdata = NULL,
 type = "b", rug = TRUE, rugcol = "black",
 ylim = NULL, xlab = NULL, ylab = expression(f[partial]),
 add = FALSE, ...)

S3 method for class 'mboost'
lines(x, which = NULL, type = "l", rug = FALSE, ...)
```

**Arguments**

- **x**: object of class `glmboost` or an object inheriting from `mboost` for plotting.
- **main**: a title for the plot.
- **col**: (a vector of) colors for plotting the lines representing the coefficient paths.
- **off2int**: logical indicating whether the offset should be added to the intercept (if there is any) or if the offset is neglected for plotting (default).
- **which**: a subset of base-learners used for plotting. If `which` is given (as an integer vector or characters corresponding to base-learners) only the corresponding partial effect plots are depicted. Per default all selected base-learners are plotted.
- **newdata**: optionally, a data frame in which to look for variables with which to make predictions that are then plotted. This is especially useful if the data that was used to fit the model shows some larger gaps as effect plots are linearly interpolated between observations. For an example using `newdata` see below.
plot

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>character string giving the type of plot desired. Per default, points and lines are plotted (&quot;b&quot;). Other useful options are points (&quot;p&quot;) or lines (&quot;l&quot;). See plot.default for details.</td>
</tr>
<tr>
<td>rug</td>
<td>logical. Should a rug be added to the x-axis?</td>
</tr>
<tr>
<td>rugcol</td>
<td>color for the rug.</td>
</tr>
<tr>
<td>ylim</td>
<td>the y limits of the plot.</td>
</tr>
<tr>
<td>xlab</td>
<td>a label for the x axis.</td>
</tr>
<tr>
<td>ylab</td>
<td>a label for the y axis.</td>
</tr>
<tr>
<td>add</td>
<td>logical. Should the plot be added to the previous plot?</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments to the plot functions. E.g. one can specify the x limits xlim or the color of the plot using col.</td>
</tr>
</tbody>
</table>

Details

The coefficient paths for glmboost models show how the coefficient estimates evolve with increasing mstop. Each line represents one parameter estimate. Parameter estimates are only depicted when they are selected at any time in the boosting model. Parameters that are not selected are dropped from the figure (see example).

Models specified with gamboost or mboost are plotted as partial effects. Only the effect of the current boosting iteration is depicted instead of the coefficient paths as for linear models. The function lines is just a wrapper to plot(..., add = TRUE) where per default the effect is plotted as line and the rug is set to FALSE.

Spatial effects can be also plotted using the function plot for mboost models (using lattice graphics). More complex effects require manual plotting: One needs to predict the effects on a desired grid and plot the effect estimates.

Value

A plot of the fitted model.

References


See Also

mboost_methods for further methods.

Examples

```r
a simple example: cars data with one random variable
set.seed(1234)
cars$z <- rnorm(50)
```
### Plot linear models

```r
fit a linear model
cars.lm <- glmboost(dist ~ speed + z, data = cars)

plot coefficient paths of glmboost
par(mfrow = c(3, 1), mar = c(4, 4, 4, 8))
plot(cars.lm,
 main = "Coefficient paths (offset not included)"
)
plot(cars.lm, off2int = TRUE,
 main = "Coefficient paths (offset included in intercept)"
)

plot coefficient paths only for the first 15 steps,
i.e., before z is selected
mstop(cars.lm) <- 15
plot(cars.lm, off2int = TRUE, main = "z is not yet selected")
```

### Plot additive models; basics

```r
fit an additive model
cars.gam <- gamboost(dist ~ speed + z, data = cars)

plot effects
par(mfrow = c(1, 2), mar = c(4, 4, 0.1, 0.1))
plot(cars.gam)

use same y-lims
plot(cars.gam, ylim = c(-50, 50))

plot only the effect of speed
plot(cars.gam, which = "speed")

as partial matching is used we could also use
plot(cars.gam, which = "sp")
```

### More complex plots

```r
Let us use more boosting iterations and compare the effects.

