Package ‘miRetrieve’

September 18, 2021

Type Package

Title miRNA Text Mining in Abstracts

Version 1.3.4

Author Julian Friedrich [aut, cre],
 Hans-Peter Hammes [aut],
 Guido Krenning [aut]

Maintainer Julian Friedrich <julian.friedrich@medma.uni-heidelberg.de>

Description Providing tools for microRNA (miRNA) text mining.

 miRetrieve summarizes miRNA literature by extracting, counting, and analyzing miRNA names, thus aiming at gaining biological insights into a large amount of text within a short period of time. To do so, miRetrieve uses regular expressions to extract miRNAs and tokenization to identify meaningful miRNA associations. In addition, miRetrieve uses the latest miRTarBase version 8.0 (Hsi-Yuan Huang et al. (2020) "miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database" <doi:10.1093/nar/gkz896>) to display field-specific miRNA-mRNA interactions. The most important functions are available as a Shiny web application under <https://miretrieve.shinyapps.io/miRetrieve/>.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.1.0)

Imports dplyr (>= 1.0.7), forcats (>= 0.5.1), ggplot2 (>= 3.3.5), magrittr (>= 2.0.1), openxlsx (>= 4.2.4), plotly (>= 4.9.4.1), purrr (>= 0.3.4), readr (>= 2.0.1), readxl (>= 1.3.1), ranger (>= 0.4.11), scales (>= 1.1.1), stringr (>= 1.4.0), textclean (>= 0.9.3), tidyr (>= 1.1.3), tidytex (>= 0.3.1), topicmodels (>= 0.2.12), wordcloud (>= 2.6), xml2 (>= 1.3.2), zoo (>= 1.8-9)

RoxygenNote 7.1.1

Suggests kableExtra, knitr, reshape2, rmarkdown, testthat

NeedsCompilation no
R topics documented:

- add_col_topic
- animal_keywords
- assign_topic
- assign_topic_lda
- biomarker_keywords
- calculate_score_animals
- calculate_score_biomarker
- calculate_score_patients
- calculate_score_topic
- combine_df
- combine_mir
- combine_stopwords
- compare_mir_count
- compare_mir_count_log2
- compare_mir_count_unique
- compare_mir_terms
- compare_mir_terms_log2
- compare_mir_terms_scatter
- compare_mir_terms_unique
- count_mir
- count_mir_threshold
- count_snp
- count_target
- df_crc
- df_mirtarbase
- df_panc
- df_test
- extract_mir_df
- extract_mir_string
- extract_snp
- fit_lda
- generate_stopwords
- get_distinct_mir_df
- get_distinct_mir_vec
- get_mir
- get_pmid
- get_shared_mir_df
- get_shared_mir_vec
- get_snp
- indicate_mir
- indicate_term
- join_mirtarbase
add_col_topic

Description

Add topic column to a data frame.

Usage

add_col_topic(df, col.topic = "Topic", topic.name = "Topic1")
Arguments

- **df**: Data frame which the topic column is added to.
- **col.topic**: String. Name of the topic column to be created.
- **topic.name**: String. Topic name to be contained in col.topic.

Details

Add a topic column to a data frame. This topic column is named col.topic and contains the string topic.name.

Value

Data frame with a topic column added.

See Also

assign_topic()

animal_keywords
Keywords - animals.

Description

Keywords to identify abstracts using animal models.

Usage

animal_keywords

Format

An object of class character of length 12.
assign_topic

Assign topics based on precalculated scores

Description

Assign topics to abstracts based on precalculated scores.

Usage

assign_topic(
 df,
 col.topic,
 threshold,
 topic.names = NULL,
 col.topic.name = "Topic",
 col.pmid = "PMID",
 discard = FALSE
)

Arguments

df Data frame containing precalculated topic scores and PubMed-IDs.

col.topic Character vector. Vector with column names containing precalculated topic scores.

topic.names Character vector. Optional. Vector containing names of new topics. Positions in topic.names correspond to positions in col.topic. If topic.names is not provided, col.topic is used to name the new topics.

col.topic.name String. Name of the new topic column.

discard Boolean. If discard = TRUE, only abstracts with a newly assigned topic are kept. Abstracts without a newly assigned topic are discarded.

Details

Assign topics to abstracts based on precalculated scores. assign_topic() compares different pre-calculated topic scores and assigns the abstract to the topic with the highest score. If there is a tie between topic scores, the abstract is assigned to all topics in question. If an abstract matches no topic, it is assigned to the topic "Unknown".

Value

Data frame with topics based on precalculated topic scores.
assign_topic lda

See Also

- `calculate_score_topic()`, `plot_score_topic()`, `add_col_topic()`
- Other score functions: `calculate_score_animals()`, `calculate_score_biomarker()`, `calculate_score_patients()`, `calculate_score_topic()`, `plot_score_animals()`, `plot_score_biomarker()`, `plot_score_patients()`, `plot_score_topic()`

assign_topic lda
Assign topics based on LDA model

Description

Assign topics to abstracts based on an LDA model.

Usage

```r
assign_topic_lda(df, lda_model, topic.names, col.pmid = PMID)
```

Arguments

- `df`: Data frame to assign topics to. Should be the same data frame that the LDA model was fitted on.
- `lda_model`: LDA-model.
- `topic.names`: Character vector. Vector containing names of the new topics. Must have the same length as the number of topics `lda_model` was fitted on.

Details

Assign topic to abstracts based on an LDA model. To identify the subject of a topic, use `plot_lda_term()`.

Value

Data frame with topics assigned to each abstract based on an LDA model.

See Also

- `fit lda()`, `plot lda_term()`, `assign_topic()
- Other LDA functions: `fit lda()`, `plot lda_term()`, `plot perplexity()`
biomarker_keywords

Keywords - biomarkers.

Description

Keywords to identify abstracts reporting about miRNAs as biomarkers.

Usage

biomarker_keywords

Format

An object of class character of length 18.

calculate_score_animals

Calculate animal model scores for abstracts

Description

Calculate animal model score for each abstract to indicate possible use of animal models.

Usage

```r
calculate_score_animals(
  df,
  keywords = animal_keywords,
  case = FALSE,
  threshold = NULL,
  indicate = FALSE,
  discard = FALSE,
  col.abstract = Abstract
)
```

Arguments

- **df**
 - Data frame containing abstracts.
- **keywords**
 - Character vector. Vector containing keywords. The score is calculated based on these keywords. How much weight a keyword in keywords carries is determined by how often it is present in keywords, e.g. if a keyword is mentioned twice in keywords and it is mentioned only once in an abstract, it adds 2 points to the score. The predefined keywords can be accessed via miRetrieve::animal_keywords.
- **case**
 - Boolean. If case = TRUE, terms contained in keywords are case sensitive. If case = FALSE, terms contained in keywords are case insensitive.
threshold Integer. Optional. Threshold to decide if an abstract is considered to use animal models or not. If indicate = TRUE or discard = TRUE and threshold is not specified, threshold is automatically set to 1.

indicate Boolean. If indicate = TRUE, an extra column is added. This extra column contains "Yes" or "No", indicating the use of animal models in abstracts.

discard Boolean. If discard = TRUE, only abstracts are kept where animal models are present.

col.abstract Symbol. Column containing abstracts.

Details

Calculate animal model score for each abstract to indicate possible use of animal models. This score is added to the data frame as an additional column Animal_score, containing the calculated animal model score. To decide which abstracts are considered to contain animal models, a threshold can be set via the threshold argument. Furthermore, an additional column can be added, verbally indicating the use of animal models in an abstract. Choosing the right threshold can be facilitated using plot_score_animals().

Value

Data frame with calculated animal model scores. If discard = FALSE, adds extra columns to the original data frame with the calculated animal model scores. If discard = TRUE, only abstracts with animal models are kept.

See Also

plot_score_animals()

Other score functions: assign_topic(), calculate_score_biomarker(), calculate_score_patients(), calculate_score_topic(), plot_score_animals(), plot_score_biomarker(), plot_score_patients(), plot_score_topic()

calculate_score_biomarker

Calculate biomarker scores for abstracts

Description

Calculate biomarker score for each abstract to indicate possible use of miRNAs as biomarker.

Usage

```r
calculate_score_biomarker(
  df,
  keywords = biomarker_keywords,
  case = FALSE,
  threshold = NULL,
)```
Arguments

- **df**: Data frame containing abstracts.
- **keywords**: Character vector. Vector containing keywords. The score is calculated based on these keywords. How much weight a keyword in **keywords** carries is determined by how often it is present in **keywords**, e.g. if a keyword is mentioned twice in **keywords** and it is mentioned only once in an abstract, it adds 2 points to the score. The predefined keywords can be accessed via `miRetrieve::biomarker_keywords`.
- **case**: Boolean. If `case = TRUE`, terms contained in **keywords** are case sensitive. If `case = FALSE`, terms contained in **keywords** are case insensitive.
- **threshold**: Integer. Optional. Threshold to decide if use of miRNAs as biomarker are present in an abstract or not. If `indicate = TRUE` or `discard = TRUE` and `threshold` not specified, threshold is automatically set to 1.
- **indicate**: Boolean. If `indicate = TRUE`, an extra column is added. This extra column contains "Yes" or "No", indicating the use of miRNAs as biomarker in abstracts.
- **discard**: Boolean. If TRUE, only abstracts are kept where miRNAs as biomarker.
- **col.abstract**: Symbol. Column containing abstracts.

Details

Calculate biomarker score for each abstract to indicate possible use of miRNAs as biomarker. This score is added to the data frame as an additional column **Biomarker_score**, containing the calculated biomarker score. To decide which abstracts are considered to contain use of miRNAs as biomarker, a threshold can be set via the `threshold` argument. Furthermore, an additional column can be added, verbally indicating the general use of miRNAs as biomarker in an abstract. Choosing the right threshold can be facilitated using `plot_score_biomarker()`.

Value

Data frame with calculated biomarker scores. If `discard = FALSE`, adds extra columns to the original data frame with calculated biomarker scores. If `discard = TRUE`, only abstracts are with miRNAs as biomarker are kept.

See Also

- `plot_score_biomarker()`
- Other score functions: `assign_topic()`, `calculate_score_animals()`, `calculate_score_patients()`, `calculate_score_topic()`, `plot_score_animals()`, `plot_score_biomarker()`, `plot_score_patients()`, `plot_score_topic()`
calculate_score_patients

Calculate patients scores for abstracts

Description

Calculate patients score for each abstract to indicate possible use of patient material.

Usage

