Package ‘micompr’

July 8, 2021

Title Multivariate Independent Comparison of Observations
Version 1.1.1
Date 2021-07-08
Maintainer Nuno Fachada <faken@fakenmc.com>
Description A procedure for comparing multivariate samples associated with
different groups. It uses principal component analysis to convert
multivariate observations into a set of linearly uncorrelated statistical
measures, which are then compared using a number of statistical methods. The
procedure is independent of the distributional properties of samples and
automatically selects features that best explain their differences, avoiding
manual selection of specific points or summary statistics. It is appropriate
for comparing samples of time series, images, spectrometric measures or
similar multivariate observations.
Depends R (>= 3.5.0)
Imports utils, graphics, methods, stats
Suggests biotools, MVN (>= 5.0), deseasonalize, testthat (>= 0.8),
knitr, roxygen2, devtools
License MIT + file LICENSE
URL https://github.com/fakenmc/micompr
BugReports https://github.com/fakenmc/micompr/issues
LazyData true
Encoding UTF-8
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Author Nuno Fachada [aut, cre] (<https://orcid.org/0000-0002-8487-5837>)
Repository CRAN
Date/Publication 2021-07-08 09:40:02 UTC
R topics documented:

assumptions ... 3
assumptions.cmpoutput .. 3
assumptions.micomp .. 4
assumptions_manova ... 5
assumptions_paruv ... 6
centerscale ... 6
cmpoutput ... 8
concat_outputs .. 9
grpoutputs ... 10
micomp .. 12
micompr ... 14
plot.assumptions_cmpoutput .. 15
plot.assumptions_manova ... 16
plot.assumptions_micomp ... 17
plot.assumptions_paruv ... 18
plot.cmpoutput .. 19
plot.grpoutputs .. 20
plot.micomp ... 21
pphp.c_diff .. 21
pphp.c_noshuff .. 22
pphp.c_ok ... 23
print.assumptions_cmpoutput .. 23
print.assumptions_manova .. 24
print.assumptions_micomp .. 25
print.assumptions_paruv ... 25
print.cmpoutput .. 26
print.grpoutputs .. 27
print.micomp .. 28
pvalf ... 28
pvalf.default ... 29
summary.assumptions_cmpoutput 30
summary.assumptions_micomp 31
summary.cmpoutput .. 32
summary.grpoutputs .. 33
summary.micomp ... 34
tikzscat ... 35
toLatex.cmpoutput .. 36
toLatex.micomp .. 37

Index 40
assumptions

assumptions Parametric tests assumptions

Description

Generic function to get the assumptions for parametric tests applied to the comparison of output observations.

Usage

assumptions(obj)

Arguments

obj Object from which to get the assumptions.

Value

Assumptions for parametric tests applied to the comparison of outputs.

See Also

assumptions.cmpoutput, assumptions.micomp

assumptions.cmpoutput Get assumptions for parametric tests performed on output comparisons

Description

Get assumptions for parametric tests performed on output comparisons (i.e. from objects of class cmpoutput).

Usage

S3 method for class 'cmpoutput'
assumptions(obj)

Arguments

obj Object of class cmpoutput.

Value

Object of class assumptions_cmpoutput containing the assumptions for parametric tests performed on an output comparison. Basically a list containing the assumptions for the MANOVA (list of objects of class assumptions_manova, one per explained variance) and univariate parametric tests for each principal component (object of class assumptions_paruv).
Examples

```r
# Create a cmpoutput object from the provided datasets
cmp <- cmpoutput("All", 0.9, pphpc_ok$data["All"], pphpc_ok$obs_lvls)

# Get the assumptions for the parametric tests performed in cmp
acmp <- assumptions(cmp)
```

assumptions.micomp

Get assumptions for parametric tests performed on each comparisons

Description

Get assumptions for parametric tests performed on multiple comparisons (i.e. from objects of class `micomp`).

Usage

```r
## S3 method for class 'micomp'
assumptions(obj)
```

Arguments

- `obj` Object of class `micomp`.

Value

Object of class `assumptions_micomp` containing the assumptions for parametric tests performed for the multiple comparisons held by the `mcmp` object. This object is a multi-dimensional list of `assumptions_cmpoutput` objects. Rows are associated with individual outputs, while columns are associated with separate comparisons.

Examples

```r
# Create a micomp object, use provided dataset
mic <- micomp(6, 0.8,
list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
     list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
     list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)))

# Create an object containing the statistic tests evaluating the assumptions
# of the comparisons performed in the mic object
a <- assumptions(mic)
```
Determine the assumptions for the MANOVA test

Determine two assumptions for the MANOVA test: a) multivariate normality of each group; b) homogeneity of covariance matrices.

Usage

assumptions_manova(data, factors)

Arguments

data: Data used for the MANOVA test (rows correspond to observations, columns to dependent variables).
factors: Groups to which rows of data belong to (independent variables).

Value

An object of class assumptions_manova which is a list containing two elements:

mvntest: List of results from the Royston multivariate normality test (`mvn`), one result per group.
vartest: Result of Box’s M test for homogeneity of covariance matrices (`boxM`).

Note

This function requires the MVN and biotools packages.

Examples

Determine the assumptions of applying MANOVA to the iris data
(i.e. multivariate normality of each group and homogeneity of covariance matrices)
a <- assumptions_manova(iris[, 1:4], iris[, 5])
assumptions_paruv

Determine the assumptions for the parametric comparison test

Description

Determine two assumptions for the parametric comparison tests (i.e. either `t.test` or `aov`) for each principal component, namely: a) univariate normality of each group; b) homogeneity of variances.

Usage

```r
assumptions_paruv(data, factors)
```

Arguments

- `data` Data used in the parametric test (rows correspond to observations, columns to principal components).
- `factors` Groups to which rows of data belong to.

Value

An object of class `assumptions_paruv` which is a list containing two elements:

- `uvntest` List of results from the Shapiro-Wilk normality test (`shapiro.test`), one result per group per principal component.
- `vartest` Result of Bartlett test for homogeneity of variances (`bartlett.test`).