We change the plot type and plot both effects in one figure:
par(mfrow = c(1, 1), mar = c(4, 4, 4, 0.1))
mstop(cars.gam) <- 100
plot(cars.gam, which = 1, col = "red", type = "l", rug = FALSE,
 main = "Compare effect for various models")
```
## Now the same model with 1000 iterations
mstop(cars.gam) <- 1000
lines(cars.gam, which = 1, col = "grey", lty = "dotted")

## There are some gaps in the data. Use newdata to get a smoother curve:
newdata <- data.frame(speed = seq(min(cars$speed), max(cars$speed),
length = 200))
lines(cars.gam, which = 1, col = "grey", lty = "dashed",
newdata = newdata)

## The model with 1000 steps seems to overfit the data.
## Usually one should use e.g. cross-validation to tune the model.

## Finally we refit the model using linear effects as comparison
cars.glm <- gamboost(dist ~ speed + z, baselearner = bols, data = cars)
lines(cars.glm, which = 1, col = "black")

## We see that all effects are more or less linear.

## Add a legend
legend("topleft", title = "Model",
legend = c("... with mstop = 100", "... with mstop = 1000",
"... with linear effects"),
lty = c("solid", "dashed", "solid"),
col = c("red", "grey", "black"))

---

stabsel  

### Stability Selection

**Description**

Selection of influential variables or model components with error control.

**Usage**

```r
a method to compute stability selection paths for fitted mboost models
S3 method for class 'mboost'
stabsel(x, cutoff, q, PFER, grid = 0:mstop(x),
folds = subsample(model.weights(x), B = B),
B = ifelse(sampling.type == "MB", 100, 50),
assumption = c("unimodal", "r-concave", "none"),
sampling.type = c("SS", "MB"),
papply = mclapply, verbose = TRUE, FWER, eval = TRUE, ...)
```

```r
just a wrapper to stabsel(p, ..., eval = FALSE)
S3 method for class 'mboost'
stabsel_parameters(p, ...)
```

---
Arguments

\texttt{x, p} 

an fitted model of class "mboost".

cutoff 

cutoff between 0.5 and 1. Preferably a value between 0.6 and 0.9 should be used.

q 

number of (unique) selected variables (or groups of variables depending on the model) that are selected on each subsample.

PFER 

upper bound for the per-family error rate. This specifies the amount of falsely selected base-learners, which is tolerated. See details.

grid 

a numeric vector of the form 0:m. See also \texttt{cvrisk}.

folds 

a weight matrix with number of rows equal to the number of observations, see \texttt{cvrisk} and \texttt{subsample}. Usually one should not change the default here as subsampling with a fraction of 1/2 is needed for the error bounds to hold. One usage scenario where specifying the folds by hand might be the case when one has dependent data (e.g. clusters) and thus wants to draw clusters (i.e., multiple rows together) not individuals.

assumption 

Defines the type of assumptions on the distributions of the selection probabilities and simultaneous selection probabilities. Only applicable for \texttt{sampling.type = "SS"}. For \texttt{sampling.type = "MB"} we always use code "none".

\texttt{sampling.type} 

use sampling scheme of of Shah & Samworth (2013), i.e., with complementary pairs (\texttt{sampling.type = "SS"}), or the original sampling scheme of Meinshausen & Buehlmann (2010).

B 

number of subsampling replicates. Per default, we use 50 complementary pairs for the error bounds of Shah & Samworth (2013) and 100 for the error bound derived in Meinshausen & Buehlmann (2010). As we use B complementary pairs in the former case this leads to $2B$ subsamples.

\texttt{papply} 

(parallel) apply function, defaults to \texttt{mclapply}. Alternatively, \texttt{parLapply} can be used. In the latter case, usually more setup is needed (see example of \texttt{cvrisk} for some details).

verbose 

logical (default: \texttt{TRUE}) that determines whether warnings should be issued.

FWER 

deprecated. Only for compatibility with older versions, use PFER instead.

eval 

logical. Determines whether stability selection is evaluated (\texttt{eval = TRUE}; default) or if only the parameter combination is returned.

\ldots 

additional arguments to parallel apply methods such as \texttt{mclapply} and to \texttt{cvrisk}.

Details

For details see \texttt{stabsel} in package \texttt{stabs} and Hofner et al. (2015).

Value

An object of class \texttt{stabsel} with a special print method. The object has the following elements:

\texttt{phat} 

selection probabilities.

\texttt{selected} 

elements with maximal selection probability greater cutoff.
max  maximum of selection probabilities.
cutoff  cutoff used.
q  average number of selected variables used.
PFER  per-family error rate.
sampling.type  the sampling type used for stability selection.
assumption  the assumptions made on the selection probabilities.
call  the call.

References


See Also

`stabsel` and `stabsel_parameters`

Examples

