Package ‘mixedClust’

September 5, 2019

Type Package

Title Co-Clustering of Mixed Type Data

Version 1.0.1

Date 2019-09-02

Author Margot Selosse, Julien Jacques, Christophe Biernacki

Maintainer Margot Selosse <margot.selosse@gmail.com>

Description Implementation of the co-clustering method for mixed type data proposed in M. Selosse, J. Jacques, C. Biernacki (2018) <https://hal.archives-ouvertes.fr/hal-01893457>. It consists in clustering simultaneously the rows (observations) and the columns (features) of a heterogeneous data set.

License GPL (>= 2)

Imports Rcpp (>= 0.12.11), fda, methods

LinkingTo Rcpp, RcppProgress, RcppArmadillo

Suggests rmarkdown, ordinalClust, knitr

VignetteBuilder knitr

LazyData true

Depends R (>= 3.5.0)

SystemRequirements C++11

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-09-05 02:10:08 UTC

R topics documented:

M1 ... 2
mixedCoclust .. 2

Index 5
mixedCoclust

Description

This is a toy dataset for running simple examples.

Usage

M1

Format

A mixed type data matrix with 50 lines and 120 columns. There are 40 categorical variables, 40 continuous variables, and 40 ordinal variables.

mixedCoclust

Function to perform a co-clustering

Description

This function performs a co-clustering on heterogeneous data sets by using the Multiple Latent Block model (cf references for further details).

Usage

mixedCoclust(x=matrix(0,nrow=1,ncol=1), idx_list=c(1), distrib_names, kr, kc, init, nbSEM, nbSEMbump, nbRepeat=1, nbMini, m=0, functionalData=array(0, c(1,1,1)), zrinit=0, zcinit=0, percentRandomB=0, percentRandomP=0)

Arguments

- **x** Data matrix, of dimension N x Jtot. The features with same type should be aside. The missing values should be coded as NA.
- **idx_list** Vector of length D. This argument is useful when variables are of different types. Element d should indicate where the variables of type d begins in matrix x.
- **distrib_names** Vector of length D. indicates the type of distribution to use. Must be among "Gaussian", "Multinomial", "BOS", "Poisson" or "Functional". Functional data must always be at the end.
- **kr** Number of row classes.
- **kc** Vector of length D. d^th element indicates the number of column clusters.
- **m** Vector of length D. d^th element defines the ordinal and categorical data’s number of levels.
mixedCoclust

functionalData Data tensor of dimension N*J*T.

nbSEM Number of SEM-Gibbs iterations realized to estimate parameters.

nbSEMburn Number of SEM-Gibbs burning iterations for estimating parameters. This parameter must be inferior to nbSEM.

nbRepeat Number of times sampling on rows and on columns will be done at each SEM-Gibbs iteration.

nbindmini Minimum number of cells belonging to a block.

init String that indicates the kind of initialisation. Must be one of the following words: "kmeans", "random", "provided", "randomParams" or "randomBurnin".

zrinit Vector of length N. When init="provided", indicates the labels of each row.

zcininit Vector of length Jtot. When init="provided", indicates the labels of each column.

percentRandomB Vector of length 2. Indicates the percentage of resampling when init is equal to "randomBurnin".

percentRandomP Vector of length 2. Indicates the percentage of resampling when init is equal to "randomParams".

Value

@V Matrix of dimension N*kr such that V[i,g]=1 if i belongs to cluster g.

@icl ICL value for co-clustering.

@name

@paramschain List of length nbSEMburn. For each iteration of the SEM-Gibbs algorithm, the parameters of the blocks are stored.

@pichain List of length nbSEM. Item i is a vector of length kr which contains the row mixing proportions at iteration i.

@rhochain List of length nbSEM. Item i is a list of length D whose d^th contains the column mixing proportions of groups of variables d, at iteration i.

@zc List of length D. d^th item is a vector of length J[d] representing the columns partitions for the group of variables d.

@zr Vector of length N with resulting row partitions.

@W List of length D. Item d is a matrix of dimension J*kc[d] such that W[j,h]=1 if j belongs to cluster h.

@m Vector of length D. d^th element represents the number of levels of d^th group of variables.

@params List of length D. d^th item represents the blocks parameters for group of variables d.

@pi Vector of length kr. Row mixing proportions.

@rho List of length D. d^th item represents the column mixing proportion for d^th group of variables.

@xhat List of length D. d^th item represents the d^th group of variables dataset, with missing values completed.

@zrchain Matrix of dimension nbSEM*N. Row i represents the row cluster partitions at iteration i.

@zrcchain List of length D. Item d is a matrix of dimension nbSEM*J[d]. Row i represents the column cluster partitions at iteration i.
Author(s)
Margot Selosse, Julien Jacques, Christophe Biernacki.

Examples

```r
data(M1)
nbSEM=30
nbSEMburn=20
nbindmini=1
init = "random"

kr=2
kc=c(2,2,3)
m=c(6,3)
d.list <- c(1,41,81)
distributions <- c("Multinomial","Gaussian","Bos")
res <- mixedCoclust(x = M1, idx_list = d.list,distrib_names = distributions,
                   kr = kr, kc = kc, m = m, init = init,nbSEM = nbSEM,
                   nbSEMburn = nbSEMburn, nbindmini = nbindmini)
```
Index

*Topic datasets
 M1, 2

M1, 2
mixedCoclust, 2