Examples

```r
# Determine the assumptions of applying ANOVA to each column (dependent variable) of the iris data (i.e. normality of each group and homogeneity of variances)
a <- assumptions_paruv(iris[, 1:4], iris[, 5])
```

centerscale

Center and scale vector

Description

Center and scale input vector using the specified method.

Usage

```r
centerscale(v, type)
```
centerscale

Arguments

v
Vector to center and scale.
type
Type of scaling: "center", "auto", "range", "iqr ranges", "vast", "pareto", "level" or
"none".

Value

Center and scaled vector using the specified method.

References

and transformations: improving the biological information content of metabolomics data. BMC
Genomics 7, 142. DOI: 10.1186/1471-2164-7-142

Examples

v <- c(-100, 3, 4, 500, 10, 25, -8, -33, 321, 0, 2)

centerscale(v, "center")
centerscale(v, "auto")
[1] -0.9308937 -0.3526577 -0.3470437 2.4374717 -0.3133601 -0.2291509
[7] -0.4144110 -0.5547596 1.4325760 -0.3694995 -0.3582716
centerscale(v, "range")
[1] -0.2763636 -0.1046970 -0.1030303 0.7236364 -0.0930303 -0.0680303
[7] -0.1230303 -0.1646970 0.4253030 -0.1096970 -0.1063636
centerscale(v, "iqr ranges")
[1] -0.850871 -2.305254 -2.268557 15.933278 -2.048374 -0.3694995 -0.3582716
[7] -0.1230303 -0.1646970 0.4253030 -0.1096970 -0.1063636
centerscale(v, "vast")
[1] -0.34396474 -0.3526577 -0.3470437 2.4374717 -0.3133601 -0.2291509
[7] -0.4144110 -0.5547596 1.4325760 -0.3694995 -0.3582716
centerscale(v, "pareto")
centerscale(v, "level")
[1] -2.5193370 -0.9392265 6.5966851 -0.8480663 -0.6201657
[7] -1.1215470 -1.5013812 3.8770718 -1.0006000 -0.9696133
centerscale(v, "none")
[1] -100 3 4 500 10 25 -8 -33 321 0 2
cmpoutput

Compares output observations from two or more groups

Description

Compares output observations from two or more groups.

Usage

`cmpoutput(name, ve_npcs, data, obs_lvls, lim_npcs = TRUE, mnv_test = "Pillai")`

Arguments

- **name**

 Comparison name (useful when calling this function to perform multiple comparisons).

- **ve_npcs**

 Percentage \((0 < ve_npcs < 1)\) of variance explained by the \(q\) principal components (i.e. number of dimensions) used in MANOVA, or the number of principal components \((ve_npcs > 1, \text{must be integer})\). Can be a vector, in which case the MANOVA test will be applied multiple times, one per specified variance to explain / number of principal components.

- **data**

 A \(n \times m\) matrix, where \(n\) is the total number of output observations (runs) and \(m\) is the number of variables (i.e. output length).

- **obs_lvls**

 Levels or groups associated with each observation.

- **lim_npcs**

 Limit number of principal components used for MANOVA to minimum number of observations per group?

- **mnv_test**

 The name of the test statistic to be used in MANOVA, as described in `summary.manova`.

Value

Object of class `cmpoutput` containing the following data:

- **scores**

 \(n \times n\) matrix containing projections of output data in the principal components space. Rows correspond to observations, columns to principal components.

- **obs_lvls**

 Levels or groups associated with each observation.

- **varexp**

 Percentage of variance explained by each principal component.

- **npcs**

 Number of principal components specified in `ve_npcs` OR which explain the variance percentages given in `ve_npcs`.

- **ve**

 Percentage (between 0 and 1) of variance explained by the \(q\) principal components (i.e. number of dimensions) used in MANOVA.

- **name**

 Comparison name (useful when calling this function to perform multiple comparisons).

- **p.values**

 \(P\)-values for the performed statistical tests, namely:

 - manova

 List of \(p\)-values for the MANOVA test for each number of principal component in `npcs`.
parametric Vector of \textit{p}-values for the parametric test applied to groups along each principal component (\textit{t}-test for 2 groups, ANOVA for more than 2 groups).

nonparametric Vector of \textit{p}-values for the non-parametric test applied to groups along each principal component (Mann-Whitney U test for 2 groups, Kruskal-Wallis test for more than 2 groups).

parametric_adjusted Same as field parametric, but \textit{p}-values are adjusted using weighted Bonferroni procedure. Percentages of explained variance are used as weights.

nonparametric_adjusted Same as field nonparametric, but \textit{p}-values are adjusted using weighted Bonferroni procedure. Percentages of explained variance are used as weights.

tests **manova** Objects returned by the \texttt{manova} function for each value specified in \texttt{ve_npcs}.

parametric List of objects returned by applying \texttt{t.test} (two groups) or \texttt{aov} (more than two groups) to each principal component.

nonparametric List of objects returned by applying \texttt{wilcox.test} (two groups) or \texttt{kruskal.test} (more than two groups) to each principal component.

Examples

```
# Comparing the first output ("Pop.Sheep") of one the provided datasets.
cmp <-
cmpoutput("SheepPop", 0.8, pphpc_ok$data[["Pop.Sheep"]], pphpc_ok$obs_lvls)

# Compare bogus outputs created from 2 random sources, 5 observations per
# source, 20 variables each, yielding a 10 x 20 data matrix.
data <- matrix(c(rnorm(100), rnorm(100, mean = 1)), nrow = 10, byrow = TRUE)
olvls <- factor(c(rep("A", 5), rep("B", 5)))
cmp <- cmpoutput("Bogus", 0.7, data, olvls)
```

concat_outputs

Concatenate multiple outputs with multiple observations

Description

Concatenate multiple outputs with multiple observations.

Usage

```r
cat_outputs(outputlist, centscal = "none")
```

Arguments

- **outputlist** List of outputs. Each output is a \textit{n} x \textit{m} matrix, where \textit{n} is the number of observations and \textit{m} is the number of variables (i.e. output length).
- **centscal** Centering and scaling method: "center", "auto", "range", "iqrange", "vast", "pareto", "level" or "none". This task is delegated to the \texttt{centerscale} function.
Value

An \(n \times p \) matrix, representing the \(n \) observations of the concatenated output, each observation of length \(p \), which is the sum of individual output lengths.