```r
calculate_score_patients(
 df,
 keywords = patients_keywords,
 case = FALSE,
 threshold = NULL,
 indicate = FALSE,
 discard = FALSE,
 col.abstract = Abstract
)
```

Arguments

- `df`: Data frame containing abstracts.
- `keywords`: Character vector. Vector containing keywords. The score is calculated based on these keywords. How much weight a keyword in `keywords` carries is determined by how often it is present in `keywords`, e.g., if a keyword is mentioned twice in `keywords` and it is mentioned only once in an abstract, it adds 2 points to the score. The predefined keywords can be accessed via `miRetrieve::patients_keywords`.
- `case`: Boolean. If `case = TRUE`, terms contained in `keywords` are case sensitive. If `case = FALSE`, terms contained in `keywords` are case insensitive.
- `threshold`: Integer. Optional. Threshold to decide if use of patient tissue is present in an abstract or not. If `indicate = TRUE` or `discard = TRUE` and `threshold` not specified, threshold is automatically set to 1.
- `indicate`: Boolean. If `indicate = TRUE`, an extra column is added. This extra column contains "Yes" or "No", indicating the use of patient tissue in abstracts.
- `discard`: Boolean. If `discard = TRUE`, only abstracts are kept where use of patient tissue is present.
- `col.abstract`: Symbol. Column containing abstracts.

Details

Calculate patient score for each abstract to indicate possible use of patient material. This score is added to the data frame as an additional column `Patient_score`, containing the calculated patients score. To decide which abstracts are considered to contain patient material, a threshold can be set via the `threshold` argument. Furthermore, an additional column can be added, verbally indicating the general use of patient material. Choosing the right threshold can be facilitated using `plot_score_patients()`.
calculate_score_topic

Value

Data frame with calculated patient scores. If discard = FALSE, adds extra columns to the original data frame with the calculated patient tissue scores. If discard = TRUE, only abstracts with use of patient tissue are kept.

See Also

plot_score_patients()

Other score functions: assign_topic(), calculate_score_animals(), calculate_score_biomarker(), calculate_score_topic(), plot_score_animals(), plot_score_biomarker(), plot_score_patients(), plot_score_topic()

calculate_score_topic  Calculate scores of a self-chosen topic

Description

Calculate score of a self-chosen topic for each abstract to identify abstracts possibly corresponding to the topic of interest.

Usage

calculate_score_topic(
  df,
  keywords,
  case = FALSE,
  col.score = "topic_score",
  col.indicate = NULL,
  threshold = NULL,
  discard = FALSE,
  col.abstract = Abstract
)

Arguments

df  Data frame containing abstracts.
keywords  Character vector. Vector containing keywords. The score is calculated based on these keywords. How much weight a keyword in keywords carries is determined by how often it is present in keywords, e.g. if a keyword is mentioned twice in keywords and it is mentioned only once in an abstract, it adds 2 points to the score.
case  Boolean. If case = TRUE, terms contained in keywords are case sensitive. If case = FALSE, terms contained in keywords are case insensitive.
col.score  String. Name of topic_score column.
col.indicate: String. Optional. Name of indicating column. If a string is provided, an extra column is added to df, indicating if the abstract corresponds to the topic of interest by “Yes” or “No”.

threshold: Integer. Optional. Threshold to decide if abstract corresponds to topic of interest. If col.topic is specified or discard = TRUE without threshold being specified, threshold is automatically set to 1.

discard: Boolean. If discard = TRUE, only abstracts are kept that correspond to the topic of interest.

col.abstract: Symbol. Column containing abstracts.

Details

Calculate score of a self-chosen topic for each abstract to identify abstracts possibly corresponding to the topic of interest. This score is added to the data frame as an additional column, usually called topic_score, containing the calculated topic score. If there is more than one topic of interest, the column topic_score should be appropriately renamed. To decide which abstracts are considered to correspond to the topic of interest, a threshold can be set via the threshold argument. Furthermore, an additional column can be added, verbally indicating if the abstract corresponds to the topic. Choosing the right threshold can be facilitated using plot_score_topic().

Value

Data frame with calculated topic scores. If discard = FALSE, adds extra columns to the original data frame with the calculated topic scores. If discard = TRUE, only abstracts corresponding to the topic of interest are kept.

See Also

assign_topic(), plot_score_topic()

Other score functions: assign_topic(), calculate_score_animals(), calculate_score_biomarker(), calculate_score_patients(), plot_score_animals(), plot_score_biomarker(), plot_score_patients(), plot_score_topic()
### combine_mir

**Details**

Combine data frames into one data frame. `combine_df()` accepts several data frames that are combined into one data frame. Data frames to be combined must have the same number of columns and the same column names.

**Value**

Combined data frame.

**See Also**

Other combine functions: `combine_mir()`

---

**Description**

Combine miRNA vectors into one.

**Usage**

`combine_mir(...)`

**Arguments**

`...` Character vectors. Character vectors containing miRNA names.

**Details**

Combine miRNA vectors into one. miRNA names occurring more than once are reduced to one instance.

**Value**

Combined character vector containing miRNA names.

**See Also**

`get_mir()`

Other combine functions: `combine_df()`
**combine_stopwords**  
*Combine data frames containing stop words*

**Description**

Combine data frames containing stop words into one data frame.

**Usage**

```r
combine_stopwords(...)```

Arguments

```r
...```

Data frames with stop words. Data frames must have two columns named "word" and "lexicon".

**Details**

Combine data frames containing stop words into one data frame. Provided data frames must have two columns named "word" and "lexicon".

**Value**

Combined data frame with stop words.

**See Also**

`generate_stopwords()`, `stopwords_miretrieve`, `tidytext::stop_words`

Other stopword functions: `generate_stopwords()`

---

**compare_mir_count**  
*Compare count of miRNA names between different topics*

**Description**

Compare count of miRNA names between different topics.
**Usage**

```r
compare_mir_count(
 df,
 mir,
 topic = NULL,
 normalize = TRUE,
 col.topic = Topic,
 col.mir = miRNA,
 col.pmid = PMID,
 title = NULL
)
```

**Arguments**

- `df`: Data frame containing columns for miRNA names, topics, and PubMed-IDs.
- `mir`: Character vector. Vector specifying which miRNA names to compare.
- `topic`: Character vector. Optional. Vector specifying which topics to compare.
- `normalize`: Boolean. If `normalize = TRUE`, plot the proportion of abstracts mentioning a miRNA name compared to all abstracts in a topic. If `normalize = FALSE`, plot the absolute number of abstracts mentioning a miRNA in a topic.
- `col.topic`: Symbol. Column containing topic names.
- `col.mir`: Symbol. Column containing miRNA names.

**Details**

Compare count of miRNA names between different topics by plotting the number of abstracts mentioning the miRNA in a topic. This count can either be normalized, thus plotting the proportion of abstracts mentioning a miRNA name compared to all abstracts of a topic, or it can be not normalized, thus plotting the absolute number of abstracts mentioning a miRNA per topic.

**Value**

Bar plot comparing the count of miRNA names between different topics.

**See Also**

- `compare_mir_count_log2()`, `compare_mir_count_unique()`
- Other compare functions: `compare_mir_count_log2()`, `compare_mir_count_unique()`, `compare_mir_terms_log2()`, `compare_mir_terms_scatter()`, `compare_mir_terms_unique()`, `compare_mir_terms()`
**compare_mir_count_log2**

*Compare log2-frequency count of miRNA names between two topics*

**Description**

Compare log2-frequency count of miRNA names between two topics

**Usage**

```r
compare_mir_count_log2(
 df,
 mir,
 topic = NULL,
 normalize = TRUE,
 col.topic = Topic,
 col.mir = miRNA,
 col.pmid = PMID,
 title = NULL
)
```

**Arguments**

- `df` Data frame containing miRNA names, topics, and PubMed-IDs.
- `mir` Character vector. Vector specifying which miRNA names to compare.
- `topic` Character vector. Optional. Vector specifying which topics to compare. If `topic = NULL`, all topics in `df` are used.
- `normalize` Boolean. If `normalize = TRUE`, proportion of abstracts mentioning a miRNA name compared to all abstracts of a topic are used. If `normalize = FALSE`, the absolute number of abstracts mentioning a miRNA name is used.
- `col.topic` Symbol. Column containing topics.
- `col.mir` Symbol. Column containing miRNA names.
- `title` String. Plot title.

**Details**

Compare log2-frequency count of miRNA names between two topics by plotting the log2-ratio of the miRNA count in two topics. The miRNA count per topic can either be normalized, thus taking the proportion of abstracts mentioning a miRNA name compared to all abstracts in a topic, or not normalized, thus taking the absolute number of abstracts mentioning a miRNA in a topic. The log2-plot is greatly inspired by the book “tidytext: Text Mining and Analysis Using Tidy Data Principles in R.” by Silge and Robinson.
**compare_mir_count_unique**

**Value**
List containing bar plot comparing the log2-frequency count of miRNA names between two topics and its corresponding data frame.

**References**

**See Also**
compare_mir_count(), compare_mir_count_unique()

Other compare functions: compare_mir_count_unique(), compare_mir_count(), compare_mir_terms_log2(), compare_mir_terms_scatter(), compare_mir_terms_unique(), compare_mir_terms()

----------

**compare_mir_count_unique**

*Compare top count of unique miRNA names per topic*

**Description**

Compare top count of unique miRNA names per topic

**Usage**

```r
compare_mir_count_unique(
 df,
 top = 5,
 topic = NULL,
 normalize = TRUE,
 colour = "steelblue3",
 col.topic = Topic,
 col.mir = miRNA,
 col.pmid = PMID,
 title = NULL
)
```

**Arguments**

- `df` : Data frame containing miRNA names, topics, and PubMed-IDs.
- `top` : Integer. Specifies number of top unique miRNAs to plot.
- `topic` : Character vector. Optional. Vector specifying which topics to compare. If `topic = NULL`, all topics in `df` are used.
- `normalize` : Boolean. If `normalize = TRUE`, proportion of abstracts mentioning a miRNA name compared to all abstracts of a topic are used. If `normalize = FALSE`, the absolute number of abstracts mentioning a miRNA name is used.
**compare_mir_terms**

- **colour**: String. Colour of bar plot.
- **col.topic**: Symbol. Column containing topics.
- **col.mir**: Symbol. Column containing miRNA names.
- **title**: String. Plot title.

**Details**

Compare top count of unique miRNA names per topic by plotting the miRNA count of unique miRNAs per topic. Per topic, the unique miRNAs are identified and their count is plotted. The miRNA count can either be normalized, thus taking the proportion of abstracts mentioning a miRNA name compared to all abstracts in a topic, or not normalized, thus taking the absolute number of abstracts mentioning a miRNA in a topic.

**Value**

Bar plot comparing frequency of unique miRNA count per topic.

**See Also**

`compare_mir_count()`, `compare_mir_count_log2()`

Other compare functions: `compare_mir_count_log2()`, `compare_mir_count()`, `compare_mir_terms_log2()`, `compare_mir_terms_scatter()`, `compare_mir_terms_unique()`, `compare_mir_terms()`

**Description**

Compare count of top terms associated with a miRNA name over various topics.

**Usage**

```r
compare_mir_terms(
 df,
 mir,
 top = 20,
 token = "words",
 ...,
 topic = NULL,
 shared = TRUE,
 normalize = TRUE,
 stopwords = stopwords_miretrieve,
 stopwords_ngram = TRUE,
 position = "dodge",
)```

col.mir = miRNA,
col.abstract = Abstract,
col.topic = Topic,
col.pmid = PMID,
title = NULL
)

Arguments

df Data frame containing miRNA names, abstracts, topics, and PubMed-IDs.
mir String. miRNA name of interest.
top Integer. Number of top terms to plot.
token String. Specifies how abstracts shall be split up. Taken from unnest_tokens() in the tidytext package: "Unit for tokenizing, or a custom tokenizing function. Built-in options are "words" (default), "characters", "character_shingles", "ngrams", 'skip_ngrams', "sentences", "lines", "paragraphs", "regex", (...) and "ptb" (Penn Treebank). If a function, should take a character vector and return a list of character vectors of the same length."
... Additional arguments for tokenization, if necessary.
topic Character vector. Optional. Specifies topics to plot. If topic = NULL, all topics in df are plotted.
shared Boolean. If shared = TRUE, only terms that are shared between all topics are plotted.
normalize Boolean. If normalize = TRUE, normalizes the number of abstracts to the total number of abstracts with a miRNA name in a topic.
stopwords Data frame containing stop words.
stopwords_ngram Boolean. Specifies if stop words shall be removed from abstracts when using ngrams. Only applied when token = 'ngrams'.
position Character vector. Vector containing either "dodge" or "facet". Determines if bar plots are on top of or next to each other.
col.mir Symbol. Column containing miRNA names.
col.abstract Symbol. Column containing abstracts.
col.topic Symbol. Column containing topic names.
title String. Plot title.

Details

Compare count of top terms associated with a miRNA name over various topics. miRNA names and topics must be in a data frame df, while terms are taken from abstracts contained in df. Number of top terms to plot is regulated by top. Terms can either be evaluated as their raw count, e.g. in how many abstracts they are mentioned in conjunction with the miRNA name, or as their relative count, e.g. in how many abstracts containing the miRNA they are mentioned compared to all abstracts containing the miRNA. compare_mir_terms() is based on the tools available in the tidytext package.
compare_mir_terms_log2

Value

Bar plot comparing the count of terms associated with a miRNA name over two topics.

See Also

compare_mir_terms_log2(), compare_mir_terms_scatter()

Other compare functions: compare_mir_count_log2(), compare_mir_count_unique(), compare_mir_count(), compare_mir_terms_log2(), compare_mir_terms_scatter(), compare_mir_terms_unique()

compare_mir_terms_log2

Compare log2-frequency count of terms associated with a miRNA name

Description

Compare log2-frequency count of terms associated with a miRNA name over two topics.

Usage

```r
compare_mir_terms_log2(
  df,
  mir,
  top = 20,
  token = "words",
  ..., 
  topic = NULL,
  shared = TRUE,
  normalize = TRUE,
  stopwords = stopwords_miretrieve,
  stopwords_ngram = TRUE,
  col.mir = miRNA,
  col.abstract = Abstract,
  col.topic = Topic,
  col.pmid = PMID,
  title = NULL
)
```

Arguments

- `df` Data frame containing miRNA names, abstracts, topics, and PubMed-IDs.
- `mir` String. miRNA name of interest.
- `top` Integer. Number of top terms to plot.
token
String. Specifies how abstracts shall be split up. Taken from `unnest_tokens()` in the **tidytext** package: "Unit for tokenizing, or a custom tokenizing function. Built-in options are "words" (default), "characters", "character_shingles", "ngrams", "skip_ngrams", "sentences", "lines", "paragraphs", "regex", (...), and "ptb" (Penn Treebank). If a function, should take a character vector and return a list of character vectors of the same length."

... Additional arguments for tokenization, if necessary.

topic
Character vector. Optional. Specifies which topics to plot. Must have length two. If `topic = NULL`, all topics in `df` are plotted.

shared
Boolean. If `shared = TRUE`, only terms that are shared between the two topics are plotted.

normalize
Boolean. If `normalize = TRUE`, normalizes the number of abstracts to the total number of abstracts in a topic.

stopwords
Data frame containing stop words.

stopwords_ngram
Boolean. Specifies if stop words shall be removed from abstracts when using ngrams. Only applied when `token = 'ngrams'`.

col.mir
Symbol. Column containing miRNA names.

col.abstract
Symbol. Column containing abstracts.

col.topic
Symbol. Column containing topic names.

col.pmid

title
String. Plot title.

