Package ‘missRanger’

March 30, 2021

Type Package

Title Fast Imputation of Missing Values

Version 2.1.3

Date 2021-03-27

Maintainer Michael Mayer <mayermichael79@gmail.com>

Description Alternative implementation of the beautiful ‘MissForest'
algorithm used to impute mixed-type data sets by chaining random
forests, introduced by Stekhoven, D.J. and Buehlmann, P. (2012)
<doi:10.1093/bioinformatics/btr597>. Under the hood, it uses the
lightning fast random jungle package 'ranger'. Between the iterative
model fitting, we offer the option of using predictive mean matching.
This firstly avoids imputation with values not already present in the
original data (like a value 0.3334 in 0-1 coded variable). Secondly,
predictive mean matching tries to raise the variance in the resulting
conditional distributions to a realistic level. This would allow e.g.
to do multiple imputation when repeating the call to missRanger(). A
formula interface allows to control which variables should be imputed
by which.

License GPL (>=2)
URL https://github.com/mayer79/missRanger

BugReports https://github.com/mayer79/missRanger/issues
Depends R (>=3.5.0)

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.1

Imports ranger, FNN, stats

Suggests survival, dplyr, mice, rmarkdown, knitr, testthat
NeedsCompilation no

Author Michael Mayer [aut, cre, cph]

Repository CRAN

Date/Publication 2021-03-30 06:50:06 UTC

https://github.com/mayer79/missRanger
https://github.com/mayer79/missRanger/issues

2 convert

R topics documented:

COMVEIT . .+« v v v v v e it e 2
generateNA L e e e 3
imputeUnivariate e e 3
missRanger L e 4
PN . Lo L oo e e e e e e e e e 7
TEVETE . . o o v it e e e e e e e e e e e e 8
typeof2 . .o e 8

Index 10

convert Conversion of non-factor/non-numeric variables.
Description

Converts non-factor/non-numeric variables in a data frame to factor/numeric. Stores information to
revert back.

Usage

convert(X, check = FALSE)

Arguments
X A data frame.
check If TRUE, the function checks if the converted columns can be reverted without
changes.
Value

A list with the following elements: X is the converted data frame, vars, types, classes are the
names, types and classes of the converted variables. Finally, bad names variables in X that should
have been converted but could not.

Author(s)

Michael Mayer

generateNA 3

generateNA Adds Missing Values to a Vector, Matrix or Data Frame

Description

Takes a vector, matrix or data. frame and replaces some values by NA.

Usage

generateNA(x, p = 0.1, seed = NULL)

Arguments
X A vector, matrix or data.frame.
p Proportion of missing values to add to x. In case x is a data. frame, p can also
be a vector of probabilities per column or a named vector (see examples).
seed An integer seed.
Value

x with missing values.

Examples

generateNA(1:10, p = 0.5, seed = 3345)
generateNA(rep(Sys.Date(), 10))

generateNA(cbind(1:10, 10:1), p = 0.2)

head(generateNA(iris))

head(generateNA(iris, p = 0.2))

head(generateNA(iris, p = c(@, 1, 0.5, 0.5, 0.5)))
head(generateNA(iris, p = c(Sepal.Length = 1)))
head(generateNA(iris, p = c(Species = 0.2, Sepal.Length = 0.5)))

imputeUnivariate Univariate Imputation

Description
Fills missing values of a vector, matrix or data frame by sampling with replacement from the non-
missing values. For data frames, this sampling is done within column.

Usage

imputeUnivariate(x, v = NULL, seed = NULL)

4 missRanger

Arguments
X A vector, matrix or data frame.
v A character vector of column names to impute (only relevant if x is a data frame).
The default NULL imputes all columns.
seed An integer seed.
Value

x with imputed values.