Examples

Collect 20 observations of 3 outputs with different scales and lengths

Output 1, length 100
out1 <- matrix(rnorm(2000, mean = 0, sd = 1), nrow = 20)

Output 2, length 200
out2 <- matrix(rnorm(4000, mean = 100, sd = 200), nrow = 20)

Output 1, length 50
out3 <- matrix(rnorm(1000, mean = -1000, sd = 10), nrow = 20)

Concatenate and range scale outputs, resulting matrix dimensions will be
20 x 350
outconcat <- concat_outputs(list(out1, out2, out3), "range")

grpoutputs

Load and group outputs from files

Description

Load and group outputs from files containing multiple observations of the groups to be compared.

Usage

grpoutputs(
 outputs, # A vector with the labels of each output, or an integer with the number of outputs
 # (in which case output labels will be assigned automatically). In either case,
 # the number of outputs should account for an additional concatenated output, as
 # specified in the concat parameter.
 folders,
 files,
 lvls = NULL,
 concat = F,
 centscal = "range",
 ...
)

Arguments

outputs
folders Vector of folder names where to read files from. These are recycled if length(folders) < length(files).

files Vector of filenames or file sets to load in each folder. File sets can be given as regular expressions, or as wildcards by wrapping them with glob2rx.

lvls Vector of factor levels (groups). Must be the same length as files, i.e. each file set will be associated with a different level or group. If not given, default group names will be used.

concat If TRUE add an additional output which corresponds to the concatenation of all outputs, properly centered and scaled.

centscal Method for centering and scaling outputs if concat is TRUE. It can be one of "center", "auto", "range" (default), "iqr range", "vast", "pareto" or "level". Centering and scaling is performed by the centerscale function.

... Options passed to read.table, which is used to read the files specified in the files parameter.

Details

Each file corresponds to an observation, and should have a tabular format where columns correspond to outputs and rows to variables or dimensions. Observations (files) are grouped by factor levels which correspond to the file groups given in the files parameter. Factor levels differentiate observations from distinct groups.

Value

Object of class grpoutputs containing the following data:

data List of all outputs, each one grouped into a n x m matrix, where n is the total number of output observations and m is the number of variables or dimensions (i.e. output length).

groupsize Vector containing number of observations for each level or group.

obs_lvls Factor vector of levels or groups associated with each observation.

lvls Vector of factor levels in the order they occur (as given in parameter with the same name).

concat Boolean indicating if this object was created with an additional concatenated output.

Examples

Determine paths for data folders, each containing outputs for 10 runs of
the PPHPC model
dir_nl_ok <- system.file("extdata", "nl_ok", package = "micompr")
dir_jex_ok <- system.file("extdata", "j_ex_ok", package = "micompr")
files <- glob2rx("stats400v1*.tsv")

Create a grouped outputs object using outputs from NetLogo and Java
implementations of the PPHPC model
go <- grpoutputs(7, c(dir_nl_ok, dir_jex_ok), c(files, files),
 lvls = c("NL", "JEX"), concat = TRUE)

Do the same, but specify output names and don't specify levels
go <- grpoutputs(c("a", "b", "c", "d", "e", "f"),
 c(dir_nl_ok, dir_jex_ok), c(files, files))
Description

Performs multiple independent comparisons of output observations.

Usage

```r
micomp(
  outputs, ve_npcs, comps,
  concat = F,
  centscal = "range",
  lim_npcs = TRUE,
  mnv_test = "Pillai",
  ...
)
```

Arguments

- `outputs`: A vector with the labels of each output, or an integer with the number of outputs (in which case output labels will be assigned automatically).
- `ve_npcs`: Percentage \((0 < ve_npcs < 1)\) of variance explained by the \(q\) principal components (i.e. number of dimensions) used in MANOVA, or the number of principal components \((ve_npcs > 1\), must be integer). Can be a vector, in which case the MANOVA test will be applied multiple times, one per specified variance to explain / number of principal components.
- `comps`: A list of lists, where each list contains information regarding an individual comparison. Each list can have one of two configurations:
 1. Lists with the first configuration are used to load data from files, and require the following fields:
 - `name`: A string specifying the comparison name.
 - `folders`: Vector of folder names where to read files from. These are recycled if \(\text{length(folders)} < \text{length(files)}\).
 - `files`: Vector of filenames (with wildcards) to load in each folder.
 - `lvls`: Vector of level or group names, must be the same length as `files`, i.e. each file set will be associated with a different group. If not given, default group names will be set.
 2. Lists with the second configuration are used to load data from environment variables, and require the following fields:
 - `name`: A string specifying the comparison name.
 - `grpout`: Either an object of class `grpoutputs` or a list with the following two fields:
data List of all outputs, where tags correspond to output names and values correspond to the output data. Output data is a $n \times m$ matrix, where n is the total number of output observations and m is the number of variables (i.e. output length).

obs_lvls Levels or groups associated with each observation.

concat Create an additional, concatenated output? Ignored for sublists passed in the comps which follow the second configuration.

centscal Method for centering and scaling outputs if concat is TRUE. It can be one of "center", "auto", "range" (default), "iqrange", "vast", "pareto" or "level". Centering and scaling is performed by the centerscale function.

limnpcs Limit number of principal components used for MANOVA to minimum number of observations per group?

mnv_test The name of the test statistic to be used in MANOVA, as described in summary.manova.

... Options passed to read.table, which is used to read the files specified in lists using the first configuration in the comp parameter.

Value

An object of class micomp, which is a two-dimensional list of cmpoutput objects. Rows are associated with individual outputs, while columns are associated with separate comparisons.