Details

Compare log2-frequency count of terms associated with a miRNA name over two topics by plotting the log2-ratio of the term count associated with a miRNA name over two topics. miRNA names and topics must be in a data frame `df`, while terms are taken from abstracts contained in `df`. Number of top terms to plot is regulated by `top`. Terms can either be evaluated as their raw count, e.g. in how many abstracts they are mentioned in conjunction with the miRNA name, or as their relative count, e.g. in how many abstracts containing the miRNA they are mentioned compared to all abstracts containing the miRNA. `compare_mir_terms_log2()` is based on the tools available in the **tidytext** package. The log2-plot is greatly inspired by the book “tidytext: Text Mining and Analysis Using Tidy Data Principles in R.” by Silge and Robinson.

Value

List containing bar plot comparing the log2-frequency of terms associated with a miRNA over two topics and its corresponding data frame.

References

compare_mir_terms_scatter

Description

Compare shared terms associated with a miRNA name over two topics.

Usage

```r
compare_mir_terms_scatter(
  df,
  mir,
  top = 1000,
  token = "words",
  ..., 
  topic = NULL,
  stopwords = stopwords_miretrieve,
  stopwords_ngram = TRUE,
  html = TRUE,
  colour.point = "red",
  colour.term = "black",
  col.mir = miRNA,
  col.abstract = Abstract,
  col.topic = Topic,
  col.pmid = PMID,
  title = NULL
)
```

Arguments

- `df`: Data frame containing miRNA names, abstracts, topics, and PubMed-IDs.
- `mir`: String. miRNA name of interest.
- `top`: Integer. Number of top terms to plot.
- `token`: String. Specifies how abstracts shall be split up. Taken from `unnest_tokens()` in the `tidytext` package: "Unit for tokenizing, or a custom tokenizing function. Built-in options are "words" (default), "characters", "character_shingles", "ngrams", "skip_ngrams", "sentences", "lines", "paragraphs", "regex", (...), and "ptb" (Penn Treebank). If a function, should take a character vector and return a list of character vectors of the same length."
Additional arguments for tokenization, if necessary.

topic
Character vector. Optional. Specifies which topics to plot. Must have length two. If *topic* = NULL, all topics in df are plotted.

stopwords
Data frame containing stop words.

stopwords_ngram
Boolean. Specifies if stop words shall be removed from abstracts when using ngrams. Only applied when *token* = 'ngrams'.

html
Boolean. Specifies if plot is returned as an HTML-widget or static.

colour.point
String. Colour of points for scatter plot.

colour.term
String. Colour of terms for scatter plot.

col.mir
Symbol. Column containing miRNAs.

col.abstract
Symbol. Column containing abstracts.

col.topic
Symbol. Column containing topics names.

col.pmid

title
String. Plot title.

Details

Compare shared terms associated with a miRNA name over two topics. These terms are displayed as a scatter plot, which is either interactive as an HTML-widget, or static. This is regulated via the *html* argument. miRNA names and topics must be in a data frame df, while terms are taken from abstracts contained in df. Number of top terms to choose is regulated by *top*. Terms are evaluated as their raw count and plotted on a log10-scale. `compare_mir_terms_scatter()` is based on the tools available in the *tidytext* package. The term-plot is greatly inspired by “tidytext: Text Mining and Analysis Using Tidy Data Principles in R.” by Silge and Robinson.

Value

Scatter plot comparing shared terms of a miRNA between two topics.

References

See Also

`compare_mir_terms()`, `compare_mir_terms_log2()`.

Other compare functions: `compare_mir_count_log2()`, `compare_mir_count_unique()`, `compare_mir_count()`, `compare_mir_terms_log2()`, `compare_mir_terms_unique()`, `compare_mir_terms()`.
compare_mir_terms_unique

Compare terms uniquely associated with a miRNA name

Description

Compare terms uniquely associated with a miRNA name over topics.

Usage

```r
compare_mir_terms_unique(
  df,
  mir,
  top = 20,
  token = "words",
  ..., 
  topic = NULL,
  stopwords = stopwords_miretrieve,
  stopwords_ngram = TRUE,
  normalize = TRUE,
  colour = "steelblue3",
  col.mir = miRNA,
  col.abstract = Abstract,
  col.topic = Topic,
  col.pmid = PMID,
  title = NULL
)
```

Arguments

- **df**: Data frame containing miRNA names, abstracts, topics, and PubMed-IDs.
- **mir**: String. miRNA name of interest.
- **top**: Integer. Number of top terms to plot.
- **token**: String. Specifies how abstracts shall be split up. Taken from `unnest_tokens()` in the `tidytext` package: "Unit for tokenizing, or a custom tokenizing function. Built-in options are "words" (default), "characters", "character_shingles", "ngrams", "skip_ngrams", "sentences", "lines", "paragraphs", "regex", (...), and "ptb" (Penn Treebank). If a function, should take a character vector and return a list of character vectors of the same length."
- **topic**: Character vector. Optional. Specifies which topics to plot. If topic = NULL, all topics in df are plotted.
- **stopwords**: Data frame containing stop words.
- **stopwords_ngram**: Boolean. Specifies if stop words shall be removed from abstracts when using ngrams. Only applied when token = 'ngrams'.
- **...**: Additional arguments for tokenization, if necessary.
count_mir 25

normalize Boolean. If normalize = TRUE, relative term frequency is plotted, denoting the relative number of papers with mir mentioning the term compared to all papers with mir mentioning the term. If normalize = FALSE, absolute term frequency is plotted, denoting the number of papers with mir the term is mentioned in.

colour String. Colour of bar plot.
col.mir Symbol. Column containing miRNAs.
col.abstract Symbol. Column containing abstracts.
col.topic Symbol. Column containing topics names.
title String. Plot title.

Details

Compare terms uniquely associated with a miRNA name over topics. miRNA names and topics must be in a data frame df, while terms are taken from abstracts contained in df. Number of top terms to choose is regulated by top. Terms are evaluated either as the number of times they are mentioned in all abstracts with the miRNA name of interest, or the number of times they are relatively mentioned compared to all abstracts with the miRNA name of interest. compare_mir_terms_unique() is based on the tools available in the tidytext package.

Value

Bar plot containing unique miRNA-terms associations per topic.

See Also

count_mir, count_mir_count_log2, count_mir_count_scatter

Other compare functions: count_mir_count_log2, count_mir_count_unique, count_mir_count, count_mir_terms_log2, count_mir_terms_scatter, count_mir_terms

count_mir Count miRNA names in a data frame

Description

Count occurrence of miRNA names in a data frame.

Usage

count_mir(df, col.mir = mirNA)

Arguments

df Data frame containing miRNA names.
col.mir Symbol. Column containing miRNA names.
Details

Count occurrence of miRNA names in a data frame. The count of miRNA names is returned as a separate data frame, only listing the miRNA names and their respective frequency.

Value

Data frame. Data frame containing miRNA names and their respective frequency.

See Also

plot_mir_count(), count_mir_threshold(), plot_mir_count_threshold()

Other count functions: count_mir_threshold(), count_snp(), plot_mir_count_threshold(), plot_mir_count()

count_mir_threshold Count occurrence of miRNA names above threshold

Description

Count occurrence of miRNA names above a threshold.

Usage

count_mir_threshold(df, threshold = 1, col.mir = miRNA, col.pmid = PMID)

Arguments

df Data frame containing miRNA names and PubMed-IDs.
threshold Integer or float. If threshold \(\geq 1 \), counts number of miRNA names in at least threshold abstracts. If threshold is between 0 and 1, counts number of miRNA names mentioned in at least threshold abstracts of all abstracts in df.

col.mir Symbol. Column containing miRNA names.

Details

Count occurrence of miRNA names above a threshold. This threshold can either be an absolute value, e.g. 3, or a float between 0 and 1, e.g. 0.2. If threshold is an absolute value, number of distinct miRNA names mentioned in at least threshold abstracts is returned. If threshold is a float between 0 and 1, number of distinct miRNA names mentioned in at least threshold abstracts of all abstracts in df is returned.

Value

Integer with the number of distinct miRNA names in df.
count_snp

Count SNPs in a data frame

Description

Count occurrence of SNPs in a data frame.

Usage

count_snp(df, col.snp = SNPs, col.pmid = PMID)

Arguments

df Data frame containing SNPs and PubMed IDs.
col.snp Symbol. Column containing SNPs.

Details

Count occurrence of SNPs in a data frame. The count of SNPs is returned as a separate data frame, only listing the SNPs and their respective frequency.

Value

Data frame. Data frame containing SNPs and their respective frequency.

See Also

extract_snp(), get_snp(), subset_snp()

Other count functions: count_mir_threshold(), count_mir(), plot_mir_count_threshold(), plot_mir_count()
count_target *Count targets in data frame*

Description

Count occurrence of targets in a data frame.

Usage

`count_target(df, col.target = Target, add.df = TRUE)`

Arguments

- **df** Data frame containing a column with targets.
- **col.target** Symbol. Column containing targets.
- **add.df** Boolean. If `add.df = TRUE`, adds column `Target_count` to `df` containing the count of targets. If `add.df = FALSE`, returns a new data frame with the count of targets.

Details

Count occurrence of targets in a data frame. The count of targets can either be returned as a separate data frame, only listing the targets and their respective frequency, or it can be added to the data frame provided as an extra column.

Value

Data frame, either with the targets and their frequency as a new data frame, or with the frequency of targets added as a new column to the input data frame `df`.

See Also

`join_targets()`, `plot_target_count()`

Other target functions: `join_mirtarbase()`, `join_targets()`, `plot_target_count()`, `plot_target_mir_scatter()`

df_crc *Dataset of PubMed data of miRNAs in Colorectal Cancer*

Description

A dataset PubMed abstracts of miRNAs in Colorectal Cancer.

Usage

`df_crc`
df_mirtarbase

Format
A data frame.

Source

<table>
<thead>
<tr>
<th>df_mirtarbase</th>
<th>miRTarBase version 8.0</th>
</tr>
</thead>
</table>

Description
The most recent miRTarBase version 8.0, containing miRNA stem, capitalized targets, and PMIDs.

Usage
df_mirtarbase

Format
A data frame with the columns "miRNA_tarbase", "Target", and "PMID".

Details
miRTarBase was published in

Source
https://miRTarBase.cuhk.edu.cn:443/

<table>
<thead>
<tr>
<th>df_panc</th>
<th>Dataset of PubMed data of miRNAs in Pancreatic Cancer</th>
</tr>
</thead>
</table>

Description
A dataset PubMed abstracts of miRNAs in Pancreatic Cancer.

Usage
df_panc
Format
A data frame.

Source

<table>
<thead>
<tr>
<th>df_test</th>
<th>Test dataset of PubMed abstracts</th>
</tr>
</thead>
</table>

Description
Test dataset of 20 PubMed abstracts.

Usage
df_test

Format
A data frame.

Source

<table>
<thead>
<tr>
<th>extract_mir_df</th>
<th>Extract miRNA names from abstracts in data frame</th>
</tr>
</thead>
</table>

Description
Extract miRNA names from abstracts in a data frame.

Usage
```r
evaluate_mir_df(
  df,
  threshold = 1,
  col.abstract = Abstract,
  extract_letters = FALSE
)
```
extract_mir_string

Arguments

- **df**: Data frame containing abstracts.
- **threshold**: Integer. Specifies how often a miRNA must be mentioned in an abstract to be extracted.
- **col.abstract**: Symbol. Column containing abstracts.
- **extract_letters**: Boolean. If `extract_letters = FALSE`, only the miRNA stem is extracted (e.g. `miR-23`). If `extract_letters = TRUE`, the miRNA stem with trailing letter (e.g. `miR-23a`) is extracted.

Details

Extract miRNA names from abstracts in a data frame. miRNA names can either be extracted with their stem only, e.g. `miR-23`, or with their trailing letter, e.g. `miR-23a`. miRNA names are adapted to the most recent miRBase version (e.g. miR-97, miR-102, miR-180(a/b) become miR-30a, miR-29a, and miR-172(a/b), respectively). Additionally, how often a miRNA must be mentioned in an abstract to be extracted can be regulated via the `threshold` argument. Ultimately, abstracts not containing any miRNA names are silently dropped. As many abstracts do not adhere to the miRNA nomenclature, it is recommended to extract only the miRNA stem with `extract_letters = FALSE`.

Value

Data frame with miRNA names extracted from abstracts.

See Also

- `extract_mir_string()`
- Other extract functions: `extract_mir_string()`, `extract_snp()`

Description

Extract miRNA names from a string.

Usage

```r
extract_mir_string(string, threshold = 1, extract_letters = FALSE)
```
extract_snp

Arguments

string
String. String to search for miRNA names.

threshold
Integer. Specifies how often a miRNA must be mentioned in string to be extracted.

extract_letters
Boolean. If extract_letters = FALSE, only the miRNA stem is extracted (e.g. miR-23). If extract_letters = TRUE, the miRNA stem with trailing letter (e.g. miR-23a) is extracted.

