Package ‘misaem’

April 12, 2021

Title Linear Regression and Logistic Regression with Missing Covariates
Version 1.0.1
Date 2021-04-07
Depends R (>= 3.4.0)
Encoding UTF-8
License GPL-3
URL https://github.com/julierennes/misaem
Imports mvtnorm, stats, MASS, norm, methods
Suggests knitr, rmarkdown, mice
LazyData false
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Author Wei Jiang [aut], Pavlo Mozharovskyi [ctb], Julie Josse [aut, cre], Imke Mayer [ctb]
Maintainer Julie Josse <julie.josserennes@gmail.com>
Repository CRAN
Date/Publication 2021-04-12 08:10:02 UTC

R topics documented:

 combinations ... 2
 imputeEllP ... 3
combinations

Description

Given all the possible patterns of missingness.

Usage

combinations(p)

Arguments

p
Dimension of covariates.

Value

A matrix containing all the possible missing patterns. Each row indicates a pattern of missingness. "1" means "observed", 0 means "missing".

Examples

comb = combinations(5)
imputeEllP

Function for imputing single point for linear regression model

Description

Function for imputing single point for linear regression model

Usage

```r
imputeEllP(point, Sigma.inv)
```

Arguments

- `point` A single observation containing missing values.
- `Sigma.inv` Inverse of estimated Σ.

Value

Imputed observation.

likelihood_saem

likelihood_saem

Description

Used in main function miss.saem. Calculate the observed log-likelihood for logistic regression model with missing data, using Monte Carlo version of Louis formula.

Usage

```r
likelihood_saem(
  beta,
  mu,
  Sigma,
  Y,
  X.obs,
  rindic = as.matrix(is.na(X.obs)),
  whichcolXmissing = (1:ncol(rindic))[apply(rindic, 2, sum) > 0],
  mc.size = 2
)
```
Arguments

- **beta**: Estimated parameter of logistic regression model.
- **mu**: Estimated parameter μ.
- **Sigma**: Estimated parameter Σ.
- **Y**: Response vector $N \times 1$.
- **X.obs**: Design matrix with missingness $N \times p$.
- **rindic**: Missing pattern of X.obs. If a component in X.obs is missing, the corresponding position in rindic is 1; else 0.
- **whichcolXmissing**: The column index in covariate containing at least one missing observation.
- **mc.size**: Monte Carlo sampling size.

Value

Observed log-likelihood.

Examples

```r
# Generate dataset
N <- 50 # number of subjects
p <- 3  # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta.true = c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
               matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))
y <- as.numeric(runif(N)<p1)
# Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss #missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
# Observed log-likelihood
ll_obs = likelihood_saem(beta.true,mu.star,Sigma.star,y,X.obs)
```

Description

Calculate the likelihood or log-likelihood for one observation of logistic regression model.
Usage

log_reg(y, x, beta, iflog = TRUE)

Arguments

y Response value (0 or 1).
x Covariate vector of dimension $p \times 1$.
beta Estimated parameter of logistic regression model.
iflog If TRUE, log_reg calculate the log-likelihood; else likelihood.

Value

Likelihood or log-likelihood.

Examples

res = log_reg(1,c(1,2,3),c(1,-1,1))

Description

Used in main function miss.saem. Calculate the variance of estimated parameters for logistic regression model with missing data, using Monte Carlo version of Louis formula.

Usage

louis_lr_saem(
 beta,
 mu,
 Sigma,
 Y,
 X.obs,
 pos_var = 1:ncol(X.obs),
 rindic = as.matrix(is.na(X.obs)),
 whichcolXmissing = (1:ncol(rindic))[apply(rindic, 2, sum) > 0],
 mc.size = 2
)

louis_lr_saem louis_lr_saem
Arguments

- **beta**: Estimated parameter of logistic regression model.
- **mu**: Estimated parameter \(\mu \).
- **Sigma**: Estimated parameter \(\Sigma \).
- **Y**: Response vector \(N \times 1 \).
- **X.obs**: Design matrix with missingness \(N \times p \).
- **pos_var**: Index of selected covariates.
- **rindic**: Missing pattern of X.obs. If a component in X.obs is missing, the corresponding position in rindic is 1; else 0.
- **whichcolXmissing**: The column index in covariate containing at least one missing observation.
- **mc.size**: Monte Carlo sampling size.

Value

Variance of estimated \(\beta \).