Examples

Create a micomp object from existing files and folders

dir_nl_ok <- system.file("extdata", "nl_ok", package = "micompr")
dir_jex_ok <- system.file("extdata", "j_ex_ok", package = "micompr")
dir_jex_noshuff <- system.file("extdata", "j_ex_noshuff", package = "micompr")
dir_jex_diff <- system.file("extdata", "j_ex_diff", package = "micompr")
files <- glob2rx("stats400v1*.tsv")

mic <- micomp(7, 0.8,
list(list(name = "NLOKvsJEXOK",
folders = c(dir_nl_ok, dir_jex_ok),
files = c(files, files),
lvls = c("NLOK", "JEXOK")),
list(name = "NLOKvsJEXNOSHUFF",
folders = c(dir_nl_ok, dir_jex_noshuff),
files = c(files, files),
lvls = c("NLOK", "JEXNOSHUFF")),
list(name = "NLOKvsJEXDIFF",
folders = c(dir_nl_ok, dir_jex_diff),
files = c(files, files),
lvls = c("NLOK", "JEXDIFF")))

concat = TRUE)
Create a micomp object from package datasets (i.e. grpoutputs objects)
directly

mic <- micomp(c("o1", "o2", "o3", "o4"), 0.9,
 list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
 list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
 list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)))

Create a micomp object using manually inserted data

mic <- micomp(6, 0.5, list(
 list(name = "NLOKvsJEXOK",
 grpout = list(data = pphpc_ok$data,
 obs_lvls = pphpc_ok$obs_lvls)),
 list(name = "NLOKvsJEXNOSHUFF",
 grpout = list(data = pphpc_noshuff$data,
 obs_lvls = pphpc_noshuff$obs_lvls)),
 list(name = "NLOKvsJEXDIFF",
 grpout = list(data = pphpc_diff$data,
 obs_lvls = pphpc_diff$obs_lvls))))

Description

The micomp R package implements a procedure for comparing multivariate samples associated with different groups. The procedure uses principal component analysis to convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then compared using a number of statistical methods. This technique is independent of the distributional properties of samples and automatically selects features that best explain their differences, avoiding manual selection of specific points or summary statistics. The procedure is appropriate for comparing samples of time series, images, spectrometric measures or similar multivariate observations.

Note

MIT License

Author(s)

Nuno Fachada

References

plot.assumptions_cmpoutput

Description

Plot method for objects of class assumptions_cmpoutput containing p-values produced by testing the assumptions of the parametric tests used for comparing an output.

Usage

S3 method for class 'assumptions_cmpoutput'
plot(x, ...)

Arguments

x

Objects of class assumptions_cmpoutput.

... Extra options passed to plot.default.

Details

Several bar plots are presented, showing the p-values yielded by the Shapiro-Wilk (shapiro.test) and Royston tests (mvn) for univariate and multivariate normality, respectively, and for the Bartlett (bartlett.test) and Box’s M (boxM) for testing homogeneity of variances and of covariance matrices, respectively. The following bar plots are shown:

- One bar plot for the p-values of the Bartlett test, one bar (p-value) per individual principal component.
- s bar plots for p-values of the Shapiro-Wilk test, where s is the number of groups being compared. Individual bars in each plot are associated with a principal component.
- t bar plot for the p-values of the Royston test with s bars each, where t is the number of unique MANOVA tests performed (one per requested explained variances) and s is the number of groups being compared. These plots will not show if there is only one principal component being considered.
- One plot for the p-values of the Box’s M test, one bar (p-value) per unique MANOVA tests performed (one per requested explained variances).

Value

None.

See Also

cmpoutput, micomp, grpoutputs
Examples

```r
# Create a cmpoutput object from the provided datasets
cmp <- cmpoutput("All", 0.9, pphpc_ok$data[["All"]], pphpc_ok$obs_lvls)

# Display a bar plot with the p-values of the assumptions for the parametric
# tests performed in cmp
plot(assumptions(cmp))
```

Description

Plot method for objects of class `assumptions_manova` which presents a bar plot containing the `p`-values produced by the Royston multivariate normality test (`mvn`) for each group being compared.

Usage

```r
## S3 method for class 'assumptions_manova'
plot(x, ...)
```

Arguments

- `x` Objects of class `assumptions_manova`.
- `...` Extra options passed to `barplot`. The `col` parameter defines colors for `p`-values below 1, 0.05 and 0.01, respectively.

Value

None.

Examples

```r
# Plot the Royston test p-value for multivariate normality of each group
# (species) of the iris data
plot(assumptions_manova(iris[, 1:4], iris[, 5]))

# Plot the same data with logarithmic scale for p-values
plot(assumptions_manova(iris[, 1:4], iris[, 5]), log = "y")
```
plot.assumptions_micomp

Plot p-values for testing the assumptions of the parametric tests used in multiple output comparison.

Description

Plot method for objects of class `assumptions_cmpoutput` containing p-values produced by testing the assumptions of the parametric tests used for multiple output comparisons.

Usage

```r
## S3 method for class 'assumptions_micomp'
plot(x, ...)
```

Arguments

- `x` Object of class `assumptions_micomp`.
- `...` Extra options passed to `barplot`.

Details

Several bar plots are presented, one for each comparison and output combination, showing the several statistical tests employed to verify the assumptions of the parametric tests.

Value

None.

Examples

```r
# Create a micomp object, use provided dataset
mic <- micomp(6, 0.65,
              list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
                   list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
                   list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)))

# Plot the p-values of the statistic tests evaluating the assumptions of the # comparisons performed in the mic object
plot(assumptions(mic))
```
plot.assumptions_paruv

Plot p-values for testing the assumptions of the parametric tests used in output comparison

Description

Plot method for objects of class assumptions_paruv containing p-values produced by testing the assumptions of the parametric tests used for comparing outputs.

Usage

```r
## S3 method for class 'assumptions_paruv'
plot(x, ...)  
```

Arguments

- `x` Objects of class assumptions_paruv.
- `...` Extra options passed to barplot. The col parameter defines colors for p-values below 1, 0.05 and 0.01, respectively.

Details

One bar plot is presented for the Bartlett test (bartlett.test), showing the respective p-values along principal component. s bar plots are presented for the Shapiro-Wilk (shapiro.test), where s is the number of groups being compared; individual bars in each plot represent the p-values associated with each principal component.

Value

None.