Details

Extract miRNA names from a string. miRNA names can either be extracted with their stem only, e.g. miR-23, or with their trailing letter, e.g. miR-23a. Furthermore, miRNA names are adapted to the most recent miRBase version (e.g. miR-97, miR-102, miR-180(a/b) become miR-30a, miR-29a, and miR-172(a/b), respectively).

Value

Character vector containing miRNA names, if miRNA names are present in the string. If no miRNA names are present in the string, a message is returned saying "No miRNA found."

See Also

extract_mir_df()

Other extract functions: extract_mir_df(), extract_snp()

extract_snp

Extract SNPs from abstracts in data frame

description

Extract SNPs from abstracts in a data frame.

Usage

extract_snp(
 df,
 pattern = snp_pattern,
 col.abstract = Abstract,
 indicate = FALSE,
 discard = FALSE
)
Arguments

- **df**: Data frame containing abstracts.
- **pattern**: String. Regex pattern to identify SNPs.
- **col.abstract**: Symbol. Column containing abstracts.
- **indicate**: Boolean. If **indicate** = `TRUE`, add another column called "SNP_present", verbally indicating if a SNP is present in an abstract.
- **discard**: Boolean. If **discard** = `TRUE`, only abstracts containing a SNP are kept.

Details

Extract SNPs from abstracts in a data frame. SNPs are added to the data frame in a separate column. Furthermore, an optional column can indicate if SNPs are generally present in an abstract.

Value

Data frame. If **discard** = `FALSE`, return the data frame with an additional column for SNPs. If **discard** = `TRUE`, return only abstracts containing SNPs.

See Also

- `count_snp()`, `get_snp()`, `subset_snp()`
- Other extract functions: `extract_mir_df()`, `extract_mir_string()`

Description

Fit LDA-model with k topics.

Usage

```r
fit_lda(
  df,
  k,
  stopwords = stopwords_miretrieve,
  method = "gibbs",
  control = NULL,
  seed = 42,
  col.abstract = Abstract,
  col.pmid = PMID
)
```
Arguments

df
Data frame containing abstracts and PubMed-IDs.
k
Integer. Number of topics to fit. Must be >=2.
stopwords
Data frame containing stop words.
method
String. Either "gibbs" or "VEM".
control
Control parameters for LDA modeling. For more information, see the documentation of the LDAcontrol class in the topicmodels package.
seed
Integer. Seed for reproducibility.
col.abstract
Column containing abstracts.
col.pmid
Column containing PubMed-ID.

details
Fit LDA-model with k topics from a data frame. fit_lda() is based on LDA() from the package topicmodels.

Value
LDA-model.

See Also
plot_perplexity()
Other LDA functions: assign_topic_lda(), plot_lda_term(), plot_perplexity()

Description
Generate a data frame containing stop words.

Usage
generate_stopwords(stopwords, combine_with = NULL)

Arguments
stopwords
Character vector. Vector containing stop words.
combine_with
Data frame containing stop words. Optional. Data frame provided here must have only two columns, namely word and lexicon. This data frame is combined with the data frame created from stopwords. Exemplary data frames are

• tidytext::stop_words from the tidytext package, or
• stopwords_miretrieve from this package.
Details

Generate data frame containing stop words from a character vector. This data frame consists of two columns, namely word, containing the stop words, and lexicon, containing the string "self-defined". Additionally, the created data frame can be combined with other stop words containing data frames, e.g. tidytext::stop_words or stopwords_miretrieve.

Value

Data frame containing stop words.

References

See Also

combine_stopwords(), stopwords_miretrieve, tidytext::stop_words

Other stopword functions: combine_stopwords()

get_distinct_mir_df

Identify top miRNA names distinct for one topic compared to another topic

Description

Identify top miRNA names distinct for one topic compared to another topic in a data frame.

Usage

get_distinct_mir_df(
 df,
 distinct,
 top = 5,
 topic = NULL,
 col.topic = Topic,
 col.mir = miRNA,
 col.pmid = PMID
)

Arguments

df Data frame containing at least two topics and miRNA names.
distinct String. Name of topic top distinct miRNAs shall be identified for. distinct must be contained in the topic names provided in topic.
top Integer. Number of top miRNA names to extract for both topics.
get_distinct_mir_vec

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>topic</td>
<td>String. Vector of strings containing topic names to compare miRNA names for.</td>
</tr>
<tr>
<td>col.topic</td>
<td>Symbol. Column containing topic names.</td>
</tr>
<tr>
<td>col.mir</td>
<td>Symbol. Column containing miRNA names.</td>
</tr>
</tbody>
</table>

Details

Get top distinct miRNA names of one topic compared to another topic in a data frame. `get_distinct_mir_df()` compares the top miRNA names of two topics and returns the miRNA names that are exclusive for different topics.

Value

Character vector containing miRNA names distinct for distinct compared to the second topic provided in `topic`.

See Also

Other get functions: `get_distinct_mir_vec()`, `get_mir()`, `get_pmid()`, `get_shared_mir_df()`, `get_shared_mir_vec()`, `get_snp()`

get_distinct_mir_vec

Identify miRNA names distinct for one vector compared to another vector

Description

Identify miRNA names distinct for one vector compared to another vector.

Usage

```r
get_distinct_mir_vec(mirna.vec.1, mirna.vec.2)
```

Arguments

- `mirna.vec.1` Character vector. First vector containing miRNA names.
- `mirna.vec.2` Character vector. Second vector containing miRNA names.

Details

Get distinct miRNA names of one vector compared to another vector. `get_distinct_mir()` compares two vectors containing miRNA names and returns the miRNA names that are exclusive for `mirna.vec.1`.
get_mir

Value

Character vector containing miRNA names distinct for mirna.vec.1 compared to mirna.vec.2.

See Also

Other get functions: `get_distinct_mir_df()`, `get_mir()`, `get_pmid()`, `get_shared_mir_df()`, `get_shared_mir_vec()`, `get_snp()`

get_mir

Get miRNA names from a data frame

Description

Get miRNA names from a data frame. These miRNA names can either be the most frequent ones, or the ones exceeding a threshold.

Usage

```r
get_mir(
  df,
  top = NULL,
  threshold = NULL,
  topic = NULL,
  col.mir = miRNA,
  col.pmid = PMID,
  col.topic = Topic
)
```

Arguments

- `df` Data frame containing miRNA names. If `threshold` is set, `df` must also contain PubMed-IDs. If `topic` is set, `df` must also contain topic names.
- `top` Integer. Optional. Specifies number of most frequent miRNA names to return. If neither `top` nor `threshold` is set, `top` is automatically set to 5.
- `threshold` Integer or float. Optional. If `threshold` \(\geq 1 \), return miRNA names mentioned in at least `threshold` abstracts. If `threshold` is between 0 and 1, return miRNA names mentioned in at least `threshold` abstracts of all abstracts in `df`.
- `topic` String. Optional. Character vector specifying which topics to obtain miRNA names from.
- `col.mir` Symbol. Column containing miRNA names.
- `col.topic` Symbol. Column containing topic names.
get_pmid

Details

Get miRNA names from a data frame. These miRNA names can either be the most frequent ones, or the ones exceeding a threshold. Furthermore, if the data frame contains abstracts of different topics, only the miRNA names of specific topics can be obtained by setting the topic argument.

- To get the most frequent miRNA names, set the top argument. top determines how many most frequent miRNA names are returned, according to their rank. Ties among the most frequently mentioned miRNAs are treated as the same rank, e.g. if miR-126, miR-34, and miR-29 were all mentioned the most often with the same frequency, they would all be returned by specifying top = 1, top = 2, and top = 3.
- To get the miRNA names exceeding a threshold, set the threshold argument. threshold can either be an absolute value, e.g. 3, or a float between 0 and 1, e.g. 0.2. If threshold is an absolute value, get_mir() returns only the miRNA names mentioned in at least threshold abstracts. If threshold is a float between 0 and 1, get_mir() returns only miRNA names mentioned in at least threshold abstracts of all abstracts. threshold requires the data frame to have a column with PubMed IDs.

If neither top nor threshold is set, top is automatically set to 5.

Value
Character vector containing miRNA names.

See Also
Other get functions: get_distinct_mir_df(), get_distinct_mir_vec(), get_pmid(), get_shared_mir_df(), get_shared_mir_vec(), get_snp()
Details

Get PubMed-IDs of a data frame. get_pmid returns either a character vector, containing PubMed-IDs, or copies PubMed-IDs to clipboard. If PubMed-IDs are copied to the clipboard, they can be used e.g. to search for abstracts on PubMed.

Value

Copy to clipboard or character vector. If copy = TRUE, get_pmid() copies PubMed-IDs to clipboard. If copy = FALSE, get_pmid() returns a character vector, containing PubMed-IDs.

See Also

Other get functions: get_distinct_mir_df(), get_distinct_mir_vec(), get_mir(), get_shared_mir_df(), get_shared_mir_vec(), get_snp()

get_shared_mir_df

Get top miRNA names in common between two topics of a data frame

Description

Get top miRNA names in common between two topics of a data frame.

Usage

get_shared_mir_df(
 df,
 top = 5,
 topic = NULL,
 col.topic = Topic,
 col.mir = miRNA,
 col.pmid = PMID
)

Arguments

df Data frame containing at least two topics and miRNA names.

top Integer. Number of top miRNA names to extract for both topics.

topic String. Vector of strings containing topic names to compare miRNA names for. If topic = NULL, topic defaults to all topic names contained in col.topic in df. topic must only contain two topic names.

col.topic Symbol. Column containing topic names.

col.mir Symbol. Column containing miRNA names.

get_shared_mir_vec

Details
Get top miRNA names in common between two topics of a data frame. get_shared_mir_df() compares the top miRNA names of two topics in a data frame and returns the miRNA names in common.

Value
Character vector containing miRNA names in common between two topics.

See Also
Other get functions: get_distinct_mir_df(), get_distinct_mir_vec(), get_mir(), get_pmid(), get_shared_mir_vec(), get_snp()

get_shared_mir_vec Get miRNA names in common between two vectors

Description
Get miRNA names in common between two vectors.

Usage
get_shared_mir_vec(mirna.vec.1, mirna.vec.2)

Arguments
mirna.vec.1 Character vector. First vector containing miRNA names.
mirna.vec.2 Character vector. Second vector containing miRNA names.

Details
Get miRNA names in common between two vectors. get_shared_mir_vec() compares two vectors containing miRNA names and returns the miRNA names that are in both vectors.

Value
Character vector containing miRNA names in common between two vectors.

See Also
Other get functions: get_distinct_mir_df(), get_distinct_mir_vec(), get_mir(), get_pmid(), get_shared_mir_df(), get_snp()
get_snp

Get SNPs from a data frame

Description

Get SNPs from a data frame.

Usage

get_snp(df, row = NULL, top = NULL, col.snp = SNPs, col.pmid = PMID)

Arguments

df Data frame containing SNPs. If top is set, df must also contain PubMed IDs.
row Integer. Optional. Specifies row from which SNP shall be obtained. Works best
 with a data frame listing counts only as from count_snp(). If neither row nor
 top is given, row is automatically set to 1.
top Integer. Optional. Specifies number of most frequent SNPs to return.
col.snp Symbol. Column containing SNPs.
col.pmid Symbol. Column containing PubMed IDs. Necessary if the data frame provided
 is not a count data frame.

Details

Get SNPs from a data frame.

- If a data frame containing SNP counts as from count_snp() is provided, these SNPs are
 specified by the row they are listed in. To get the SNPs by row, set the row argument.
- If a data frame with PubMed IDs is provided, these SNPs are specified by their top occurrence.
 To get the SNPs by frequency, set the top argument.

If neither row nor top is provided, row is automatically set to 1.

Value

String or character vector containing SNPs.

See Also

extract_snp(), count_snp(), subset_snp()

Other get functions: get_distinct_mir_df(), get_distinct_mir_vec(), get_mir(), get_pmid(),
get_shared_mir_df(), get_shared_mir_vec()
indicate_mir

Indicate if a miRNA name is contained in an abstract

Description

Indicate if a miRNA name is contained in an abstract with "Yes"/"No".

Usage

indicate_mir(df, indicate.mir, col.mir = miRNA)

Arguments

df Data frame containing miRNA names.
indicate.mir Character vector. Vector containing miRNA names to indicate.
col.mir Symbol. Column containing miRNA names.

Details

Indicate if a miRNA name is contained in an abstract with "Yes"/"No". This requires miRNA names already to be extracted, e.g. with extract_mir_df(), and to be stored in a separate column, specified by col.mir. indicate_mir() adds another column to a data frame which bears the name of the miRNA(s) of interest. Within this column, a "Yes" or "No" specifies if this miRNA name is contained in the corresponding abstract.