```r
make data set available
data("bodyfat", package = "TH.data")
set seed
set.seed(1234)

low-dimensional example
mod <- glmboost(DEXfat ~ ., data = bodyfat)

compute cutoff ahead of running stabsel to see if it is a sensible parameter choice.
p = ncol(bodyfat) - 1 (= Outcome) + 1 (= Intercept)
stabsel_parameters(q = 3, PFER = 1, p = ncol(bodyfat) - 1 + 1,
sampling.type = "MB")

the same:
stabsel(mod, q = 3, PFER = 1, sampling.type = "MB", eval = FALSE)

##
Do not run and check these examples automatically as
they take some time (~ 10 seconds depending on the system)

now run stability selection
(sbody <- stabsel(mod, q = 3, PFER = 1, sampling.type = "MB"))
opar <- par(mai = par("mai") * c(1, 1, 1, 2.7))
plot(sbody)
par(opar)
```
survFit

survFit

plot(sbody, type = "maxsel", ymargin = 6)

## End(Not run and test)

---

**survFit**

*Survival Curves for a Cox Proportional Hazards Model*

**Description**

Computes the predicted survivor function for a Cox proportional hazards model.

**Usage**

```r
S3 method for class 'mboost'
survFit(object, newdata = NULL, ...)
S3 method for class 'survFit'
plot(x, xlab = "Time", ylab = "Probability", ...)
```

**Arguments**

- `object`: an object of class `mboost` which is assumed to have a `CoxPH` family component.
- `newdata`: an optional data frame in which to look for variables with which to predict the survivor function.
- `x`: an object of class `survFit` for plotting.
- `xlab`: the label of the x axis.
- `ylab`: the label of the y axis.
- `...`: additional arguments passed to `callies`.

**Details**

If `newdata = NULL`, the survivor function of the Cox proportional hazards model is computed for the mean of the covariates used in the `blackboost`, `gamboost`, or `glmboost` call. The Breslow estimator is used for computing the baseline survivor function. If `newdata` is a data frame, the `predict` method of `object`, along with the Breslow estimator, is used for computing the predicted survivor function for each row in `newdata`.

**Value**

An object of class `survFit` containing the following components:

- `surv`: the estimated survival probabilities at the time points given in `time`.
- `time`: the time points at which the survivor functions are evaluated.
- `n.event`: the number of events observed at each time point given in `time`. 
See Also
gamboost, glmboost and blackboost for model fitting.

Examples

library("survival")
data("ovarian", package = "survival")

fm <- Surv(futime, fustat) ~ age + resid.ds + rx + ecog.ps
fit <- glmboost(fm, data = ovarian, family = CoxPH(),
control=boost_control(mstop = 500))

S1 <- survFit(fit)
S1
newdata <- ovarian[c(1, 3, 12),]
S2 <- survFit(fit, newdata = newdata)
S2

plot(S1)

## 

<table>
<thead>
<tr>
<th>varimp</th>
<th>Variable Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

In-bag risk reduction per base-learner as variable importance for boosting.

Usage

## S3 method for class 'mboost'

varimp(object, ...)

## S3 method for class 'varimp'

plot(x, percent = TRUE, type = c("variable", "blearner"),
    blorder = c("importance", "alphabetical", "rev_alphabetical", "formula"),
    nbars = 10L, maxchar = 20L, xlab = NULL, ylab = NULL, xlim, auto.key, ...)

Arguments

- **object** an object of class mboost.
- **x** an object of class varimp.
- **percent** logical, indicating whether variable importance should be specified in percent.
- **type** a character string specifying whether to draw bars for variables ("variable", default) or base-learners ("blearner") in the model (no effect for a glmboost object).
varimp

blorder a character string specifying the order of the base-learners in the plot. The default “importance” corresponds to the order of the base-learner importance, “alphabetical” and “rev_alphabetical” to alphabetical order, respectively its reverse, and “formula” to their order in the model formula.