Examples

```r
# Plot the Shapiro-Wilk and Bartlett test p-values for each dependent variable of the iris data
plot(assumptions_paruv(iris[, 1:4], iris[, 5]))

# Plot the same data with logarithmic scale for p-values
plot(assumptions_paruv(iris[, 1:4], iris[, 5]), log = "y")
```
plot_cmpoutput

Description

Plot objects of class `cmpoutput`.

Usage

```r
## S3 method for class 'cmpoutput'
plot(x, ...)
```

Arguments

- `x` Object of class `cmpoutput`.
- `...` Extra options passed to `plot.default`. The `col` option determines the colors to use on observations of different groups (scatter plot only).

Details

This method produces four sub-plots, namely:

- Scatter plot containing the projection of output observations on the first two dimensions of the principal components space.
- Bar plot of the percentage of variance explain per principal component.
- Bar plot of p-values for the parametric test for each principal component.
- Bar plot of p-values for the non-parametric test for each principal component.

Value

None.

Examples

```r
# Comparing the concatenated output of the pphpc_ok dataset, which
# contains simulation output data from two similar implementations of the
# PPHPC model.

plot(cmpoutput("All", 0.95, pphpc_ok$data["All"], pphpc_ok$obs_lvls))
```
Description

Plot objects of class `grpoutputs`.

Usage

```r
## S3 method for class 'grpoutputs'
plot(x, ...)
```

Arguments

- `x` Object of class `grpoutputs`.
- `...` Extra options passed to `plot.default`.

Details

Each output is plotted individually, and observations are plotted on top of each other. Observations from different groups are plotted with different colors (which can be controlled through the `col` parameter given in `...`).

This function can be very slow for a large number of observations.

Value

None.

Examples

```r
# Determine paths for the data folder containing outputs of different lengths
dir_na <- system.file("extdata", "testdata", "NA", package = "micompr")

# Sets of files A and B have 3 files each
filesA <- glob2rx("stats400v1*n20A.tsv")
filesB <- glob2rx("stats400v1*n20B.tsv")

# Instantiate grpoutputs object
go <-
grpoutputs(7, dir_na, c(filesA, filesB), lvls = c("A", "B"), concat = TRUE)

# Plot grpoutputs object
plot(go)
```
plot.micomp

Plot projection of output observations on the first two dimensions of the principal components space

Description
For each comparison and output combination, draw a scatter plot containing the projection of output observations on the first two dimensions of the principal components space.

Usage
S3 method for class 'micomp'
plot(x, ...)

Arguments
x An object of class micomp.
... Extra options passed to plot.default. The col option determines the colors to use on observations of different groups.

Value
None.

Examples
plot(micomp(c("SheepPop", "WolfPop", "GrassQty"), 0.95,
 list(list(name = "I", grpout = pphpc_ok),
 list(name = "II", grpout = pphpc_noshuff),
 list(name = "III", grpout = pphpc_diff))))

pphpc_diff
Data from two implementations of the PPHPC model, one of which setup with a different parameter

Description
A dataset containing simulation output data from two implementations of the PPHPC model, one of which setup with a different parameter.

Usage
pphpc_diff
Format

A `grpoutputs` object containing simulation output data from 20 runs of the PPHPC model, 10 runs from each implementation. The model has six outputs, but the object contains a seventh output corresponding to the concatenation of the six outputs.

Source

Runs are obtained from the NetLogo and Java (EX with 8 threads) implementations of the PPHPC model available at https://github.com/fakenmc/pphpc. The `config400v1.txt` configuration was used in both cases, with the exception of restart parameter, \(c_r \), in the Java implementation, which was set to 9 instead of 10.

pphpc_noshuff

Data from two implementations of the PPHPC model, one of which has agent list shuffling deactivated.

Usage

`pphpc_noshuff`

Format

A `grpoutputs` object containing simulation output data from 20 runs of the PPHPC model, 10 runs from each implementation. The model has six outputs, but the object contains a seventh output corresponding to the concatenation of the six outputs.

Source

Runs are obtained from the NetLogo and Java (EX with 8 threads) implementations of the PPHPC model available at https://github.com/fakenmc/pphpc. The `config400v1.txt` configuration was used in both cases. Runs with the Java implementation were performed with the `-u` option, i.e. with agent list shuffling turned off.
Data from two similar implementations of the PPHPC model

Description

A dataset containing simulation output data from two implementations of the PPHPC model.

Usage

pphpc_ok

Format

A `grpoutputs` object containing simulation output data from 20 runs of the PPHPC model, 10 runs from each implementation. The model has six outputs, but the object contains a seventh output corresponding to the concatenation of the six outputs.

Source

Runs are obtained from the NetLogo and Java (EX with 8 threads) implementations of the PPHPC model available at https://github.com/fakenmc/pphpc. The config400v1.txt configuration was used in both cases.

print.assumptions_cmpoutput

Print method for the assumptions of parametric tests used in a comparison of an output

Description

Print method for objects of class `assumptions_cmpoutput`, which contain the assumptions for the parametric tests used in a comparison of an output.

Usage

```r
## S3 method for class 'assumptions_cmpoutput'
print(x, ...)
```

Arguments

- `x` Object of class `assumptions_cmpoutput`.
- `...` Currently ignored.

Value

None.
print.assumptions_manova

Examples

Create a cmpoutput object from the provided datasets
cmp <- cmpoutput("All", c(0.7, 0.8, 0.9),
 pphpc_diff$data[["All"]], pphpc_diff$obs_lvls)

print.assumptions_manova

Print information about the assumptions of the MANOVA test

Description

Print information about objects of class assumptions_manova, which represent the assumptions of the MANOVA test performed on a comparison of outputs.

Usage

S3 method for class 'assumptions_manova'
print(x, ...)

Arguments

x Object of class assumptions_manova.
...
Currently ignored.

Value

The argument x, invisibly, as for all print methods.

Examples

Print information concerning the assumptions of applying MANOVA to the iris data (i.e. multivariate normality of each group and homogeneity of covariance matrices)
assumptions_manova(iris[, 1:4], iris[, 5])
Print information about the assumptions concerning the parametric tests performed on multiple comparisons of outputs.

Description

Print information about objects of class `assumptions_micomp`, which represent the assumptions concerning the parametric tests performed on multiple comparisons of outputs.

