Package ‘misclassGLM’

February 10, 2020

Type Package

Title Computation of Generalized Linear Models with Misclassified Covariates Using Side Information

Version 0.3.2

Date 2020-02-10

Author Stephan Dlugosz

Maintainer Stephan Dlugosz <stephan.dlugosz@googlemail.com>

Depends R (>= 3.0.0)

Imports stats, Matrix, MASS, ucminf, numDeriv, bigmemory, foreach, mlogit

Suggests parallel

Description Estimates models that extend the standard GLM to take misclassification into account. The models require side information from a secondary data set on the misclassification process, i.e. some sort of misclassification probabilities conditional on some common covariates. A detailed description of the algorithm can be found in Dlugosz, Mammen and Wilke (2015) <http://www.zew.de/PU70410>.

License GPL-3

RoxygenNote 7.0.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-02-10 22:40:09 UTC

R topics documented:

 boot.misclassGLM .. 2
 boot.misclassMlogit 3
 mfx.misclassGLM .. 4
 mfx.misclassMlogit 4
 misclassGLM ... 5
 misclassMlogit ... 7
boot.misclassGLM

Compute Bootstrapped Standard Errors for misclassGLM Fits

Description

Obtain bootstrapped standard errors.

Usage

boot.misclassGLM(ret, Y, X, Pmodel, PX, boot.fraction = 1, repetitions = 1000)

Arguments

ret a fitted object of class inheriting from ’misclassGLM’.
Y a vector of integers or numerics. This is the dependent variable.
X a matrix containing the independent variables.
Pmodel a fitted model (e.g. of class ’GLM’ or ’mlogit’) to implicitly produce variations of the predicted true values probabilities. (Usually conditional on the observed mismeasured values and additional covariates.)
PX covariates matrix suitable for predicting probabilities from Pmodel, usually including the mismeasured covariate.
boot.fraction fraction of sample to be used for estimating the bootstrapped standard errors, for speedup.
repetitions number of bootstrap samples to be drown.

See Also

misclassGLM
boot.misclassMlogit
Compute Bootstrapped Standard Errors for misclassMlogit Fits

Description

Obtain bootstrapped standard errors.

Usage

```r
boot.misclassMlogit(
  ret, 
  Y, 
  X, 
  Pmodel, 
  PX, 
  boot.fraction = 1, 
  repetitions = 1000 
)
```

Arguments

- `ret`: a fitted object of class inheriting from 'misclassMlogit'.
- `Y`: a matrix of 0s and 1s, indicating the target class. This is the dependent variable.
- `X`: a matrix containing the independent variables.
- `Pmodel`: a fitted model (e.g. of class ‘GLM’ or ‘mlogit’) to implicitly produce variations of the predicted true values probabilities. (Usually conditional on the observed misclassified values and additional covariates.)
- `PX`: covariates matrix suitable for predicting probabilities from Pmodel, usually including the mismeasured covariate.
- `boot.fraction`: fraction of sample to be used for estimating the bootstrapped standard errors, for speedup.
- `repetitions`: number of bootstrap samples to be drown.

See Also

`misclassMlogit`
mfx.misclassGLM
Compute Marginal Effects for misclassGLM Fits

Description

Obtain marginal Effects.

Usage

```r
mfx.misclassGLM(w, x.mean = TRUE, rev.dum = TRUE, digits = 3, ...)
```

Arguments

- `w`: a fitted object of class inheriting from 'misclassGLM'.
- `x.mean`: logical, if true computes marginal effects at mean, otherwise average marginal effects.
- `rev.dum`: logical, if true, computes differential effects for switch from 0 to 1.
- `digits`: number of digits to be presented in output.
- `...`: further arguments passed to or from other functions.

See Also

- `misclassGLM`

mfx.misclassMlogit
Compute Marginal Effects for ’misclassMlogit’ Fits

Description

Obtain marginal effects.

Usage

```r
mfx.misclassMlogit(    
  w,    
  x.mean = TRUE,    
  rev.dum = TRUE,    
  outcome = 2,    
  baseoutcome = 1,    
  digits = 3,    
  ...   
)
```
Arguments

- `w`: a fitted object of class inheriting from `misclassMlogit`.
- `x.mean`: logical, if true computes marginal effects at mean, otherwise average marginal effects.
- `rev.dum`: logical, if true, computes differential effects for switch from 0 to 1.
- `outcome`: for which the ME should be computed.
- `baseoutcome`: base outcome, e.g. reference class of the model.
- `digits`: number of digits to be presented in output.
- `...`: further arguments passed to or from other functions.