Examples

imputeUnivariate(c(NA, @, 1, 0, 1))
imputeUnivariate(c("A", "A", NA))
imputeUnivariate(as.factor(c("A", "A", NA)))
head(imputeUnivariate(generateNA(iris)))
head(imputeUnivariate(generateNA(iris), v
head(imputeUnivariate(generateNA(iris), v

"Species"))
c("Species”, "Petal.Length")))

missRanger Fast Imputation of Missing Values by Chained Random Forests

Description

Uses the "ranger" package (Wright & Ziegler) to do fast missing value imputation by chained ran-
dom forests, see Stekhoven & Buehlmann and Van Buuren & Groothuis-Oudshoorn. Between the
iterative model fitting, it offers the option of predictive mean matching. This firstly avoids imputa-
tion with values not present in the original data (like a value 0.3334 in a 0-1 coded variable). Sec-
ondly, predictive mean matching tries to raise the variance in the resulting conditional distributions
to a realistic level. This allows to do multiple imputation when repeating the call to missRanger().
The iterative chaining stops as soon as maxiter is reached or if the average out-of-bag estimate of
performance stops improving. In the latter case, except for the first iteration, the second last (i.e.
best) imputed data is returned.

Usage

missRanger(
data,
formula = . ~ .,
pmm.k = oL,
maxiter = 10L,
seed = NULL,
verbose = 1,
returnOOB = FALSE,
case.weights = NULL,

missRanger 5

Arguments

data A data.frame or tibble with missing values to impute.

formula A two-sided formula specifying variables to be imputed (left hand side) and
variables used to impute (right hand side). Defaults to . ~ ., i.e. use all variables
to impute all variables. If e.g. all variables (with missings) should be imputed
by all variables except variable "ID", use . ~. - ID. Note that a "." is evaluated
separately for each side of the formula. Further note that variables with missings
must appear in the left hand side if they should be used on the right hand side.

pmm. k Number of candidate non-missing values to sample from in the predictive mean
matching steps. 0 to avoid this step.

maxiter Maximum number of chaining iterations.
seed Integer seed to initialize the random generator.
verbose Controls how much info is printed to screen. 0 to print nothing. 1 (default)

to print a "." per iteration and variable, 2 to print the OOB prediction error
per iteration and variable (1 minus R-squared for regression). Furthermore, if
verbose is positive, the variables used for imputation are listed as well as the
variables to be imputed (in the imputation order). This will be useful to detect if

some variables are unexpectedly skipped.

returnOOB Logical flag. If TRUE, the final average out-of-bag prediction error is added to
the output as attribute "oob". This does not work in the special case when the
variables are imputed univariately.

case.weights Vector with non-negative case weights.

Arguments passed to ranger(). If the data set is large, better use less trees
(e.g. num. trees = 20) and/or a low value of sample.fraction. The following
arguments are e.g. incompatible with ranger: write.forest, probability,
split.select.weights, dependent.variable.name, and classification.

Details

A note on mtry: Be careful when passing a non-default mtry to ranger () because the number of
available covariables might be growing during the first iteration, depending on the missing pattern.
Values NULL (default) and 1 are safe choices. Additionally, recent versions of ranger () allow mtry
to be a single-argument function of the number of available covariables, e.g. mtry = function(m)
max(1,m%/% 3).

Value

An imputed data. frame.

References

1. Wright, M. N. & Ziegler, A. (2016). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software, in press. <arxiv.org/abs/1508.04409>.

2. Stekhoven, D.J. and Buehlmann, P. (2012). MissForest - nonparametric missing value impu-

tation for mixed-type data’, Bioinformatics, 28(1) 2012, 112-118. https://doi.org/10.1093/bioinformatics/btr597.
3. Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained

Equations in R. Journal of Statistical Software, 45(3), 1-67. http://www.jstatsoft.org/v45/i03/

6 missRanger

Examples

irisWithNA <- generateNA(iris, seed = 34)

irisImputed <- missRanger(irisWithNA, pmm.k = 3, num.trees = 100)
head(irisImputed)

head(irisWithNA)

Not run:

With extra trees algorithm

irisImputed_et <- missRanger(irisWithNA, pmm.k = 3, num.trees = 100, splitrule = "extratrees”)
head(irisImputed_et)

Passing ‘mtry‘ as a function of the number of covariables

Do not impute Species. Note: Since this variable contains missings, it won't be used
for imputing other variables.
head(irisImputed <- missRanger(irisWithNA, . - Species ~ ., pmm.k = 3, num.trees = 100))

Impute univariately only.
head(irisImputed <- missRanger(irisWithNA, . ~ 1))