Value

Data frame with as many columns added as miRNA names given in indicate.mir. Per column, a "Yes" or "No" indicates if the miRNA name of interest is present in the corresponding abstract.

See Also

extract_mir_df(), indicate_term()

Other indicate functions: indicate_term()
Usage

indicate_term(
 df,
 term,
 threshold = 1,
 case = FALSE,
 discard = FALSE,
 col.abstract = Abstract
)

Arguments

 df Data frame containing abstracts.
 term Character vector. Vector containing terms to indicate.
 threshold Integer. Sets how often a term must be in an abstract to be considered "present".
 case Boolean. If case = TRUE, strings contained in term are case sensitive. If case = FALSE, strings contained in term are case insensitive.
 discard Boolean. If discard = TRUE, only abstracts containing the terms in term are kept.
 col.abstract Symbol. Column containing abstracts.

Details

Indicate if a term is contained in an abstract. Terms provided can either be case sensitive or insensitive. Per term, a new column is added to the data frame indicating if the term is present in an abstract. Furthermore, if a term is considered "present" in an abstract can be regulated via the threshold argument. threshold determines how often a term must be in an abstract to be considered "present".

Value

 Data frame. If discard = FALSE, the original data frame with additional columns per term is returned. If discard = TRUE, only abstracts containing the terms in term are returned.

See Also

 indicate_mir()

Other indicate functions: indicate_mir()
join_mirtarbase Add miRNA targets from miRTarBase version 8.0

Description
Add miRNA targets from miRTarBase version 8.0 to a data frame.

Usage
join_mirtarbase(
 df,
 col.pmid.df = PMID,
 col.topic.df = NULL,
 filter_na = TRUE,
 reduce = FALSE
)

Arguments
df Data frame containing PubMed-IDs that the miRNA targets shall be joined to.
col.topic.df Symbol. Optional. Only important if reduce = TRUE. If given, adds a topic column to the reduced data.frame.
filter_na Boolean. If filter_na = TRUE, drops all rows containing NA in column Target.
reduce Boolean. If reduce = FALSE, adds a new column containing miRNA targets to df. If reduce = TRUE, adds two new columns containing miRNA names and miRNA targets to df. All other columns except for the PubMed-ID column and (optionally) the topic column are dropped.

Details
Add miRNA targets from miRTarBase version 8.0 to a data frame. join_mirtarbase() can return two different data frames, regulated by reduce:

1. If reduce = FALSE, join_mirtarbase() adds targets from miRTarBase 8.0 to the data frame in a new column. These targets then correspond to the targets determined in the research paper, but do not necessarily correspond to the miRNA names mentioned in the abstract.

2. If reduce = TRUE, join_mirtarbase() adds targets from miRTarBase 8.0 to the data frame in a new column. However, an altered data frame is returned, containing the PubMed-IDs, targets, and miRNAs from miRTarBase 8.0.

miRTarBase was published in
join Targets

Value
Data frame containing miRNA targets.

See Also
Other target functions: `count_target()`, `join_targets()`, `plot_target_count()`, `plot_target_mir_scatter()`

join Targets

Add miRNA targets from an xlsx-file to a data frame

Description
Add miRNA targets from an external xlsx-file to a data frame.

Usage

```r
join_targets(
  df,
  excel_file,
  col.pmid.excel,
  col.target.excel,
  col.mir.excel = NULL,
  col.pmid.df = PMID,
  col.topic.df = NULL,
  filter_na = TRUE,
  stem_mir_excel = TRUE,
  reduce = FALSE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Data frame containing PubMed-IDs that the miRNA targets shall be joined to.</td>
</tr>
<tr>
<td>excel_file</td>
<td>xlsx-file. xlsx-file containing miRNA targets and PubMed-IDs.</td>
</tr>
<tr>
<td>col.target.excel</td>
<td>String. Column containing targets of the excel_file.</td>
</tr>
<tr>
<td>col.mir.excel</td>
<td>String. Optional. Column containing miRNAs of the excel_file. Needed if reduce = TRUE.</td>
</tr>
<tr>
<td>col.topic.df</td>
<td>Symbol. Optional. Only important if reduce = TRUE. If given, adds a topic column to the reduced data.frame.</td>
</tr>
<tr>
<td>filter_na</td>
<td>Boolean. If filter_na = TRUE, drops all rows containing NA in column Target.</td>
</tr>
<tr>
<td>stem_mir_excel</td>
<td>Boolean. If stem_mir_excel = TRUE, miRNA names provided in col.mir.excel are reduced to their stem, e.g. "miR-20a-5p" becomes "miR-20".</td>
</tr>
</tbody>
</table>
reduce Boolean. If reduce = FALSE, adds a new column containing miRNA targets to df. If reduce = TRUE, adds two new columns containing miRNA names and miRNA targets to df. All other columns except for the PubMed-ID column and (optionally) the topic column are dropped.

Details

Add miRNA targets from an external xlsx-file to a data frame. To add the targets to the data frame, the xlsx-file and the data frame need to have one column in common, such as PubMed-IDs. join_targets() can return two different data frames, regulated by reduce:

1. If reduce = FALSE, join_targets() adds targets from an excel-file to the data frame in a new column. These targets then correspond to the targets determined in the research paper, but do not necessarily correspond to the miRNA names mentioned in the abstract.
2. If reduce = TRUE, join_targets() adds targets from an xlsx-file to the data frame in a new column. However, an altered data frame is returned, containing the PubMed-IDs, targets, and miRNAs from the excel-file. For reduce = TRUE to work, the xlsx-file provided must contain a column with miRNA names.

Value

Data frame containing miRNA targets.

See Also

Other target functions: count_target(), join_mirtarbase(), plot_target_count(), plot_target_mir_scatter()
patients_keywords

Keywords - patients.

Description

Keywords to identify abstracts investigating miRNAs in patients.

Usage

patients_keywords

Format

An object of class character of length 10.

plot_lda_term

Plot terms associated with LDA-fitted topics

Description

Plot terms associated with LDA-fitted topics.

Usage

plot_lda_term(lda_model, top.terms = 10, title = NULL)

Arguments

lda_model LDA-model.
top.terms Integer. Top terms to plot per topic.
title String. Plot title.

Details

Plot terms associated with LDA-fitted topics. For each topic in the LDA-model, the top terms are plotted. Plotting top. terms for each topic can help identifying its subject.

Value

Bar plot with top terms per topic.

See Also

Other LDA functions: assign_topic_lda(), fit_lda(), plot_perplexity()
plot_mir_count

Plot count of most frequently mentioned miRNA names

Description

Plot count of most frequently mentioned miRNA names in a data frame.

Usage

```r
plot_mir_count(
  df,
  top = 10,
  colour = "steelblue3",
  col.mir = miRNA,
  title = NULL
)
```

Arguments

- `df`: Data frame containing miRNA names.
- `top`: Integer. Specifies number of most frequent miRNA names to plot.
- `colour`: String. Colour of bar plot.
- `col.mir`: Symbol. Column containing miRNA names.

Details

Plot count of most frequently mentioned miRNA names in a data frame. How many most frequently mentioned miRNAs are plotted is determined via the `top` argument. Ties among the most frequently mentioned miRNAs are treated as the same rank, e.g. if *miR-126, miR-34*, and *miR-29* were all mentioned the most often, they would all be plotted by specifying `top = 1`, `top = 2`, or `top = 3`.

Value

Bar plot with the most frequently mentioned miRNAs names in `df`.

See Also

- `count_mir()`
- `count_mir_threshold()`
- `plot_mir_count_threshold()`

Other count functions: `count_mir_threshold()`, `count_mir()`, `count_snp()`, `plot_mir_count_threshold()`
plot_mir_count_threshold

Plot occurrence count of miRNA names over different thresholds

Description

Plot occurrence count of distinct miRNA names over different thresholds.

Usage

```r
plot_mir_count_threshold(
    df,
    start = 1,
    end = 5,
    bins = NULL,
    colour = "steelblue3",
    col.mir = miRNA,
    col.pmid = PMID,
    title = NULL
)
```

Arguments

- **df**: Data frame containing columns with miRNAs and PubMed-IDs.
- **start**: Integer or float. Must be greater than 0 and smaller than end.
- **end**: Integer or float. Must be greater than 0 and greater than start. If start ≥ 1, `plot_mir_count_threshold()` plots number of miRNAs above different absolute thresholds, ranging from start to end. If start ≥ 0 and end ≤ 1, bins must be specified. If bins is not specified, bins is automatically set to 10. `plot_mir_count_threshold()` then plots number of miRNAs above different thresholds, ranging from start to end in n bins. If start ≥ 0 and end ≤ 1 and the value of start is too low for the number of miRNAs to be plotted, `plot_mir_count_threshold()` raises a warning, suggesting a more appropriate start value.
- **bins**: Integer. Optional. Only necessary if start ≥ 0 and end ≤ 1. Specifies number of bins between start and end. If start ≥ 0, end ≤ 1, and bins is not specified, bins is automatically set to 10.
- **colour**: String. Colour of bar plot.
- **col.mir**: Symbol. Column containing miRNAs.
- **title**: String. Plot title.
Details

Plot occurrence of distinct miRNA names over different thresholds. These thresholds can either be absolute values or floating values between 0 and 1. If the thresholds are absolute values, number of distinct miRNA names mentioned in at least \(n \) abstracts are plotted, where \(n \) is the range of thresholds defined by \(\text{start} \) and \(\text{end} \). If the thresholds are floating values, \(\text{bins} \) must be specified as well. Then the number of distinct miRNA names mentioned in at least \(n \) abstracts over \(\text{bins} \) are plotted, where \(n \) is the range of thresholds between \(\text{start} \) and \(\text{end} \). Overall, plotting can help in identifying if the abstracts at hand mention different miRNAs in a balanced way, or if there are few miRNAs dominating the field.

Value

Bar plot counting the occurrence of miRNA names above different thresholds.

See Also

\texttt{count_mir_threshold()}, \texttt{count_mir()}, \texttt{plot_mir_count()}

Other count functions: \texttt{count_mir_threshold()}, \texttt{count_mir()}, \texttt{count_snp()}, \texttt{plot_mir_count()}

\begin{verbatim}
plot_mir_development

Description

Plot development of miRNA name mentioning over time.

Usage

\texttt{plot_mir_development(df, mir, start = \text{NULL}, end = \text{NULL}, linetype = "miRNA", alpha = 0.8, width = 0.3, col.mir = \text{miRNA}, col.year = \text{Year}, title = \text{NULL})}

Arguments

\begin{itemize}
 \item \texttt{df} Data frame containing miRNA names and publication years.
 \item \texttt{mir} Character vector. Vector containing miRNA names to plot.
\end{itemize}
\end{verbatim}
plot_mir_new

start Numeric. Optional. Specifies start year. If start = NULL, start is set to the oldest year in df.
end Numeric. Optional. Specifies end year. If end = NULL, end is set to the youngest year in df.
linetype String. Specifies linetype. linetype can take on values as mentioned in the geom_line documentation of ggplot2. Additionally, linetype can be set to "miRNA". If linetype = "miRNA", each miRNA name in mir has its own linetype.
alpha Float. Opacity of lines.
width Float. Width of dodging lines.
col.mir Symbol. Column containing miRNA names.
col.year Symbol. Column containing year.
title String. Plot title.

Details

Plot how often a miRNA name was mentioned per year.

Value

Line plot displaying how often a miRNA name was mentioned per year.

See Also

Other miR development functions: plot_mir_new()

plot_mir_new

Plot number of newly mentioned miRNA names/year

Description

Plot number of newly mentioned miRNA names/year.

Usage

plot_mir_new(
 df,
 threshold = 1,
 start = NULL,
 end = NULL,
 colour = "steelblue3",
 col.mir = miRNA,
 col.year = Year,
 title = NULL
)
Arguments

- **df**
 Data frame containing miRNA names and publication years.
- **threshold**
 Integer. Specifies how often a miRNA must be mentioned in a year to be considered "mentioned".
- **start**
 Integer. Optional. Beginning of publication period. If `start = NULL`, `start` is set to the least recent year in `df`.
- **end**
 Integer. Optional. End of publication period. If `end = NULL`, `end` is set to the most recent year in `df`.
- **colour**
 String. Colour of bar plot.
- **col.mir**
 Symbol. Column containing miRNA names.
- **col.year**
 Symbol. Column containing publication year.
- **title**
 String. Plot title.

Details

Plot how many miRNAs are mentioned for the first time in different year. If a miRNA is considered to be "mentioned" in a year can be regulated via the `threshold` argument. If, for example, `threshold` is set to 3, but a miRNA is mentioned only twice in a year, it is not considered to be "mentioned" for this year.

Value

Bar plot displaying the number of newly mentioned miRNA names/year.

See Also

Other miR development functions: `plot_mir_development()`

plot_mir_terms
Plot count of top terms associated with a miRNA name

Description

Plot count of top terms associated with a miRNA name.

Usage