nbars integer, maximum number of bars to be plotted. If nbars is exceeded, least important variables / base-learners are summarized as “other”.

maxchar integer, maximum number of characters in bar labels.

xlab text for the x-axis label. If not set (default is NULL) x-axis label is generated automatically depending on argument percent.

ylab text for the y-axis label. If not set (default is NULL) y-axis label is generated automatically depending on argument type.

xlim the x limits of the plot. Defaults are from 0 to total reduction, or from 0 to 1 for percent = TRUE. (In case of negative risk reductions, default limits are from total negative to total positive reduction, or the latter normalized by the total absolute reduction for percent = TRUE.)

auto.key logical, or a list passed to lattice::barchart. By default auto.key=TRUE provides automatically generated legends showing the underlying base-learners in the stacked barchart (type = "variable"). If there is an unique base-learner for each variable(-interaction), auto.key = FALSE is default setting. For type = "blearner" the argument has no effect at all.

... additional arguments passed to lattice::barchart.

row.names NULL or a character vector giving the row names for the data frame. Missing values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntactic names: see make.names) is optional.

Details

This function extracts the in-bag risk reductions per boosting step of a fitted mboost model and accumulates it individually for each base-learner contained in the model. This quantifies the individual contribution to risk reduction of each base-learner and can thus be used to compare the importance of different base-learners or variables in the model. Starting from offset only, in each boosting step risk reduction is computed as the difference between in-bag risk of the current and the previous model and is accounted for the base-learner selected in the particular step.

The results can be plotted in a bar plot either for the base-learners, or the variables contained in the model. The bars are ordered according to variable importance. If their number exceeds nbars the least important are summarized as “other”. If bars are plotted per variable, all base-learners containing the same variable will be accumulated in a stacked bar. This is of use for models including for example separate base-learners for the linear and non-linear part of a covariate effect (see ?bbs option center=TRUE). However, variable interactions are treated as individual variables, as their desired handling might depend on context.

As a comparison the selection frequencies are added to the respective base-learner labels in the plot (rounded to three digits). For stacked bars they are ordered accordingly.
Value

An object of class varimp with available plot and as.data.frame methods.
Converting a varimp object results in a data.frame containing the risk reductions, selection frequencies and the corresponding base-learner and variable names as ordered factors (ordered according to their particular importance).

Author(s)

Tobias Kuehn (<tobi.kuehn@gmx.de>), Almond Stoecker (<almond.stoecker@gmail.com>)

Examples

data(iris)
### glmboost with multiple variables and intercept
iris$setosa <- factor(iris$Species == "setosa")
iris_glm <- glmboost(setosa ~ 1 + Sepal.Width + Sepal.Length + Petal.Width +
                    Petal.Length,
                    data = iris, control = boost_control(mstop = 50),
                    family = Binomial(link = c("logit")))
varimp(iris_glm)