Examples

```r
# Generate dataset
N <- 50 # number of subjects
p <- 3 # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta.true = c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
               matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))
y <- as.numeric(runif(N)<p1)
# Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss # missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA

# Louis formula to obtain variance of estimates
V.obs = louis_lr_saem(beta.true,mu.star,Sigma.star,y,X.obs)
```

`miss.glm`
Statistical Inference for Logistic Regression Models with Missing Values
miss.glm

Description

This function is used to perform statistical inference for logistic regression model with missing values, by algorithm SAEM.

Usage

miss.glm(formula, data, control = list(...), ...)

Arguments

formula an object of class "formula": a symbolic description of the logistic regression model to be fitted.
data an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which miss.glm is called.
control a list of parameters for controlling the fitting process. For miss.glm.fit this is passed to miss.glm.control.
... arguments to be used to form the default control argument if it is not supplied directly.

Value

An object of class "miss.glm": a list with following components:

coefficients Estimated \(\beta \).
ll Observed log-likelihood.
var.covar Variance-covariance matrix for estimated parameters.
s.err Standard error for estimated parameters.
mu.X Estimated \(\mu \).
Sig.X Estimated \(\Sigma \).
call the matched call.
formula the formula supplied.

Examples

Generate dataset
N <- 100 # number of subjects
p <- 3 # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta.true = c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
 matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))
y <- as.numeric(runif(N)<p1)
Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss #missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
df.obs = data.frame(y,X.obs)

SAEM
miss.list = miss.glm(y~., data=df.obs, print_iter=FALSE,seed=100)
print(miss.list)
print(summary(miss.list))
summary(miss.list)$coef

miss.glm.control
Auxiliary for Controlling Fitting

Description

Auxiliary function for **miss.glm** fitting. Typically only used internally by **miss.glm.fit**.

Usage

```r
miss.glm.control(
  maxruns = 500,
  tol_em = 1e-07,
  nmc = 2,
  tau = 1,
  k1 = 50,
  subsets = NA,
  seed = NA,
  print_iter = TRUE,
  var_cal = TRUE,
  ll_obs_cal = TRUE
)
```

Arguments

- **maxruns**: maximum number of iterations. The default is maxruns = 500.
- **tol_em**: the tolerance to stop SAEM. The default is tol_em = 1e-7.
- **nmc**: the MCMC length. The default is nmc = 2.
- **tau**: rate τ in the step size $(k - k_1)^{-\tau}$. The default is tau = 1.
- **k1**: number of first iterations k_1 in the step size $(k - k_1)^{-\tau}$. The default is k1=50.
- **subsets**: Index of selected covariates if any. The default is all the covariates.
- **seed**: an integer as a seed set for the random generator.
print_iter

logical indicating if output should be produced for each iteration.

var_cal

logical indicating if the variance of estimated parameters should be calculated.

ll_obs_cal

logical indicating if the observed log-likelihood should be calculated.

Value

A list with components named as the arguments.

Examples

```r
## For examples see example(miss.glm)
```

miss.glm.fit

Fitting Logistic Regression Models with Missing Values

Description

This function is used inside `miss.glm` to fit logistic regression model with missing values, by algorithm SAEM.

Usage

```r
miss.glm.fit(x, y, control = list())
```

Arguments

- **x** design matrix with missingness $N \times p$.
- **y** response vector $N \times 1$.
- **control** a list of parameters for controlling the fitting process. For `miss.glm.fit` this is passed to `miss.glm.control`.

Value

A list with following components:

- **coefficients** Estimated β.
- **ll** Observed log-likelihood.
- **var.covar** Variance-covariance matrix for estimated parameters.
- **s.err** Standard error for estimated parameters.
- **mu.X** Estimated μ.
- **Sig.X** Estimated Σ.

Examples

```r
## For examples see example(miss.glm)
```
Description

Model selection for the logistic regression model with missing data.

Usage

```r
miss.glm.model.select(Y, X, seed = NA)
```

Arguments

- **Y**: Binary response vector $N \times 1$
- **X**: Design matrix with missingness $N \times p$
- **seed**: An integer as a seed set for the random generator. The default value is 200.

Value

An object of class "miss.glm".

Examples

```r
# Generate dataset
N <- 40 # number of subjects
p <- 3 # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta.true = c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
               matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))
Y <- as.numeric(runif(N)<p1)
# Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss #missing completely at random
X <- X.complete
X[patterns] <- NA
# model selection for SAEM
miss.model = miss.glm.model.select(Y,X,seed=100)
print(miss.model)
```
Description

This function is used to perform statistical inference for linear regression model with missing values, by algorithm EM.

Usage

miss.lm(formula, data, control = list(...), ...)

Arguments

formula an object of class "formula": a symbolic description of the linear regression model to be fitted.

data an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which miss.lm is called.

control a list of parameters for controlling the fitting process. For miss.lm.fit this is passed to miss.lm.control.