```r
plot_mir_terms(
  df,
  mir,
  top = 20,
  tf.idf = FALSE,
  token = "words",
  ...
)
```
Arguments

df Data frame containing miRNA names, abstracts, and PubMed-IDs.
mir String. miRNA name of interest.
top Integer. Number of top terms to plot.
tf.idf Boolean. If \(\text{tf.idf} = \text{TRUE} \), terms are weighed in a tf-idf fashion. miRNA names are considered as separate documents and terms often associated with one miRNA, but not with other miRNAs get more weight.
token String. Specifies how abstracts shall be split up. Taken from \text{unnest_tokens()} in the \texttt{tidytext} package: “Unit for tokenizing, or a custom tokenizing function. Built-in options are "words" (default), "characters", "character_shingles", "ngrams", "skip_ngrams", "sentences", "lines", "paragraphs", "regex", (\ldots), and "ptb" (Penn Treebank). If a function, should take a character vector and return a list of character vectors of the same length.”

... Additional arguments for tokenization, if necessary.

stopwords Data frame containing stop words.
stopwords_ngram Boolean. Specifies if stop words shall be removed from abstracts when using ngrams. Only applied when token = ‘ngrams’.

normalize Boolean. If \(\text{normalize} = \text{TRUE} \), normalizes the number of abstracts to the total number of abstracts with a miRNA name in a topic. Cannot be applied with \(\text{tf.idf} = \text{TRUE} \).
col.mir Symbol. Column containing miRNA names

col.abstract Symbol. Column containing abstracts.

title String. Title plot.

Details

Plot count of top terms associated with a miRNA name. Top terms associated with \textit{mir} have to be in \textit{df} as abstracts. Number of top terms to plot is regulated via the \textit{top} argument. Terms can either be evaluated as their count or in a tf-idf fashion. If terms are evaluated as their count, they can either be evaluated as their raw count, e.g. in how many abstracts they are mentioned in conjunction with the miRNA name, or as their relative count, e.g. in how many abstracts containing the miRNA they are mentioned compared to all abstracts containing the miRNA. If terms are evaluated in a tf-idf
fashion, miRNA names are considered as separate documents and terms often associated with one miRNA, but not with other miRNAs get more weight. `plot_mir_terms()` is based on the tools available in the tidytext package.

Value

Bar plot displaying the count of the top terms associated with a miRNA name.

See Also

`plot_wordcloud()`, tidytext::unnest_tokens()

Other miR term functions: `plot_wordcloud()`

plot_perplexity

Plot perplexity score of various LDA models

Description

Plot perplexity score of various LDA models.

Usage

```r
plot_perplexity(
  df,
  start = 2,
  end = 5,
  stopwords = stopwords_miretrieve,
  method = "gibbs",
  control = NULL,
  col.abstract = Abstract,
  col.pmid = PMID,
  title = NULL
)
```

Arguments

- **df**: Data frame containing abstracts and PubMed-IDs.
- **start**: Integer. Minimum amount of k topics for the LDA model to fit. Must be >=2.
- **end**: Integer. Maximum amount of k topics for the LDA model to fit.
- **stopwords**: Data frame containing stop words.
- **method**: String. Either "gibbs" or "VEM".
- **control**: Control parameters for LDA modeling. For more information, see the documentation of the LDAcontrol class in the topicmodels package.
- **col.abstract**: Column containing abstracts.
- **col.pmid**: Column containing PubMed-ID.
- **title**: String. Plot title.
Details

Plot perplexity score of various LDA models. `plot_perplexity()` fits different LDA models for \(k\) topics in the range between `start` and `end`. For each LDA model, the perplexity score is plotted against the corresponding value of \(k\). Plotting the perplexity score of various LDA models can help in identifying the optimal number of topics to fit an LDA model for. `plot_perplexity()` is based on `LDA()` from the package `topicmodels`.

Value

Elbow plot displaying perplexity scores of different LDA models.

See Also

`fit lda()`

Other LDA functions: `assign_topic_lda()`, `fit lda()`, `plot lda term()`

plot_score_animals

Plot frequency of animal model scores in abstracts

Description

Plot frequency of animal model scores in abstracts.

Usage

```r
plot_score_animals(
  df, 
  keywords = animal_keywords, 
  case = FALSE, 
  bins = NULL, 
  colour = "steelblue3", 
  col.abstract = Abstract, 
  col.pmid = PMID, 
  title = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>df</code></td>
<td>Data frame containing abstracts.</td>
</tr>
<tr>
<td><code>keywords</code></td>
<td>Character vector. Vector containing keywords. The animal model score is calculated based on these keywords. How much weight a keyword in <code>keywords</code> carries is determined how often it is present in <code>keywords</code>, e.g. if a keyword is mentioned twice in <code>keywords</code> and it is mentioned only once in an abstract, it adds 2 points to the score.</td>
</tr>
<tr>
<td><code>case</code></td>
<td>Boolean. If <code>case = TRUE</code>, terms contained in <code>keywords</code> are case sensitive. If <code>case = FALSE</code>, terms contained in <code>keywords</code> are case insensitive.</td>
</tr>
</tbody>
</table>
plot_score_biomarker

bins Integer. Specifies how many bins are used to plot the distribution. If bins = NULL, bins are calculated over the whole range of scores, with one bin per score.
colour String. Colour of histogram.
col.abstract Symbol. Column containing abstracts.
title String. Plot title.

Details

Plots a frequency distribution of animal model scores in abstracts of a data frame. The animal model score is influenced by the choice of terms in keywords. Plotting the distribution can help deciding if the terms are well-chosen, or in choosing the right threshold to decide which abstracts are considered to contain animal models.

Value

Histogram displaying the distribution of animal scores in abstracts.

See Also

`calculate_score_animals()`

Other score functions: `assign_topic()`, `calculate_score_animals()`, `calculate_score_biomarker()`, `calculate_score_patients()`, `calculate_score_topic()`, `plot_score_biomarker()`, `plot_score_patients()`, `plot_score_topic()`

plot_score_biomarker Plot frequency of biomarker scores in abstracts

Description

Plot frequency of biomarker scores in abstracts.

Usage

```r
plot_score_biomarker(
  df,
  keywords = biomarker_keywords,
  case = FALSE,
  bins = NULL,
  colour = "steelblue3",
  col.abstract = Abstract,
  col.pmid = PMID,
  title = NULL
)
```
plot_score_patients

Arguments

- **df**
 - Data frame containing abstracts.

- **keywords**
 - Character vector. Vector containing keywords. The biomarker score is calculated based on these keywords. How much weight a keyword in keywords carries is determined how often it is present in keywords, e.g., if a keyword is mentioned twice in keywords and it is mentioned only once in an abstract, it adds 2 points to the score.

- **case**
 - Boolean. If case = TRUE, terms contained in keywords are case sensitive. If case = FALSE, terms contained in keywords are case insensitive.

- **bins**
 - Integer. Specifies how many bins are used to plot the distribution. If bins = NULL, bins are calculated over the whole range of scores, with one bin per score.

- **colour**
 - String. Colour of histogram.

- **col.abstract**
 - Symbol. Column containing abstracts.

- **col.pmid**

- **title**
 - String. Plot title.

Details

Plots a frequency distribution of biomarker scores in abstracts of a data frame. The biomarker score is influenced by the choice of terms in keywords. Plotting the distribution can help deciding if the terms are well-chosen, or in choosing the right threshold to decide which abstracts are considered to contain use of miRNAs as biomarker.

Value

Histogram displaying the distribution of biomarker scores in abstracts.

See Also

- `calculate_score_biomarker()`
- Other score functions: `assign_topic()`, `calculate_score_animals()`, `calculate_score_biomarker()`, `calculate_score_patients()`, `calculate_score_topic()`, `plot_score_animals()`, `plot_score_patients()`, `plot_score_topic()`

plot_score_patients
Plot frequency of patient scores in abstracts

Description

Plot frequency of patient scores in abstracts.
plot_score_patients

Usage

plot_score_patients(
 df,
 keywords = patients_keywords,
 case = FALSE,
 bins = NULL,
 colour = "steelblue3",
 col.abstract = Abstract,
 col.pmid = PMID,
 title = NULL
)

Arguments

df
 Data frame containing abstracts.

keywords
 Character vector. Vector containing keywords. The score is calculated based on these keywords. How much weight a keyword in keywords carries is determined how often it is present in keywords, e.g. if a keyword is mentioned twice in keywords and it is mentioned only once in an abstract, it adds 2 points to the score.

case
 Boolean. If case = TRUE, terms contained in keywords are case sensitive. If case = FALSE, terms contained in keywords are case insensitive.

bins
 Integer. Specifies how many bins are used to plot the distribution. If bins = NULL, bins are calculated over the whole range of scores, with one bin per score.

col.abstract
 Symbol. Column containing abstracts.

col.pmid

title
 String. Plot title.

Details

Plots a frequency distribution of patient scores in abstracts of a data frame. The patient score is influenced by the choice of terms in keywords. Plotting the distribution can help deciding if the terms are well-chosen, or in choosing the right threshold to decide which abstracts are considered to contain patient material.

Value

Histogram displaying the distribution of patient scores in abstracts.

See Also

calculate_score_patients()

Other score functions: assign_topic(), calculate_score_animals(), calculate_score_biomarker(), calculate_score_patients(), calculate_score_topic(), plot_score_animals(), plot_score_biomarker(), plot_score_topic()
plot_score_topic

Plot frequency of self-chosen topic scores in abstracts

Description

Plot frequency of self-chosen topic scores in abstracts.

Usage

plot_score_topic(
 df,
 keywords,
 case = FALSE,
 name.topic = "TOPIC",
 bins = NULL,
 colour = "steelblue3",
 col.abstract = Abstract,
 col.pmid = PMID,
 title = NULL
)

Arguments

df Data frame containing abstracts.
keywords Character vector. Vector containing keywords. How much weight a keyword in keywords carries is determined by how often it is present in keywords, e.g. if a keyword is mentioned twice in keywords and it is mentioned only once in an abstract, it adds 2 points to the score.
case Boolean. If case = TRUE, terms contained in keywords are case sensitive. If case = FALSE, terms contained in keywords are case insensitive.
name.topic String. Name of the topic.
bins Integer. Specifies how many bins are used to plot the distribution. If bins = NULL, bins are calculated over the whole range of scores, with one bin per score.
col.abstract Symbol. Column containing abstracts.
title String. Plot title.

details

Plots a frequency distribution of self-chosen topic scores in abstracts of a data frame. The topic score is influenced by the choice of terms in keywords. Plotting the distribution can help in choosing the right threshold to decide which abstracts correspond to the self-chosen topic.
Value

Histogram displaying the distribution of self-chosen topic scores in abstracts.

See Also

`calculate_score_topic()`, `assign_topic()`

Other score functions: `assign_topic()`, `calculate_score_animals()`, `calculate_score_biomarker()`, `calculate_score_patients()`, `plot_score_animals()` `plot_score_biomarker()`, `plot_score_patients()`

plot_target_count

Plot count of miRNA targets

Description

Plot count of miRNA targets.

Usage

```r
plot_target_count(
  df,  # Data frame with miRNA targets.
  top = NULL,  # Numeric. Specifies number of top targets to be plotted.
  threshold = NULL,  # Numeric. Specifies how often a target must be in col.target to be plotted.
  colour = "steelblue3",  # String. Colour of bar plot.
  col.target = Target,  # Symbol. Column containing miRNA targets.
  title = NULL  # String. Plot title.
)
```

Arguments

- `df` (Data frame with miRNA targets.)
- `top` (Numeric. Specifies number of top targets to be plotted.)
- `threshold` (Numeric. Specifies how often a target must be in col.target to be plotted.)
- `colour` (String. Colour of bar plot.)
- `col.target` (Symbol. Column containing miRNA targets.)
- `title` (String. Plot title.)

Details

Plot count of miRNA targets as a bar plot. How many targets are plotted is determined either by the `top` or by the `threshold` argument. If `top` is given, targets with the highest count are plotted. Ties among targets with the highest count are treated as the same rank, e.g., if `PTEN`, `AKT`, and `VEGFA` all had the highest count, they would all be plotted by specifying `top = 1`, `top = 2`, and `top = 3`. If `threshold` is given, only targets with a count of at least `threshold` are plotted. If neither `top` nor `threshold` is given, `top` is automatically set to 5.
Value

Bar plot with target counts.

See Also

count_target(), join_targets()
Other target functions: count_target(), join_mirtarbase(), join_targets(), plot_target_mir_scatter()

plot_target_mir_scatter

Plot targets and corresponding miRNAs as a scatter plot

Description

Plot targets and corresponding miRNAs as a scatter plot.