Usage

```r
## S3 method for class 'assumptions_micomp'
print(x, ...
```

Arguments

- `x` Object of class `assumptions_micomp`.
- `...` Currently ignored.

Value

The argument `x`, invisibly, as for all `print` methods.

Examples

```r
# Create a micomp object, use provided dataset
mic <- micomp(c("SheepPop", "WolfPop", "GrassQty"), 0.7,
  list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
       list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
       list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)))
# Print the results (p-values) of the statistic tests evaluating the
# assumptions of the comparisons performed in the mic object
assumptions(mic)
```

Print information about the assumptions of the parametric test.

Description

Print information about objects of class `assumptions_paruv`, which represent the assumptions of the parametric test (i.e. either `t.test` or `aov`) performed on a comparison of outputs.
print.cmpoutput

Usage

S3 method for class 'assumptions_paruv'
print(x, ...)

Arguments

x Object of class assumptions_paruv.

... Currently ignored.

Value

The argument x, invisibly, as for all print methods.

Examples

Print information about the assumptions of applying ANOVA to each column
(dependent variable) of the iris data (i.e. normality of each group and
homogeneity of variances)
assumptions_paruv(iris[, 1:4], iris[, 5])

print.cmpoutput Print information about comparison of an output

Description

Print information about objects of class cmpoutput.

Usage

S3 method for class 'cmpoutput'
print(x, ...)

Arguments

x Object of class cmpoutput.

... Currently ignored.

Value

The argument x, invisibly, as for all print methods.
Examples

Comparing the fifth output of the pphpc_diff dataset, which contains
simulation output data from two implementations of the PPHPC model executed
with a different parameter.

cmpoutput("WolfPop", 0.7, pphpc_diff$data[[5]], pphpc_diff$obs_lvls)

print.grpoutputs

Print information about grouped outputs

Description

Print information about objects of class grpoutputs.

Usage

S3 method for class 'grpoutputs'
print(x, ...)

Arguments

x Object of class grpoutputs.
...

Currently ignored.

Value

The argument x, invisibly, as for all print methods.

Examples

Determine paths for data folders, each containing outputs for 10 runs of
the PPHPC model
dir_nl_ok <- system.file("extdata", "nl_ok", package = "micompr")
dir_jex_diff <- system.file("extdata", "j_ex_diff", package = "micompr")
files <- glob2rx("stats400v1*.tsv")

Create a grpoutputs object
go <- grpoutputs(6, c(dir_nl_ok, dir_jex_diff), c(files, files))

Print information about object (could just type "go" instead)
print(go)
print.micomp

Print information about multiple comparisons of outputs

Description
Print information about objects of class `micomp`.

Usage
```r
## S3 method for class 'micomp'
print(x, ...)
```

Arguments
- `x`: Object of class `micomp`.
- `...`: Currently ignored.

Value
The argument `x`, invisibly, as for all `print` methods.

Examples
```r
# A micomp object from package datasets (i.e. grpoutputs objects) directly
micomp(c("outA", "outB", "outC", "outD"), 0.9,
      list(list(name = "Comp1", grpout = pphpc_ok),
           list(name = "Comp2", grpout = pphpc_noshuff),
           list(name = "Comp3", grpout = pphpc_diff)))
```

pvalf

Format p-values

Description
Generic function to format p-values.

Usage
```r
pvalf(pval, params)
```

Arguments
- `pval`: Numeric p-value to format (between 0 and 1).
- `params`: A list of method-dependent options.
Value

A string representing the formatted p-value.

See Also

pvalf.default

pvalf.default Default p-value formatting method

Description

Format a p-value for printing in a LaTeX table. Requires the \texttt{ulem} LaTeX package for underlining the p-values.

Usage

```r
## Default S3 method:
pvalf(pval, params = list())
```

Arguments

- **pval**: Numeric value between 0 and 1.
- **params**: A list of options. This function accepts the following options:
 - **minval**: If p-value is below this value, return this value preceded by a "<" sign instead.
 - **lim1val**: If p-value is below this value, it will be double-underlined.
 - **lim2val**: If p-value is below this value, it will be underlined.
 - **na_str**: String to use for NAs. By default NAs are returned as is.

Value

A string representing the formatted pval.

Examples

```r
pvalf(0.1)
pvalf(0.000001)
pvalf(c(0.06, 0.04, 0.005, 0.00001), list(minval = 0.0001))
```
Summary method for the assumptions of parametric tests used in a comparison of an output

Description

Summary method for objects of class `assumptions_cmpoutput`, which contain the assumptions for the parametric tests used in a comparison of an output.

Usage

```r
## S3 method for class 'assumptions_cmpoutput'
summary(object, ...)  
```

Arguments

- `object`: Object of class `assumptions_cmpoutput`.
- `...`: Currently ignored.

Value

A list with the following items:

- `manova`: A matrix of p-values for the MANOVA assumptions. All rows, except the last one, correspond to the Royston test for multivariate normality for each group; the last row corresponds to Box’s M test for homogeneity of covariance matrices. Columns correspond to number of principal components required to explain the percentage of user-specified variance.

- `ttest`: A matrix of p-values for the t-test assumptions. All rows, except the last one, correspond to the Shapiro-Wilk normality test for each group; the last row corresponds to Bartlett’s for equality of variances. Columns correspond to the principal components on which the t-test was applied.

Examples

```r
# Create a cmpoutput object from the provided datasets
cmp <- cmpoutput("All", c(0.5, 0.6, 0.7),
                   pphpc_ok$data["All"], pphpc_ok$obs_lvls)

# Obtain the summary of the assumptions of the cmpoutput object
summary(assumptions(cmp))
```
Summary method for objects of class `assumptions_micomp`, which contain the assumptions for the parametric tests used in multiple comparisons of outputs.

S3 method for class 'assumptions_micomp'

```r
summary(object, ...)  
```

Arguments

- `object`: Object of class `assumptions_micomp`.
- `...`: Currently ignored.

Value

A list in which each component is associated with a distinct comparison. Each component contains a matrix, in which columns represent individual outputs and rows correspond to the statistical tests evaluating the assumptions of the parametric tests used in each output. More specifically, each matrix has rows with the following information:

- **Royston**

 One row per group per variance to explain / number of PCs, with the p-value yielded by the Royston test (`mvn`) for the respective group and variance/npcs combination.