... arguments to be used to form the default control argument if it is not supplied directly.

Value

An object of class "miss.lm": a list with following components:

coefficients Estimated β.

ll Observed log-likelihood.

s.resid Estimated standard error for residuals.

s.err Standard error for estimated parameters.

mu.X Estimated μ.

Sig.X Estimated Σ.

call the matched call.

formula the formula supplied.

Examples

Generate complete data
set.seed(1)
mu.X <- c(1, 1)
Sigma.X <- matrix(c(1, 1, 1, 4), nrow = 2)
n <- 50
p <- 2
X.complete <- matrix(rnorm(n*p), nrow=n)%*%chol(Sigma.X) +
 matrix(rep(mu.X, n), nrow=n, byrow = TRUE)
b <- c(2, 3, -1)
sigma.eps <- 0.25
y <- cbind(rep(1, n), X.complete) %*% b + rnorm(n, 0, sigma.eps)

Add missing values
p.miss <- 0.10
patterns <- runif(n*p)<p.miss
X.obs <- X.complete
X.obs[patterns] <- NA

Estimate regression using EM
df.obs = data.frame(y, X.obs)
miss.list = miss.lm(y~., data=df.obs)
print(miss.list)
print(summary(miss.list))
summary(miss.list)$coef

miss.lm.control

Auxiliary for Controlling Fitting

Description

Auxiliary function for miss.lm fitting. Typically only used internally by miss.lm.fit.

Usage

miss.lm.control(maxruns = 500, tol_em = 1e-07, print_iter = TRUE)

Arguments

- maxruns: maximum number of iterations. The default is maxruns = 500.
- tol_em: the tolerance to stop EM. The default is tol_em = 1e-4.
- print_iter: logical indicating if output should be produced for each iteration.

Value

A list with components named as the arguments.

Examples

For examples see example(miss.lm)
Description

This function is used inside `miss.lm` to fit linear regression model with missing values, by EM algorithm.

Usage

```r
miss.lm.fit(x, y, control = list())
```

Arguments

- `x` design matrix with missingness $N \times p$.
- `y` response vector $N \times 1$.
- `control` a list of parameters for controlling the fitting process. For `miss.lm.fit` this is passed to `miss.lm.control`.

Value

a list with following components:

- `coefficients` Estimated β.
- `ll` Observed log-likelihood.
- `s.resid` Estimated standard error for residuals.
- `s.err` Standard error for estimated parameters.
- `mu.X` Estimated μ.
- `Sig.X` Estimated Σ.

Examples

```r
## For examples see example(miss.lm)
```
Description

Model selection for the linear regression model with missing data.

Usage

miss.lm.model.select(Y, X)

Arguments

Y
Response vector $N \times 1$

X
Design matrix with missingness $N \times p$

Value

An object of class "miss.lm".

Examples

Generate complete data
set.seed(1)
mu.X <- c(1, 1)
Sigma.X <- matrix(c(1, 1, 1, 4), nrow = 2)
n <- 50
p <- 2
X.complete <- matrix(rnorm(n*p), nrow=n)%*%chol(Sigma.X) +
matrix(rep(mu.X,n), nrow=n, byrow = TRUE)
b <- c(2, 0, -1)
sigma.eps <- 0.25
y <- cbind(rep(1, n), X.complete) %*% b + rnorm(n, 0, sigma.eps)

Add missing values
p.miss <- 0.10
patterns <- runif(n*p)<p.miss
X.obs <- X.complete
X.obs[patterns] <- NA

model selection
miss.model = miss.lm.model.select(y, X.obs)
print(miss.model)
predict.miss.glm
Prediction on test with missing values for the logistic regression model.

Description
Prediction on test with missing values for the logistic regression model.

Usage
S3 method for class 'miss.glm'
predict(object, newdata = NULL, seed = NA, method = "map", ...)

Arguments
object a fitted object of class inheriting from "miss.glm".
newdata a data frame in which to look for variables with which to predict. It can contain missing values.
seed An integer as a seed set for the random generator.
method The name of method to deal with missing values in test set. It can be 'map'(maximum a posteriori) or 'impute' (imputation by conditional expectation). Default is 'map'.
... Further arguments passed to or from other methods.

Value
pr.saem The prediction result for logistic regression: the probability of response y=1.