Usage

```r
plot_target_mir_scatter(
  df,
  mir = NULL,
  target = NULL,
  top = NULL,
  threshold = NULL,
  filter_for = "target",
  col.target = Target,
  col.mir = miRNA,
  col.topic = Topic,
  col.pmid = PMID,
  title = NULL,
  height = 0.05,
  width = 0.05,
  alpha = 0.6
)
```

Arguments

df | Data frame containing targets and miRNA names.
mir | String or character vector. Specifies which miRNAs to plot.
target | String or character vector. Specifies which targets to plot.
top | Numeric. Specifies number of top targets/miRNA names to be plotted.
threshold | Numeric. Specifies how often a target/miRNA name must be in df to be plotted.
filter_for | String. Must either be "target" or "miRNA". Specifies if threshold/top shall be applied to targets or miRNA names.
col.target | Symbol. Column containing miRNA targets.
col.mir Symbol. Column containing miRNA names.
col.topic Symbol. Column containing topic names.
title String. Plot title.
height Double. Specifies height of jitter.
width Double. Specifies width of jitter.
alpha Double. Specifies opacity of points.

Details

Plot targets and corresponding miRNAs as a scatter plot. With filter_for, it can be determined if the focus shall be on the top targets to plot their corresponding miRNAs, or if the focus shall be on the top miRNA names to plot their corresponding targets. What "top targets" or "top miRNA names" mean can be determined via the top and threshold arguments.

- If top is given, df is filtered for the most frequent targets/miRNA names.
- If threshold is given, data frame is filtered for all targets/miRNA names mentioned at least threshold times.
- If neither top nor threshold is given, top is automatically set to 5.

By plotting miRNAs against their targets, it is visualized if one miRNA regulates many targets, or if one target is regulated by many miRNAs. Furthermore, the miRNA-target interactions are labelled according to their topic in col.topic, thereby facilitating comparison of miRNA-target interactions across different topics.

Value

Scatter plot with targets and corresponding miRNAs.

See Also

join_targets()

Other target functions: count_target(), join_mirtarbase(), join_targets(), plot_target_count()

plot_wordcloud Create wordcloud of terms associated with a miRNA name

Description

Create wordcloud of terms associated with a miRNA name.

plot_wordcloud
Usage

plot_wordcloud(
 df, # Data frame containing miRNA names, abstracts, and PubMed-IDs.
 mir, # String. miRNA name of interest.
 min.freq = 1, # Integer. Specifies least number of times a term must be associated with mir to be plotted.
 max.terms = 20, # Integer. Maximum number of terms to plot.
 tf.idf = FALSE, # Boolean. If tf.idf = TRUE, terms are weighed in a tf-idf fashion. miRNA names are considered as separate documents, and terms often associated with one miRNA, but not with other miRNAs get more weight. Cannot be used if normalize = TRUE. If tf.idf = TRUE and normalize = TRUE, tf.idf = TRUE is ignored.
 token = "words", # String. Specifies how abstracts shall be split up. Taken from unnest_tokens() in the tidytext package: "Unit for tokenizing, or a custom tokenizing function. Built-in options are "words" (default), "characters", "character_shingles", "ngrams", "skip_ngrams", "sentences", "lines", "paragraphs", "regex", (...), and "ptb" (Penn Treebank). If a function, should take a character vector and return a list of character vectors of the same length."
 ..., # Additional arguments for tokenization, if necessary.
 stopwords = stopwords_miretrieve, # Data frame containing stop words.
 stopwords_ngram = TRUE, # Boolean. Specifies if stop words shall be removed from abstracts when using ngrams. Only applied when token = 'ngrams'.
 colours = "black", # Vector of strings. Colours for wordcloud.
 random.colour = TRUE, # Boolean. Taken from wordcloud() in the wordcloud package: "Choose colours randomly from colours. If false, the colour is chosen based on the frequency."
 ordered.colour = FALSE, # ...
 col.mir = miRNA, # ...
 col.abstract = Abstract, # ...
 col.pmid = PMID
)

Arguments

df # Data frame containing miRNA names, abstracts, and PubMed-IDs.
mir # String. miRNA name of interest.
min.freq # Integer. Specifies least number of times a term must be associated with mir to be plotted.
max.terms # Integer. Maximum number of terms to plot.
tf.idf # Boolean. If tf.idf = TRUE, terms are weighed in a tf-idf fashion. miRNA names are considered as separate documents, and terms often associated with one miRNA, but not with other miRNAs get more weight. Cannot be used if normalize = TRUE. If tf.idf = TRUE and normalize = TRUE, tf.idf = TRUE is ignored.
token # String. Specifies how abstracts shall be split up. Taken from unnest_tokens() in the tidytext package: "Unit for tokenizing, or a custom tokenizing function. Built-in options are "words" (default), "characters", "character_shingles", "ngrams", "skip_ngrams", "sentences", "lines", "paragraphs", "regex", (...), and "ptb" (Penn Treebank). If a function, should take a character vector and return a list of character vectors of the same length."
stopwords # Data frame containing stop words.
stopwords_ngram # Boolean. Specifies if stop words shall be removed from abstracts when using ngrams. Only applied when token = 'ngrams'.
colours # Vector of strings. Colours for wordcloud.
random.colour # Boolean. Taken from wordcloud() in the wordcloud package: "Choose colours randomly from colours. If false, the colour is chosen based on the frequency."
ordered.colour Boolean. Taken from wordcloud() in the wordcloud package: "If true, then colours are assigned to words in order."

col.mir Symbol. Column containing miRNA names.

col.abstract Symbol. Column containing abstracts.

Details

Create wordcloud of terms associated with a miRNA name. miRNA names must be in a data frame df, while terms are taken from abstracts contained in df. Number of terms to plot is regulated by max. terms, while min. freq regulates the least number of times a term must be mentioned to be plotted. Terms can either be evaluated as their raw count, e.g. how often they are mentioned in conjunction with the miRNA of interest, or weighed in a tf-idf fashion. If tf.idf = TRUE, miRNA names are considered as separate documents, and terms often associated with one miRNA, but not with other miRNAs get more weight. plot_wordcloud() is based on the tools available in the wordcloud package.

Value

Wordcloud of terms associated with a miRNA name.

See Also

plot_mir_terms(), wordcloud::wordcloud(), tidytext::unnest_tokens()

Other miR term functions: plot_mir_terms()

read_pubmed

Convert PubMed-file from PubMed into a data frame

Description

Convert PubMed-file from PubMed into a data frame.

Usage

read_pubmed(pubmed_file, topic = NULL)

Arguments

pubmed_file PubMed-file as .txt, downloaded from PubMed.

topic String. Optional. If provided, adds a "Topic" column containing topic.
Details

Convert an PubMed-file from PubMed into a data frame. The PubMed-file should contain PubMed-IDs, abstracts from research articles, abstract title, publication year, abstract language, and article type. The data frame created holds at least six columns, namely

- PMID, containing the PubMed-ID,
- Year, containing the publication year,
- Title, containing the title of the abstracts,
- Abstract, containing the actual abstract,
- Language, containing the language(s) of the paper,
- Type, containing the article type.

If topic is provided, a "Topic" column is added, assigning all abstracts in df to topic.

read_pubmed() is faster than read_pubmed_jats() and thus recommended.

Value

Data frame containing PubMed-IDs, abstracts, abstract titles, publication years, languages, and article types.

See Also

read_pubmed_jats()

Other external data functions: read_pubmed_jats(), save_excel(), save_plot()

read_pubmed_jats

Convert JATS-file from PubMed into a data frame

Description

Convert JATS-file from PubMed into a data frame.

Usage

read_pubmed_jats(jats_file, topic = NULL)

Arguments

jats_file
JATS-file, downloaded from PubMed.

topic
String. Optional. If provided, adds a "Topic" column containing topic.
Details

Converts an JATS-file from PubMed into a data frame. The JATS-file should contain PubMed-IDs, abstracts from research articles, abstract title, publication year, abstract language, and article type. The data frame created holds at least six columns, namely

- **PMID**, containing the PubMed-ID,
- **Year**, containing the publication year,
- **Title**, containing the title of the abstracts,
- **Abstract**, containing the actual abstract,
- **Language**, containing the language(s) of the paper,
- **Type**, containing the article type.

If topic is provided, a "Topic" column is added, assigning all abstracts in df to topic.

read_pubmed() is faster than *read_pubmed_jats()* and thus recommended.

Value

Data frame containing PubMed-IDs, abstracts, abstract titles, publication years, languages, and article types.

See Also

read_pubmed(), *save_excel()*, *save_plot()*

Other external data functions:

Description

Save data frame(s) locally as an xlsx-file.

Usage

```
save_excel(..., excel_file = "miRetrieve_data.xlsx")
```

Arguments

- `...` Data frame(s) to save.
- `excel_file` String. File name that ... shall be saved to. Must end in "xlsx".

Details

Saves data frame locally as an xlsx-file. If more than one data frame is provided, data frames are saved in an xlsx-file with one sheet per data frame.

Wrapper function of *write.xlsx()* from *openxlsx*.

save_excel
Save data frame(s) as xlsx-file

Description

Save data frame(s) locally as an xlsx-file.

Usage

```
save_excel(..., excel_file = "miRetrieve_data.xlsx")
```

Arguments

- `...` Data frame(s) to save.
- `excel_file` String. File name that ... shall be saved to. Must end in "xlsx".

Details

Saves data frame locally as an xlsx-file. If more than one data frame is provided, data frames are saved in an xlsx-file with one sheet per data frame.

Wrapper function of *write.xlsx()* from *openxlsx*.

save_plot

Save the last generated figure locally.

Usage

```r
save_plot(
  plot_file,  # String. File name that the figure shall be saved to. Can end in either ".png", ".tiff", ".pdf", ".jpeg", or ".bmp". For more information, see the documentation of ggplot2::ggsave().
  width = NULL,  # Integer. Optional. Plot width. If width = NULL, width is set to the width of the plotting window.
  height = NULL,  # Integer. Optional. Plot height. If height = NULL, height is set to the height of the plotting window.
  units = "in",  # String. Units for width and height.
  dpi = 300,  # Integer. Resolution for raster graphics such as .pdf-files.
  device = NULL  # String or function. Specifies which device to use (such as "pdf" or cairo_pdf)
)
```

Arguments

- `plot_file`: String. File name that the figure shall be saved to. Can end in either ".png", ".tiff", ".pdf", ".jpeg", or ".bmp". For more information, see the documentation of ggplot2::ggsave().
- `width`: Integer. Optional. Plot width. If width = NULL, width is set to the width of the plotting window.
- `height`: Integer. Optional. Plot height. If height = NULL, height is set to the height of the plotting window.
- `units`: String. Units for width and height.
- `dpi`: Integer. Resolution for raster graphics such as .pdf-files.
- `device`: String or function. Specifies which device to use (such as "pdf" or cairo_pdf).

Details

Saves the last generated figure locally. Wrapper function of ggsave() from ggplot2. For further details, please see ?ggplot2::ggsave.
Value
Plot, locally saved.

See Also

\texttt{ggplot2::ggsave()}

Other external data functions: \texttt{read_pubmed_jats()}, \texttt{read_pubmed()}, \texttt{save_excel()}

\begin{verbatim}
stopwords_2gram Stop words for text mining with common PubMed 2-grams
\end{verbatim}

Description
Data frame containing PubMed 2-gram stop words, manually curated from PubMed abstracts

Usage

\begin{verbatim}
stopwords_2gram
\end{verbatim}

Format
Tibble.

- \texttt{word}: Column containing stop words. Pulled from various PubMed abstracts.
- \texttt{lexicon}: Column specifying lexicon.

Source
Manually created from various PubMed abstracts.

\begin{verbatim}
stopwords_miretrieve Stop words for text mining with miRetrieve
\end{verbatim}

Description
Data frame containing English stop words, PubMed stop words, and common 2-gram stopwords. English stop words are based on \texttt{tidytext::stop_words}, while PubMed stop words are manually curated from PubMed abstracts

Usage

\begin{verbatim}
stopwords_miretrieve
\end{verbatim}
stopwords_pubmed

Format

Tibble.

- **word**: Column containing stop words. Pulled from various PubMed abstracts.
- **lexicon**: Column specifying lexicon.

Source

`tidytext::stop_words`; manually created from various PubMed abstracts.

| stopwords_pubmed | Stop words for text mining from PubMed abstracts |

Description

Data frame containing PubMed stop words, manually curated from PubMed abstracts.

Usage

`stopwords_pubmed`

Format

Tibble.

- **word**: Column containing stop words. Pulled from various PubMed abstracts.
- **lexicon**: Column specifying lexicon.

Source

Manually created from various PubMed abstracts.

| subset_df | Subset data frame for a term |

Description

Subset data frame for a term in a specified column.

Usage

`subset_df(df, col.filter, filter_for = "Yes")`
Arguments

df Data frame to subset.
col.filter String. Name of column to filter.
filter_for String. Term to filter for.

Details

Subset data frame for a term in a specified column. `subset_df()` filters a data frame for a certain term in a specified column. All rows containing the term in the specified column are kept, while the other rows are silently dropped. Here, `col.filter` is a string rather than a symbol to facilitate filtering in columns that carry special characters such as `-` in their name.

Value

Data frame, subset for rows where `filter_for` was present in `col.filter`.