### importance plot with four bars only
plot(varimp(iris_glm), nbars = 4)

### gamboost with multiple variables
iris_gam <- gamboost(Sepal.Width ~
                      bols(Sepal.Length, by = setosa) +
                      bbs(Sepal.Length, by = setosa, center = TRUE) +
                      bols(Petal.Width) +
                      bbs(Petal.Width, center = TRUE) +
                      bols(Petal.Length) +
                      bbs(Petal.Length, center = TRUE),
                      data = iris)
varimp(iris_gam)
### stacked importance plot with base-learners in rev. alphabetical order
plot(varimp(iris_gam), blorder = "rev_alphabetical")

### similar ggplot
## Not run:
library(ggplot2)
ggplot(data.frame(varimp(iris_gam)), aes(variable, reduction, fill = blearner)) +
      geom_bar(stat = "identity") + coord_flip()
## End(Not run)
Index

* classes
  boost_family-class, 25
* datagen
  FP, 39
* methods
  confint.mboost, 26
  methods, 49
  plot, 57
* misc
  boost_control, 24
* models
  baselearners, 7
  blackboost, 21
  cvrisk, 28
  glmboost, 41
  mboost, 45
  mboost-package, 2
  mboost_fit, 47
* nonlinear
  mboost, 45
  mboost_fit, 47
* nonparametric
  mboost-package, 2
  stabsel, 60
* package
  mboost-package, 2
* regression
  blackboost, 21
  cvrisk, 28
  glmboost, 41
* smooth
  mboost-package, 2
* survival
  IPCWeights, 44
  [.mboost (methods), 49
  %% (baselearners), 7
  %O% (baselearners), 7
  %X% (baselearners), 7
  %O%, 36
  AdaExp (Family), 32
  AIC, 42, 46, 48
  AIC.mboost, 30
  AIC.mboost (methods), 49
  as.data.frame.varimp (varimp), 64
  AUC (Family), 32
  base-learner (baselearners), 7
  baselearner (baselearners), 7
  baselearners, 7, 23, 42, 46
  bbs, 5, 40, 45, 49
  bbs (baselearners), 7
  Binomial, 3, 54
  Binomial (Family), 32
  bkernel, 3
  bkernel (baselearners), 7
  blackboost, 6, 13, 21, 24, 25, 42, 46, 48, 49, 54, 63, 64
  bmono, 5
  bmono (baselearners), 7
  bmrf, 5
  bmrf (baselearners), 7
  bns (baselearners), 7
  bols, 4, 5, 24, 45, 48
  bols (baselearners), 7
  boost_control, 22, 23, 24, 41, 42, 45, 46, 48, 49, 53
  boost_family, 53
  boost_family-class, 25
  brad, 5
  brad (baselearners), 7
  brandom (baselearners), 7
  bspatial, 5
  bspatial (baselearners), 7
  bss (baselearners), 7
  btrees, 45
  btrees (baselearners), 7
  buser (baselearners), 7

67
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>calc_kernel</td>
<td>10</td>
</tr>
<tr>
<td>Cindex (Family)</td>
<td>32</td>
</tr>
<tr>
<td>coef</td>
<td>42</td>
</tr>
<tr>
<td>coef.glmboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>coef.mboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>confint</td>
<td>4</td>
</tr>
<tr>
<td>confint.glmboost (confint.mboost)</td>
<td>26</td>
</tr>
<tr>
<td>confint.mboost</td>
<td>26</td>
</tr>
<tr>
<td>contrasts</td>
<td>9, 10</td>
</tr>
<tr>
<td>cover.design</td>
<td>12</td>
</tr>
<tr>
<td>CoxPH</td>
<td>63</td>
</tr>
<tr>
<td>CoxPH (Family)</td>
<td>32</td>
</tr>
<tr>
<td>ctree</td>
<td>22</td>
</tr>
<tr>
<td>ctree_control</td>
<td>10, 22</td>
</tr>
<tr>
<td>cv (cvrisk)</td>
<td>28</td>
</tr>
<tr>
<td>cvrisk</td>
<td>6, 23, 27, 28, 42, 46, 49, 55, 61</td>
</tr>
<tr>
<td>downstream.test (methods)</td>
<td>49</td>
</tr>
<tr>
<td>drawmap</td>
<td>13</td>
</tr>
<tr>
<td>ExpectReg (Family)</td>
<td>32</td>
</tr>
<tr>
<td>extract (methods)</td>
<td>49</td>
</tr>
<tr>
<td>Family</td>
<td>22, 23, 25, 32, 41, 42, 45–47, 49, 54</td>
</tr>
<tr>
<td>fitted.mboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>FP</td>
<td>39</td>
</tr>
<tr>
<td>gam</td>
<td>2</td>
</tr>
<tr>
<td>gamboost</td>
<td>6, 23–25, 40, 42, 48, 52, 54, 63, 64</td>
</tr>
<tr>
<td>gamboost (mboost)</td>
<td>45</td>
</tr>
<tr>
<td>GammaReg (Family)</td>
<td>32</td>
</tr>
<tr>
<td>GaussClass (Family)</td>