- **Box’s M**

 One row per variance to explain with the p-value yielded by Box’s M test (`boxM`).

- **Shapiro-Wilk**

 One row per group, with the p-value yielded by the Shapiro-Wilk test (`shapiro.test`) for the respective group.

- **Bartlett**

 One row with the p-value yielded by Bartlett’s test (`bartlett.test`).

Examples

```r
# Create a micomp object, use provided dataset
mic <- micomp(5, c(0.7, 0.8, 0.9),
              list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
                   list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff)),
              concat = TRUE)

# Get the assumptions summary
sam <- summary(assumptions(mic))
```
Description

Summary method for objects of class `cmpoutput`.

Usage

```r
## S3 method for class 'cmpoutput'
summary(object, ...)
```

Arguments

- `object` Object of class `cmpoutput`.
- `...` Currently ignored.

Value

A list with the following components:

- `output.name` Output name.
- `num.pcs` Number of principal components which explain `var.exp` percentage of variance.
- `var.exp` Minimum percentage of variance which must be explained by the number of principal components used for the MANOVA test.
- `manova.pvals` p-value of the MANOVA test.
- `parametric.test` Name of the used parametric test.
- `parametric.pvals` Vector of p-values returned by applying the parametric test to each principal component.
- `parametric.pvals.adjusted` Vector of p-values returned by applying the parametric test to each principal component, adjusted with the weighted Bonferroni procedure, percentage of explained variance used as weight.
- `nonparametric.test` Name of the used non-parametric test.
- `nonparametric.pvals` Vector of p-values returned by applying the non-parametric test to each principal component.
- `nonparametric.pvals.adjusted` Vector of p-values returned by applying the non-parametric test to each principal component, adjusted with the weighted Bonferroni procedure, percentage of explained variance used as weight.
Examples

Comparing the concatenated output of the pphpc_noshuff dataset, which
contains simulation output data from two implementations of the PPHPC model
executed with a minor implementation difference.

summary(cmpoutput("All", 0.6, pphpc_noshuff$data["All"], pphpc_noshuff$obs_lvls))
Summary method for multiple comparisons of outputs

Description

Summary method for objects of class `micomp`.

Usage

```r
## S3 method for class 'micomp'
summary(object, ...)
```

Arguments

- `object`: Object of class `micomp`.
- `...`: Currently ignored.

Value

A list in which each component is associated with a distinct comparison. Each component contains a matrix, in which columns represent individual outputs and rows have information about the outputs. More specifically, each matrix has the following rows:

- **#PCs (ve=%)**: Number of principal components required to explain the specified percentage of variance. There is one row of this kind for each percentage of variance specified when creating the `micomp` object.
- **MANOVA (ve=%)**: P-value for the MANOVA test applied to the #PCs required to explain the specified percentage of variance. There is one row of this kind for each percentage of variance specified when creating the `micomp` object.
- **par.test**: P-value for the parametric test (first principal component).
- **nonpar.test**: P-value for the non-parametric test (first principal component).
- **par.test.adjust**: P-value for the parametric test (first principal component), adjusted with the weighted Bonferroni procedure, percentage of explained variance used as weight.
- **nonpar.test.adjust**: P-value for the non-parametric test (first principal component), adjusted with the weighted Bonferroni procedure, percentage of explained variance used as weight.

Examples

```r
# A micomp object from package datasets (i.e. grpoutputs objects) directly
summary(micomp(5, 0.85, 
  list(list(name = "CompEq", grpout = pphpc_ok), 
       list(name = "CompNoShuf", grpout = pphpc_noshuff), 
       list(name = "CompDiff", grpout = pphpc_diff))))
```
tikzscat

Simple TikZ scatter plot

Description
Create a simple 2D TikZ scatter plot, useful for plotting PCA data.

Usage
```
tikzscat(data, obs_lvls, marks, tscale, axes_color = "gray")
```

Arguments
- **data**: Data to plot, \(m \times 2\) numeric matrix, where \(m\) is the number of observations or points to plot.
- **obs_lvls**: Levels or groups associated with each observation.
- **marks**: Character vector determining how to draw the points in TikZ, for example:
  ```
c("mark=square*,mark options={color=red},mark size=0.8pt","mark=diamond*,mark options={color=black},mark size=1pt","mark=triangle*,mark options={color=green},mark size=1pt")
  ```
- **tscale**: The scale property of the TikZ figure.
- **axes_color**: Axes color (must be a LaTeX/TikZ color).

Details
This function creates a simple TikZ 2D scatter plot within a `tikzpicture` environment. The points are plotted on a normalized figure with \(x\) and \(y\) axes bounded between \([-1, 1]\). To render adequately, the final LaTeX document should load the `plotmarks` TikZ library.

Value
A string containing the TikZ figure code for plotting the specified data.

Examples
```
tikzscat(rbind(c(1.5, 2), c(0.5, 1)), factor(c(1,2)),
  c("mark=square*,mark options={color=red},mark size=0.8pt",
    "mark=diamond*,mark options={color=black},mark size=1pt")
  )
```
toLatex.cmpoutput \hspace{1cm} Convert cmpoutput object to LaTeX table

Description

This method converts cmpoutput objects to character vectors representing LaTeX tables.

Usage

```r
## S3 method for class 'cmpoutput'
toLatex(object, cmp_name = "Comp. 1", ...)
```

Arguments

- `object`: A cmpoutput object.
- `cmp_name`: Comparison name (to appear in table).
- `...`: Any options accepted by the toLatex.micomp function.

Details

This method simply wraps the cmpoutput object into a micomp object, and invokes toLatex.micomp on the wrapped object.

Value

A character vector where each element holds one line of the corresponding LaTeX table.

Examples

```r
# Create a cmpoutput object by comparing the first output ("Pop.Sheep") of
# one the provided datasets.
cmp <-
  cmpoutput("SheepPop", 0.9, pphpc_ok$data["Pop.Sheep"], pphpc_ok$obs_lvls)

# Print latex table source to screen
toLatex(cmp)
```
Description

This method converts `micomp` objects to character vectors representing LaTeX tables.