See Also

- `indicate_term()`, `indicate_mir()`, `extract_snp()`
- Other subset functions: `subset_mir_threshold()`, `subset_mir()`, `subset_research()`, `subset_review()`, `subset_snp()`, `subset_year()`

subset_mir

Subset data frame for specific miRNA names

Description

Subset data frame for specific miRNA names only.

Usage

```
subset_mir(df, mir.retain, col.mir = miRNA)
```

Arguments

df Data frame containing a miRNA names.
mir.retain Character vector. Vector specifying which miRNA names to keep. miRNA names in `mir.retain` must match miRNA names in `col.mir` in `df`.
col.mir Symbol. Column containing miRNA names.

Details

Subset data frame for specific miRNA names only.
subset_mir_threshold

Value

Data frame containing only specified miRNA names. If no miRNA name in `mir.retain` matches a miRNA name in `col.mir`, `subset_mir()` stops with a warning saying "No miRNA name in 'mir.retain' matches a miRNA name in 'col.mir'. Could not filter for miRNA name."

See Also

`get_mir()`, `subset_mir_threshold()`

Other subset functions: `subset_df()`, `subset_mir_threshold()`, `subset_research()`, `subset_review()`, `subset_snp()`, `subset_year()`

Description

Subset data frame for miRNA names whose frequency exceeds a threshold.

Usage

```r
subset_mir_threshold(df, threshold = 1, col.mir = miRNA, col.pmid = PMID)
```

Arguments

- `df` : Data frame containing miRNA names and a PubMed-IDs.
- `threshold` : Integer or float. If `threshold` >= 1, retains miRNA names in at least `threshold` abstracts. If `threshold` is between 0 and 1, retains miRNA names mentioned in at least `threshold` abstracts of all abstracts in `df`.
- `col.mir` : Symbol. Column containing miRNA names.

Details

Subset data frame for miRNA names whose frequency exceeds a threshold. This threshold can either be an absolute value, e.g. 3, or a float between 0 and 1, e.g. 0.2. If `threshold` is an absolute value, `subset_mir_threshold()` retains miRNA names mentioned in at least `threshold` abstracts. If `threshold` is a float between 0 and 1, `subset_mir_threshold()` retains miRNA names mentioned in at least `threshold` abstracts of all abstracts in `df`.

Value

Data frame, subset for miRNA names whose frequency exceeds a threshold.

See Also

`get_mir()`, `subset_mir()`

Other subset functions: `subset_df()`, `subset_mir()`, `subset_research()`, `subset_review()`, `subset_snp()`, `subset_year()`
subset_review

Subset data frame for abstracts of research articles

Description

Subset data frame for abstracts of research articles only.

Usage

subset_review(df, col.type = Type)

Arguments

df
 Data frame containing article types.

col.type
 Symbol. Column containing articles types.

Details

Subset data frame for abstracts of research articles only. At the same time, abstracts from other article types such as Review, Letter, etc. are dropped.

Value

Data frame containing abstracts of research articles only.

See Also

subset_review(), subset_year()

Other subset functions: subset_df(), subset_mir_threshold(), subset_mir(), subset_review(), subset_snp(), subset_year()

subset_review

Subset data frame for abstracts of review articles

Description

Subset data frame for abstracts of review articles only.

Usage

subset_review(df, col.type = Type)

Arguments

df
 Data frame containing article types.

col.type
 Symbol. Column containing articles types.
subset_snp

Details
 Subset data frame for abstracts of review articles only. At the same time, abstracts from other article
types such as Journal Article, Letter, etc. are dropped.

Value
 Data frame containing abstracts of review articles only.

See Also
 subset_research(), subset_year()
 Other subset functions: subset_df(), subset_mir_threshold(), subset_mir(), subset_research(),
 subset_snp(), subset_year()

subset_snp Subset data frame for specific SNPs

Description
 Subset data frame for specific SNPs only.

Usage
 subset_snp(df, snp.retain, col.snp = SNPs)

Arguments
 df Data frame containing SNPs.
 snp.retain Character vector. Vector specifying which SNPs to keep. SNPs in snp.retain
 must match SNPs in col.snp in df.
 col.snp Symbol. Column containing SNPs.

Details
 Subset data frame for specific SNPs only.

Value
 Data frame containing only specified SNPs. If no SNP in snp.retain matches a SNP in col.snp,
 subset_snp() stops with a warning saying "No SNP in 'snp.retain' matches a SNP in 'col.snp'.
 Could not filter for SNP."

See Also
 extract_snp(), count_snp(), get_snp()
 Other subset functions: subset_df(), subset_mir_threshold(), subset_mir(), subset_research(),
 subset_review(), subset_year()
subset_year

Subset data frame for abstracts published in a specific period only.

Description
Subset data frame for abstracts published in a specific period only.

Usage
subset_year(df, col.year = Year, start = NULL, end = NULL)

Arguments
- df: Data frame containing publication years.
- col.year: Symbol. Column containing publication years.
- start: Integer. Optional. Beginning of publication period. If start = NULL, start is set to the least recent year in df.
- end: Integer. Optional. End of publication period. If end = NULL, end is set to the most recent year in df.

Details
Subset data frame for abstracts published in a specific period only. All other abstracts published not within this period are silently dropped.

Value
Data frame containing abstracts published in a specific period only.

See Also
subset_research(), subset_review()

Other subset functions: subset_df(), subset_mir_threshold(), subset_mir(), subset_research(), subset_review(), subset_snp()
Index

* LDA functions
 assign_topic_lda, 6
 fit_lda, 33
 plot_lda_term, 47
 plot_perplexity, 54
* combine functions
 combine_df, 12
 combine_mir, 13
* compare functions
 compare_mir_count, 14
 compare_mir_count_log2, 16
 compare_mir_count_unique, 17
 compare_mir_terms, 18
 compare_mir_terms_log2, 20
 compare_mir_terms_scatter, 22
 compare_mir_terms_unique, 24
* count functions
 count_mir, 25
 count_mir_threshold, 26
 count_snp, 27
 plot_mir_count, 48
 plot_mir_count_threshold, 49
* datasets
 animal_keywords, 4
 biomarker_keywords, 7
 df_crc, 28
 df_mirtarbase, 29
 df_panc, 29
 df_test, 30
 ngram_stopwords, 46
 patients_keywords, 47
 stopwords_2gram, 68
 stopwords_miretrieve, 68
 stopwords_pubmed, 69
* external data functions
 read_pubmed, 64
 read_pubmed_jats, 65
 save_excel, 66
 save_plot, 67
* extract functions
 extract_mir_df, 30
 extract_mir_string, 31
 extract_snp, 32
* get functions
 get_distinct_mir_df, 35
 get_distinct_mir_vec, 36
 get_mir, 37
 get_pmid, 38
 get_shared_mir_df, 39
 get_shared_mir_vec, 40
 get_snp, 41
* indicate functions
 indicate_mir, 42
 indicate_term, 42
* miR development functions
 plot_mir_development, 50
 plot_mir_new, 51
* miR term functions
 plot_mir_terms, 52
 plot_wordcloud, 62
* score functions
 assign_topic, 5
 calculate_score_animals, 7
 calculate_score_biomarker, 8
 calculate_score_patients, 10
 calculate_score_topic, 11
 plot_score_animals, 55
 plot_score_biomarker, 56
 plot_score_patients, 57
 plot_score_topic, 59
* stopword functions
 combine_stopwords, 14
 generate_stopwords, 34
* subset functions
 subset_df, 69
 subset_mir, 70
 subset_mir_threshold, 71
 subset_research, 72
subset_review, 72
subset_snp, 73
subset_year, 74
* target functions
 count_target, 28
 join_mirtarbase, 44
 join_targets, 45
 plot_target_count, 60
 plot_target_mir_scatter, 61
 add_col_topic, 3
 add_col_topic(), 6
 animal_keywords, 4
 assign_topic, 5, 8, 9, 11, 12, 56–58, 60
 assign_topic(), 4, 6, 12, 60
 assign_topic_lda, 6, 34, 47, 55

biomarker_keywords, 7

calculate_score_animals, 6, 7, 9, 11, 12, 56–58, 60
calculate_score_animals(), 56

calculate_score_biomarker, 6, 8, 8, 11, 12, 56–58, 60
calculate_score_biomarker(), 57

calculate_score_patients, 6, 8, 9, 10, 12, 56–58, 60
calculate_score_patients(), 58

calculate_score_topic, 6, 8, 9, 11, 11, 56–58, 60
calculate_score_topic(), 6, 60

combine_df, 12, 13
combine_mir, 13, 13
combine_stopwords, 14, 35
combine_stopwords(), 35

compare_mir_count, 14, 17, 18, 20, 22, 23, 25
compare_mir_count(), 17, 18
compare_mir_count_log2, 15, 16, 18, 20, 22, 23, 25
compare_mir_count_log2(), 15, 18

compare_mir_count_unique, 15, 17, 17, 20, 22, 23, 25

compare_mir_terms, 15, 17, 18, 18, 22, 23, 25
compare_mir_terms(), 22, 23, 25

compare_mir_terms_log2, 15, 17, 18, 20, 23, 25

compare_mir_terms_log2(), 20, 23, 25

compare_mir_terms_scatter, 15, 17, 18, 20, 22, 25
compare_mir_terms_scatter(), 20, 22, 25

compare_mir_terms_unique, 15, 17, 18, 20, 22, 23, 24

count_mir, 25, 27, 48, 50

count_mir(), 27, 48, 50

count_mir_threshold, 26, 26, 27, 48, 50

count_mir_threshold(), 26, 48, 50

count_snp, 26, 27, 27, 48, 50

count_snp(), 33, 41, 73
count_target, 28, 45, 46, 61, 62
count_target(), 61
df_crc, 28
df_mirtarbase, 29
df_panc, 29
df_test, 30

extract_mir_df, 30, 32, 33
extract_mir_df(), 32, 42

extract_mir_string, 31, 31, 33
extract_mir_string(), 31

extract_snp, 31, 32, 32

extract_snp(), 27, 41, 70, 73

fit_lda, 6, 33, 47, 55
fit_lda(), 6, 55

generate_stopwords, 14, 34
generate_stopwords(), 14

get_distinct_mir_df, 35, 37–41
get_distinct_mir_vec, 36, 36, 38–41

get_mir, 36, 37, 37, 39–41

get_mir(), 13, 71

get_pmids, 36–38, 38, 40, 41
get_shared_mir_df, 36–39, 39, 40, 41

get_shared_mir_vec, 36–40, 40, 41

get_snp, 36–40, 41

gt_snp(), 27, 33, 73

ggplot::ggsave, 67, 68

indicate_mir, 42, 43
indicate_mir(), 43, 70

indicate_term, 42, 42
indicate_term(), 42, 70

join_mirtarbase, 28, 44, 46, 61, 62
join_targets, 28, 45, 45, 61, 62
join_targets(), 28, 61, 62
ngram_stopwords, 46
openxlsx::write.xlsx(), 67

patients_keywords, 47
plot_lda_term, 6, 34, 47, 55
plot_lda_term(), 6
plot_mir_count, 26, 27, 48, 50
plot_mir_count(), 26, 27, 50
plot_mir_count_threshold, 26, 27, 48, 49
plot_mir_count_threshold(), 26, 27, 48
plot_mir_development, 50, 52
plot_mir_new, 51, 51
plot_mir_terms, 52, 64
plot_mir_terms(), 64
plot_perplexity, 6, 34, 47, 54
plot_perplexity(), 34
plot_score_animals, 6, 8, 9, 11, 12, 55, 57, 58, 60
plot_score_animals(), 8
plot_score_biomarker, 6, 8, 9, 11, 12, 56, 56, 58, 60
plot_score_biomarker(), 9
plot_score_patients, 6, 8, 9, 11, 12, 56, 57, 57, 60
plot_score_patients(), 11
plot_score_topic, 6, 8, 9, 11, 12, 56–58, 59
plot_score_topic(), 6, 12
plot_target_count, 28, 45, 46, 60, 62
plot_target_count(), 28
plot_target_mir_scatter, 28, 45, 46, 61, 61
plot_wordcloud, 54, 62
plot_wordcloud(), 54

read_pubmed, 64, 66–68
read_pubmed(), 66
read_pubmed_jats, 65, 65, 67, 68
read_pubmed_jats(), 65

save_excel, 65, 66, 66, 68
save_plot, 65–67, 67
stopwords_2gram, 68
stopwords_miretrieve, 14, 35, 68
stopwords_pubmed, 69
subset_df, 69, 71–74
subset_mir, 70, 70, 71–74
subset_mir(), 71
subset_mir_threshold, 70, 71, 71, 72–74

subset_mir_threshold(), 71
subset_research, 70, 71, 72, 73, 74
subset_research(), 73, 74
subset_review, 70–72, 72, 73, 74
subset_review(), 72, 74
subset_snp, 70–73, 73, 74
subset_snp(), 27, 33, 41
subset_year, 70–73, 74
subset_year(), 72, 73

tidytext::stop_words, 14, 35
tidytext::unnest_tokens(), 54, 64

wordcloud::wordcloud(), 64