Use Species and Petal.lLength to impute Species and Petal.lLength.
head(irisImputed <- missRanger(irisWithNA, Species + Petal.Length ~ Species + Petal.Length,
pmm.k = 3, num.trees = 100))

Multiple imputation: Fill data 20 times, run 20 analyses and pool their results.

require(mice)

filled <- replicate(20, missRanger(irisWithNA, verbose = @, num.trees = 100, pmm.k = 5),
simplify = FALSE)

models <- lapply(filled, function(x) 1lm(Sepal.Length ~ ., x))

summary (pooled_fit <- pool(models)) # Realistically inflated standard errors and p values

A data set with logicals, numerics, characters and factors.
n <- 100
X <- data.frame(x1 = seqg_len(n),
x2 = log(seq_len(n)),
x3 = sample(LETTERS[1:3], n, replace = TRUE),
x4 = factor(sample(LETTERS[1:3], n, replace = TRUE)),
x5 = seqg_len(n) > 50)

head(X)
X_NA <- generateNA(X, p = seq(@, 0.8, by = .2))
head (X_NA)

head(X_imp <- missRanger(X_NA))

head(X_imp <- missRanger (X_NA, pmm = 3))

head(X_imp <- missRanger(X_NA, pmm = 3, verbose = 0))

head(X_imp <- missRanger(X_NA, pmm = 3, verbose = 2, returnOOB = TRUE))
attr(X_imp, "oob") # 00B prediction errors per column.

The formula interface

head(X_imp <- missRanger(X_NA, x2 ~ x2 + x3, pmm = 3)) # Does not use x3 because of NAs
head(X_imp <- missRanger(X_NA, x2 + x3 ~ x2 + x3, pmm = 3))

head(X_imp <- missRanger(X_NA, x2 + x3 ~ 1, pmm = 3)) # Univariate imputation

pmm

End(Not run)

pmm

Predictive Mean Matching

Description

For each value in the prediction vector xtest, one of the closest k values in the prediction vector
xtrain is randomly chosen and its observed value in ytrain is returned.

Usage

pmm(xtrain, xtest, ytrain, k = 1L, seed = NULL)

Arguments

xtrain

xtest

ytrain

k

seed

Value

Vector with predicted values in the training data. Can be of type logical, nu-
meric, character, or factor.

Vector as xtrain with predicted values in the test data. Missing values are not
allowed.

Vector of the observed values in the training data. Must be of same length as
xtrain. Missing values in either of xtrain or ytrain will be dropped in a
pairwise manner.

Number of nearest neighbours to sample from.

Integer random seed.

Vector of the same length as xtest with values from xtrain.

Examples

pmm(xtrain
pmm(xtrain
pmm(xtrain
pmm(xtrain
pmm(xtrain

c(0.2, 0.2, 0.8), xtest = 0.3, ytrain = c(0, 0, 1)) # 0

c(TRUE, FALSE, TRUE), xtest = FALSE, ytrain = c(2, @, 1)) # @
c(0.2, 0.8), xtest = 0.3, ytrain = c("A", "B"), k = 2) # "A" or "B"
c("A", "A", "B"), xtest = "A", ytrain = c(2, 2, 4), k=2) # 2
factor(c("A", "B")), xtest = factor("C"), ytrain = 1:2) # 2

8 typeof2

revert Revert conversion.

Description

Reverts conversions done by convert.

Usage

revert(con, X = con$X)

Arguments
con A list returned by convert.
X A data frame with some columns to be converted back according to the infor-
mation stored in converted.
Value

A data frame.

Author(s)
Michael Mayer

typeof2 A version of typeof internally used by missRanger.

Description

"non

Returns either "numeric" (double or integer), "factor”, "character”, "logical", "special" (mode nu-
meric, but neither double nor integer) or "" (otherwise). missRanger requires this information to
deal with response types not natively supported by ranger.

Usage

typeof2(object)

Arguments

object Any object.

Value

A string.

typeof2

Author(s)
Michael Mayer

Index

convert, 2
generateNA, 3
imputeUnivariate, 3
missRanger, 4

pmm, 7

revert, 8

typeof2, 8

10

	convert
	generateNA
	imputeUnivariate
	missRanger
	pmm
	revert
	typeof2
	Index