Examples
Generate dataset
N <- 100 # number of subjects
p <- 3 # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta.true <- c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N) %*% chol(Sigma.star) +
 matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.true))
y <- as.numeric(runif(N)<p1)

Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss # missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
df.obs = data.frame(y,X.obs)

SAEM
miss.list = miss.glm(y~, data=df.obs, print_iter=FALSE,seed=100)

Generate new dataset for prediction
Nt <- 20
Xt <- matrix(rnorm(Nt*p), nrow=Nt)%*%chol(Sigma.star)+
 matrix(rep(mu.star,Nt), nrow=Nt, byrow = TRUE)
Generate missingness in new dataset
patterns <- runif(Nt*p)<p.miss
Xt.obs <- Xt
Xt.obs[patterns] <- NA

Prediction with missing values
miss.prob = predict(miss.list, data.frame(Xt.obs), method='map')
print(miss.prob)

predict.miss.lm
Prediction on test with missing values for the linear regression model.

Description
Prediction on test with missing values for the linear regression model.

Usage
S3 method for class 'miss.lm'
predict(object, newdata = NULL, seed = NA, ...)

Arguments

object
a fitted object of class inheriting from "miss.lm".

newdata
a data frame in which to look for variables with which to predict. It can contain
missing values.

seed
An integer as a seed set for the random generator.

...
Further arguments passed to or from other methods.

Value

pr.y
The prediction result for linear regression.
Generate complete data
set.seed(1)
mu.X <- c(1, 1)
Sigma.X <- matrix(c(1, 1, 1, 4), nrow = 2)
n <- 50 # train set size
p <- 2 # number of covariates
X.complete <- matrix(rnorm(n*p), nrow=n) %*% chol(Sigma.X) +
 matrix(rep(mu.X, n), nrow=n, byrow = TRUE)
b <- c(2, 3, -1)
sigma.eps <- 0.25
y <- cbind(rep(1, n), X.complete) %*% b +
 rnorm(n, 0, sigma.eps)

Add missing values
p.miss <- 0.10
patterns <- runif(n*p)<p.miss # missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
Estimate regression using EM
df.obs = data.frame(y, X.obs)
miss.list = miss.lm(y, data=df.obs)

Generate new dataset for prediction
nt <- 20
Xt <- matrix(rnorm(nt*p), nrow=nt) %*% chol(Sigma.X) +
 matrix(rep(mu.X, nt), nrow=nt, byrow = TRUE)
Generate missingness in new dataset
patterns <- runif(nt*p)<p.miss
Xt.obs <- Xt
Xt.obs[patterns] <- NA
Prediction with missing values
miss.pred = predict(miss.list, data.frame(Xt.obs))
print(miss.pred)

print.miss.glm

Print miss.glm

Description
Print results for class miss.glm.

Usage
S3 method for class 'miss.glm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
Arguments

x an object of class "miss.glm", usually, a result of a call to miss.glm.
digits minimal number of significant digits.
... further arguments passed to or from other methods.

Value

No return value, called for coefficient and standard error estimates print.

Examples

For examples see example(miss.glm)
Description
Print results for class `summary.miss glm`.

Usage
```r
## S3 method for class 'summary.miss glm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

Arguments
- `x` : an object of class "summary.miss glm", usually, a result of a call to `summary.miss glm`.
- `digits` : minimal number of significant digits.
- `...` : further arguments passed to or from other methods.

Value
No return value, called for summary print.

Examples
```r
## For examples see example(miss glm)
```
Value

No return value, called for summary print.

Examples

For examples see example(miss.lm)
Description

Summary for class `miss.lm`.

Usage

```r
## S3 method for class 'miss.lm'
summary(object, ...)
```

Arguments

- **object**: an object of class "miss.lm", usually, a result of a call to `miss.lm`.
- **...**: Further arguments passed to or from other methods.

Value

An object of class "summary.miss.lm", a list with following components:

- **coefficients**: The matrix of coefficients and standard errors.
- **loglikelihood**: Observed log-likelihood.
- **call**: the component from object.
- **formula**: the component from object.

Examples

```r
## For examples see example(miss.lm)
```
Index

combinations, 2
formula, 7, 11
imputeEllP, 3
likelihood_saem, 3
log_reg, 4
louis_lr_saem, 5
miss.glm, 6, 8, 18, 20
miss.glm.control, 7, 8, 9
miss.glm.fit, 8, 9
miss.glm.model.select, 10
miss.lm, 11, 12, 18, 21
miss.lm.control, 11, 12, 13
miss.lm.fit, 12, 13
miss.lm.model.select, 14

predict.miss.glm, 15
predict.miss.lm, 16
print.miss.glm, 17
print.miss.lm, 18
print.summary.miss.glm, 19
print.summary.miss.lm, 19

summary.miss.glm, 19, 20
summary.miss.lm, 19, 21