See Also

- `misclassMlogit`

Description

Estimates models that extend the standard GLM to take misclassification into account. The models require side information from a secondary data set on the misclassification process, i.e. some sort of misclassification probabilities conditional on some common covariates. A detailed description of the algorithm can be found in Dlugosz, Mammen and Wilke (2015) http://www.zew.de/PU70410.

`misclassGLM` computes estimator for a GLM with a misclassified covariate using additional side information on the misclassification process.

Usage

```r
misclassGLM(
  Y, X, setM, P,
  na.action = na.omit,
  family = gaussian(link = "identity"),
  control = list(),
  par = NULL,
  x = FALSE,
  robust = FALSE
)
```
Arguments

- **Y**: a vector of integers or numerics. This is the dependent variable.
- **X**: a matrix containing the independent variables.
- **setM**: (optional) matrix, rows containing potential patterns for a misclassified (latent) covariate M in any coding for a categorical independent variable, e.g. dummy coding (default: Identity).
- **P**: probabilities corresponding to each of the potential pattern conditional on the other covariates denoted in x.
- **na.action**: how to treat NAs
- **family**: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions.)
- **control**: options for the optimization procedure (see `optim`, `ucminf` for options and details).
- **par**: (optional) starting parameter vector
- **x**: logical, add covariates matrix to result?
- **robust**: logical, if true the computed asymptotic standard errors are replaced by their robust counterparts.

Details

The two main functions are `misclassGLM` and `misclassMlogit`.

Examples

```r
## simulate data
data <- simulate_GLM_dataset()

## estimate model without misclassification error
summary(lm(Y ~ X + M2, data))

## estimate model with misclassification error
summary(lm(Y ~ X + M, data))

## estimate misclassification probabilities
Pmodel <- glm(M2 ~ M + X, data = data, family = binomial("logit"))
summary(Pmodel)

## construct a-posteriori probabilities from Pmodel
```
misclassMlogit

P <- predict(Pmodel, newdata = data, type = "response")
P <- cbind(1 - P, P)
dimnames(P)[[2]] <- c("M0", "M1") ## speaking names

estimate misclassGLM

est <- misclassGLM(Y = data$Y,
X = as.matrix(data[, 2, drop = FALSE]),
setM = matrix(c(0, 1), nrow = 2),
P = P)
summary(est)

and bootstrapping the results from dataset
Not run:
summary(boot.misclassGLM(est,
Y = data$Y,
X = data.matrix(data[, 2, drop = FALSE]),
Pmodel = Pmodel,
PX = data,
repetitions = 100))

End(Not run)

misclassMlogit

Mlogit estimation under misclassified covariate

Description

misclassMlogit computes estimator for a GLM with a misclassified covariate using additional side information on the misclassification process

Usage

misclassMlogit(
Y,
X,
setM,
P,
na.action = na.omit,
control = list(),
par = NULL,
baseoutcome = NULL,
x = FALSE)

)
Arguments

- **Y**: a matrix of 0s and 1s, indicating the target class. This is the dependent variable.
- **X**: a matrix containing the independent variables.
- **setM**: a matrix, rows containing potential patterns for a misclassed (latent) covariate M in any coding for a categorical independent variable, e.g. dummy coding.
- **P**: probabilities corresponding to each of the potential pattern conditional on the other covariates denoted in x.
- **na.action**: how to treat NAs
- **control**: options for the optimization procedure (see `optim`, `ucminf` for options and details).
- **par**: (optional) starting parameter vector
- **baseoutcome**: reference outcome class
- **x**: logical, add covariates matrix to result?

Examples

```r
## simulate data
data <- simulate_mlogit_dataset()

## estimate model without misclassification error
library(mlogit)
data2 <- mlogit.data(data, varying = NULL, choice = "Y", shape = "wide")
summary(mlogit(Y ~ 1 | X + M2, data2, reflevel = "3"))

## estimate model with misclassification error
summary(mlogit(Y ~ 1 | X + M, data2, reflevel = "3"))

## estimate misclassification probabilities
Pmodel <- glm(M2 ~ M + X, data = data, family = binomial("logit"))
summary(Pmodel)

## construct a-posteriori probabilities from Pmodel
P <- predict(Pmodel, newdata = data, type = "response")
P <- cbind(1 - P, P)
dimnames(P)[[2]] <- c("M0", "M1") ## speaking names

## estimate misclassGLM
```
Yneu <- matrix(rep.int(0, nrow(data) * 3), ncol = 3)
for (i in 1:nrow(data)) Yneu[i, data$Y[i]] <- 1
est <- misclassMlogit(Y = Yneu,
 X = as.matrix(data[, 2, drop = FALSE]),
 setM = matrix(c(0, 1), nrow = 2),
 P = P)

summary(est)

and bootstrapping the results from dataset
Not run:
summary(boot.misclassMlogit(est,
 Y = Yneu,
 X = data.matrix(data[, 2, drop = FALSE]),
 Pmodel = Pmodel,
 PX = data,
 repetitions = 100))