Usage

```r
## S3 method for class 'micomp'
toLatex(  
oobject, 
...,
orientation = T,
data_show = c("npcs-1", "mnvp-1", "parp-1", "nparp-1", "scoreplot"),
data_labels = NULL,
labels_cmp_show = T,
labels_col_show = T,
label_row_show = T,
tag_comp = "Comp."
ntag_data = "Data",
tag_outputs = "Outputs",
table_placement = "ht",
latex_envs = c("center"),
booktabs = F,
booktabs_cmalignment = "l",
caption = NULL,
caption_cmd = "\caption",
label = NULL,
col_width = F,
pvalf_f = pvalf.default,
pvalf_params = list(),
markplot_marks = c("mark=square*,mark options={color=red},mark size=0.8pt",
\"mark=diamond*,mark options={color=black},mark size=1pt",
\"mark=triangle*,mark options={color=green},mark size=1pt"),
scoreplot_scale = 6,
scoreplot_before = "\raisebox{-.5\height}{\resizebox {1.2cm} {1.2cm} {",
scoreplot_after = "}}")
)
```

Arguments

- **object**: A `micomp` object.
- **...**: Currently ignored.
- **orientation**: If TRUE, outputs are placed along columns, while data is placed along rows. If FALSE, outputs are placed along rows, while data is placed along columns.
data_show Vector of strings specifying what data to show. Available options are:

- **npcs-i** Number of principal components required to explain i-th user-specified percentage of variance.
- **mnvp-i** MANOVA p-values for the i-th user-specified percentage of variance to explain.
- **parp-j** Parametric test p-values for the j-th principal component.
- **nparp-j** Non-parametric test p-values for the j-th principal component.
- **aparp-j** Parametric test p-values adjusted with weighted Bonferroni procedure for the j-th principal component.
- **anparp-j** Non-parametric test p-values adjusted with weighted Bonferroni procedure for the j-th principal component.
- **varexp-j** Explained variance for the j-th principal component.
- **scoreplot** Output projection on the first two principal components.
- **sep** Place a separator (e.g. midrule) between data.

data_labels Vector of strings specifying the labels of the data to show. If NULL, default labels are used for all elements. If individual elements are set to NA, default labels will be used for those elements.

labels_cmp_show Show the column containing the comparison labels?

labels_col_show Show the column containing the data labels (orientation == T) or the output labels (orientation == F)?

label_row_show Show the tag_outputs tag? If TRUE, the row identifier part will have two levels, the tag_outputs label and output names (orientation == T), or the tag_data and data labels (orientation == F). If FALSE only the output names or data labels are shown.

tag_comp Tag identifying comparison labels.

tag_data Tag identifying data labels.

tag_outputs Tag identifying outputs.

table_placement LaTeX table placement.

latex_envs Wrap table in the specified LaTeX environments.

booktabs Use booktabs table beautifier package?

booktabs_cmalign How to align cmidule when using the booktabs package.

caption Table caption.

caption_cmd Command used for table caption.

label Table label for cross-referencing.

col_width Resize table to page column width?

pvalf_f P-value formatter function, which receives a numeric value between 0 and 1 and returns a string containing the formatted value. Default is \texttt{pvalf.default} (requires \texttt{ulem} LaTeX package).
toLatex.micomp

pvalf_params Parameters for pvalf_f function. Default is empty list.

scoreplot_marks Vector of strings specifying how TikZ should draw points belonging to each group in the score plot.

scoreplot_scale TikZ scale for each score plot figure.

scoreplot_before LaTeX code to paste before each TikZ score plot figure.

scoreplot_after LaTeX code to paste after each TikZ score plot figure.

Details

This method is inspired by the functionality provided by the xtable and print.xtable functions (from the xtable package), but follows the standard behavior of the toLatex generic.

Value

A character vector where each element holds one line of the corresponding LaTeX table.

Examples

Create a micomp object, use provided dataset, three first outputs, plus
a fourth concatenated output
mic <- micomp(4, 0.8,
 list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
 list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
 list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)),
 concat = TRUE)

Print LaTeX table source to screen
toLatex(mic)
Index

* datasets
 pphpc_diff, 21
 pphpc_noshuff, 22
 pphpc_ok, 23

aov, 6, 9, 25
assumptions, 3
assumptions_cmpoutput, 3, 3
assumptions_micomp, 3, 4
assumptions_manova, 3, 5, 16
assumptions_paruv, 3, 6, 18

barplot, 16–18
bartlett.test, 6, 15, 18, 31
boxM, 5, 15, 31

centerscale, 6, 9, 11, 13
cmpoutput, 3, 8, 13, 15, 36
concat_outputs, 9

glob2rx, 11
group_outputs, 10, 12, 15, 22, 23

kruskal.test, 9

manova, 9
micomp, 4, 12, 15, 21, 28, 34, 36, 37
micompr, 14
mvn, 5, 15, 16, 31

plot.assumptions_cmpoutput, 15
plot.assumptions_manova, 16
plot.assumptions_micomp, 17
plot.assumptions_paruv, 18
plot_cmpoutput, 19
plot_default, 15, 19–21
plot_group_outputs, 20
plot_micomp, 21
pphpcdiff, 21
pphpc_noshuff, 22
pphpcoke, 23

print, 24–28
print_assumptions_cmpoutput, 23
print_assumptions_manova, 24
print_assumptions_micomp, 25
print_assumptions_paruv, 25
print_cmpoutput, 26
print_group_outputs, 27
print_micomp, 28
pvalf, 28
pvalf_default, 29, 29, 38

read_table, 11, 13
regular expressions, 11

shapiro.test, 6, 15, 18, 31
summary_assumptions_cmpoutput, 30
summary_assumptions_micomp, 31
summary_cmpoutput, 32
summary_group_outputs, 33
summary_manova, 8, 13
summary_micomp, 34

t_test, 6, 9, 25
tikzscat, 35
tolatex, 39
tolatex_cmpoutput, 36
tolatex_micomp, 36, 37

wilcox.test, 9