<td>32</td>
</tr>
<tr>
<td>Gaussian (Family)</td>
<td>32</td>
</tr>
<tr>
<td>GaussReg (Family)</td>
<td>32</td>
</tr>
<tr>
<td>gbm</td>
<td>2, 22</td>
</tr>
<tr>
<td>Gehan (Family)</td>
<td>32</td>
</tr>
<tr>
<td>glm</td>
<td>2, 34, 36, 54</td>
</tr>
<tr>
<td>glmboost</td>
<td>5, 6, 23–25, 41, 46, 48, 49, 51–54, 63, 64</td>
</tr>
<tr>
<td>hatvalues.gamboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>hatvalues.glmboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>Huber (Family)</td>
<td>32</td>
</tr>
<tr>
<td>Hurdle (Family)</td>
<td>32</td>
</tr>
<tr>
<td>IPCWeights</td>
<td>44</td>
</tr>
<tr>
<td>Laplace (Family)</td>
<td>32</td>
</tr>
<tr>
<td>lapply</td>
<td>29</td>
</tr>
<tr>
<td>levelplot</td>
<td>27</td>
</tr>
<tr>
<td>lines.mboost</td>
<td>57</td>
</tr>
<tr>
<td>lines.mboost.ci (confint.mboost)</td>
<td>26</td>
</tr>
<tr>
<td>lm</td>
<td>2</td>
</tr>
<tr>
<td>logLik.mboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>Loglog (Family)</td>
<td>32</td>
</tr>
<tr>
<td>Lognormal (Family)</td>
<td>32</td>
</tr>
<tr>
<td>mboost</td>
<td>15, 25, 34, 35, 37, 45, 48</td>
</tr>
<tr>
<td>mboost-package</td>
<td>2</td>
</tr>
<tr>
<td>mboost_fit</td>
<td>2, 5, 22, 23, 42, 45, 46, 47</td>
</tr>
<tr>
<td>mboost_methods</td>
<td>26, 27, 58</td>
</tr>
<tr>
<td>mboost_methods (methods)</td>
<td>49</td>
</tr>
<tr>
<td>mboost_package (mboost-package)</td>
<td>2</td>
</tr>
<tr>
<td>mclapply</td>
<td>4, 27, 29, 30, 61, 63</td>
</tr>
<tr>
<td>methods</td>
<td>23, 42, 46, 49, 49</td>
</tr>
<tr>
<td>model.matrix</td>
<td>10</td>
</tr>
<tr>
<td>model.matrix.default</td>
<td>41</td>
</tr>
<tr>
<td>mstop</td>
<td>30</td>
</tr>
<tr>
<td>mstop (methods)</td>
<td>49</td>
</tr>
<tr>
<td>mstop&lt;= (methods)</td>
<td>49</td>
</tr>
<tr>
<td>Multinomial (Family)</td>
<td>32</td>
</tr>
<tr>
<td>NBinomial (Family)</td>
<td>32</td>
</tr>
<tr>
<td>nuisance (methods)</td>
<td>49</td>
</tr>
<tr>
<td>package-mboost (mboost-package)</td>
<td>2</td>
</tr>
<tr>
<td>package_mboost (mboost-package)</td>
<td>2</td>
</tr>
<tr>
<td>parLapply</td>
<td>29</td>
</tr>
<tr>
<td>plot</td>
<td>29, 46, 48, 57</td>
</tr>
<tr>
<td>plot.cvrisk (cvrisk)</td>
<td>28</td>
</tr>
<tr>
<td>plot.default</td>
<td>58</td>
</tr>
<tr>
<td>plot.mboost</td>
<td>4, 54</td>
</tr>
<tr>
<td>plot.mboost.ci (confint.mboost)</td>
<td>26</td>
</tr>
<tr>
<td>plot.survFit (survFit)</td>
<td>63</td>
</tr>
<tr>
<td>plot.varimp (varimp)</td>
<td>64</td>
</tr>
<tr>
<td>Poisson (Family)</td>
<td>32</td>
</tr>
<tr>
<td>predict</td>
<td>23, 42, 46, 48, 63</td>
</tr>
<tr>
<td>predict.blackboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>predict.gamboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>predict.glmboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>predict.mboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>print</td>
<td>23, 42, 46, 48</td>
</tr>
<tr>
<td>print.cvrisk (cvrisk)</td>
<td>28</td>
</tr>
<tr>
<td>print.glmboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>print.glmboost.ci (confint.mboost)</td>
<td>26</td>
</tr>
<tr>
<td>print.mboost (methods)</td>
<td>49</td>
</tr>
<tr>
<td>PropOdds (Family)</td>
<td>32</td>
</tr>
<tr>
<td>QuantReg (Family)</td>
<td>32</td>
</tr>
</tbody>
</table>
randomForest, 2
RCG, 54
RCG (Family), 32
read.bnd, 11
resid.mboost (methods), 49
residuals.mboost (methods), 49
risk (methods), 49
selected (methods), 49
show, boost_family-method
   (boost_family-class), 25
solve.QP, 10
stabsel, 60, 61, 62
stabsel_parameters, 62
stabsel_parameters.mboost (stabsel), 60
stationary.cov, 10
subsample, 61
summary.mboost (methods), 49
Surv, 35
survFit, 63

variable.names.glmboost (methods), 49
variable.names.mboost (methods), 49
varimp, 64

Weibull (Family), 32