End(Not run)

predict.misclassGLM
Predict Method for misclassGLM Fits

Description

Obtains predictions

Usage

```r
## S3 method for class 'misclassGLM'
## S3 method for class 'misclassGLM'
predict(object, X, P = NULL, type = c("link", "response"),
    na.action = na.pass, ...)
```

Arguments

- **object**: a fitted object of class inheriting from `misclassGLM`
- **X**: matrix of fixed covariates
- **P**: a-posteriori probabilities for the true values of the misclassified variable. If provided, the conditional expectation on X,P is computed, otherwise a set of marginal predictions is provided, one for each alternative.
- **type**: the type of prediction required. The default is on the scale of the linear predictors; the alternative "response" is on the scale of the response variable. Thus for a default binomial model the default predictions are of log-odds (probabilities on logit scale) and type = "response" gives the predicted probabilities. The value of this argument can be abbreviated.
na.action function determining what should be done with missing values in newdata. The default is to predict NA.

... additional arguments (not used at the moment)

See Also

misclassGLM

predict.misclassMlogit

Predict Method for misclassMlogit Fits

Description

Obtains predictions

Usage

S3 method for class 'misclassMlogit'
S3 method for class 'misclassMlogit'
predict(object, X, P = NULL, type = c("link", "response"),
na.action = na.pass, ...)

Arguments

object a fitted object of class inheriting from 'misclassMlogit'.
X matrix of fixed covariates.
P a-posteriori probabilities for the true values of the misclassified variable. If provided, the conditional expectation on X,P is computed, otherwise a set of marginal predictions is provided, one for each alternative.
type the type of prediction required. The default is on the scale of the linear predictors; the alternative "response" is on the scale of the response variable. Thus for a default binomial model the default predictions are of log-odds (probabilities on logit scale) and type = "response" gives the predicted probabilities. The value of this argument can be abbreviated.
na.action function determining what should be done with missing values in newdata. The default is to predict NA.
... additional arguments (not used at the moment)

See Also

misclassMlogit
simulate_GLM_dataset Simulate a Data Set to Use With misclassGLM

Description

simulates a data set with - one continuous variable X drawn from a Gaussian distribution, - a binary or trinary variable M with misclassification (M2) - a dependent variable either with added Gaussian noise or drawn from a logit distribution

Usage

simulate_GLM_dataset(
 n = 50000,
 const = 0,
 alpha = 1,
 beta = -2,
 beta2 = NULL,
 logit = FALSE
)

Arguments

n number observations
const constant
alpha parameter for X
beta parameter for M(1)
beta2 parameter for M2, if NULL, M is a binary covariate, otherwise a three-valued categorical
logit logical, if true logit regression, otherwise Gaussian regression

Details

This can be used to demonstrate the abilities of misclassGLM. For an example see misclassGLM.

See Also

misclassGLM
simulate_mlogit_dataset

Simulate a Data Set to Use With misclassMlogit

Description

simulates a data set with:
- one continuous variable X drawn from a Gaussian distribution,
- a binary or trinary variable M with misclassification (M2)
- a dependent variable drawn from a multinomial distribution dependent on X and M.

Usage

```r
simulate_mlogit_dataset(
  n = 1000,
  const = c(0, 0),
  alpha = c(1, 2),
  beta = -2 * c(1, 2),
  beta2 = NULL
)
```

Arguments

- `n` number observations
- `const` constants
- `alpha` parameters for X
- `beta` parameters for M(1)
- `beta2` parameters for M2, if NULL, M is a binary covariate, otherwise a three-valued categorical.

Details

This can be used to demonstrate the abilities of misclassMlogit. For an example see misclassMlogit.

See Also

- misclassMlogit
Index

boot.misclassGLM, 2
boot.misclassMlogit, 3

family, 6

mfx.misclassGLM, 4
mfx.misclassMlogit, 4
misclassGLM, 2, 4, 5, 6, 10, 11
misclassMlogit, 3, 5, 6, 7, 10, 12

optim, 6, 8

predict.misclassGLM, 9
predict.misclassMlogit, 10

simulate_GLM_dataset, 11
simulate_mlogit_dataset, 12

ucminf, 6, 8