
Package ‘mizer’
January 27, 2019

Title Multi-Species sIZE Spectrum Modelling in R

Type Package

Description A set of classes and methods to set up and run multi-species, trait
based and community size spectrum ecological models, focused on the marine
environment.

Maintainer Gustav Delius <gustav.delius@york.ac.uk>

Version 1.0.1

License GPL-3

Imports deSolve, ggplot2, grid, methods, plyr, progress, Rcpp,
reshape2

LinkingTo Rcpp

Depends R (>= 3.1)

Suggests testthat, roxygen2, knitr, shiny, shinyBS

Collate 'MizerParams-class.R' 'MizerSim-class.R' 'selectivity_funcs.R'
'project.R' 'help.R' 'project_methods.R' 'summary_methods.R'
'plots.R' 'wrapper_functions.R' 'data.R' 'RcppExports.R'

VignetteBuilder knitr

RoxygenNote 6.1.1

NeedsCompilation yes

Author Finlay Scott [aut, cph],
Julia Blanchard [aut, cph],
Ken Andersen [aut, cph],
Gustav Delius [ctb, cre],
Richard Southwell [ctb]

Repository CRAN

Date/Publication 2019-01-27 22:42:08 UTC

R topics documented:
addSpecies . 3

1

2 R topics documented:

display_frames . 4
getBiomass . 5
getBiomassFrame . 6
getCommunitySlope . 7
getEGrowth . 8
getEReproAndGrowth . 9
getESpawning . 10
getFeedingLevel . 11
getFMort . 13
getFMortGear . 14
getM2 . 16
getM2Background . 18
getMeanMaxWeight . 19
getMeanWeight . 20
getN . 21
getPhiPrey . 22
getPredRate . 23
getProportionOfLargeFish . 24
getRDD . 25
getRDI . 26
getSSB . 27
getSSBFrame . 28
getYield . 29
getYieldGear . 30
getZ . 30
get_initial_n . 32
inter . 32
knife_edge . 33
log_breaks . 33
mizer . 34
MizerParams . 34
MizerParams-class . 36
MizerSim . 38
MizerSim-class . 39
NS_species_params . 40
NS_species_params_gears . 40
plot,MizerSim,missing-method . 41
plotBiomass . 42
plotFeedingLevel . 43
plotFMort . 44
plotGrowthCurves . 45
plotM2 . 46
plotSpectra . 47
plotYield . 49
plotYieldGear . 50
project . 51
project_methods . 53
retune_abundance . 54

addSpecies 3

setBackground . 55
set_community_model . 56
set_scaling_model . 58
set_trait_model . 60
sigmoid_length . 63
steady . 64
summary,MizerParams-method . 64
summary,MizerSim-method . 65
wrapper_functions . 65

Index 67

addSpecies Add more species into an ecosystem with background species.

Description

Takes a MizerParams object and adds an additional species with given parameters to the ecosystem.

Usage

addSpecies(params, ...)

S4 method for signature 'MizerParams'
addSpecies(params, species_params, SSB = NA,
rfac = 10, effort = 0)

Arguments

params A mizer params object for the original system.

... Other arguments (unused)

species_params The species parameters of the new species we want to add to the system.

SSB The spawning stock biomass of the new species. If not provided, the abundance
of the new species will be chosen so that its maximal biomass density lies at half
the community power law.

rfac A number that determines the strength of the non-linearity in the Beverton-Holt
stock-recruitment relationship. The maximal recruitment will be set to rfac times
the normal steady-state recruitment. Default value is 10.

effort Default value is 0.

Value

An object of type MizerParams

4 display_frames

Examples

Not run:
params <- set_scaling_model(max_w_inf = 5000)
params <- setBackground(params)
a_m <- 0.0085
b_m <- 3.11
L_inf_m <- 24.3
L_mat <- 11.1
species_params <- data.frame(

species = "mullet",
w_min = 0.001,
w_inf = a_m*L_inf_m^b_m,
w_mat = a_m*L_mat^b_m,
beta = 283,
sigma = 1.8,
z0 = 0,
alpha = 0.6,
sel_func = "knife_edge",
knife_edge_size = 100,
gear = "knife_edge_gear",
k = 0,
k_vb = 0.6,
a = a_m,
b = b_m

)
params <- addSpecies(params, species_params)
plotSpectra(params)
sim <- project(params, t_max=50)
plotBiomass(sim)

End(Not run)

display_frames Display frames

Description

Display frames

Usage

display_frames(f1, f2, params, y_ticks = 6)

Arguments

f1 Data frame for left plot

f2 Data frame for right plot

params A MizerParams object

y_ticks The approximate number of ticks desired on the y axis

getBiomass 5

Value

ggplot2 object

getBiomass Calculate the total biomass of each species within a size range at each
time step.

Description

Calculates the total biomass through time of the species in the MizerSim class within user defined
size limits. The default option is to use the whole size range. You can specify minimum and
maximum weight or length range for the species. Lengths take precedence over weights (i.e. if both
min_l and min_w are supplied, only min_l will be used).

Usage

getBiomass(object, ...)

S4 method for signature 'MizerSim'
getBiomass(object, ...)

Arguments

object An object of class MizerSim.

... Other arguments to select the size range of fish to be used in the calculation
(min_w, max_w, min_l, max_l).

Value

An array containing the biomass (time x species)

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
getBiomass(sim)
getBiomass(sim, min_w = 10, max_w = 1000)

End(Not run)

6 getBiomassFrame

getBiomassFrame Get data frame of biomass of species through time, ready for ggplot2

Description

After running a projection, the biomass of each species can be plotted against time. The biomass is
calculated within user defined size limits (min_w, max_w, min_l, max_l, see getBiomass).

Usage

getBiomassFrame(sim, ...)

S4 method for signature 'MizerSim'
getBiomassFrame(sim,
species = sim@params@species_params$species[!is.na(sim@params@A)],
start_time = as.numeric(dimnames(sim@n)[[1]][1]),
end_time = as.numeric(dimnames(sim@n)[[1]][dim(sim@n)[1]]),
ylim = c(NA, NA), total = FALSE, ...)

Arguments

sim An object of class MizerSim

... Other arguments to pass to getBiomass method, for example min_w and max_w

species Name or vector of names of the species to be plotted. By default all species are
plotted.

start_time The first time to be plotted. Default is the beginning of the time series.

end_time The last time to be plotted. Default is the end of the time series.

ylim A numeric vector of length two providing limits of for the y axis. Use NA to
refer to the existing minimum or maximum. Any values below 1e-20 are always
cut off.

total A boolean value that determines whether the total biomass from all species is
plotted as well. Default is FALSE

Value

A data frame that can be used in display_frames

See Also

getBiomass

getCommunitySlope 7

getCommunitySlope Calculate the slope of the community abundance

Description

Calculates the slope of the community abundance through time by performing a linear regression
on the logged total numerical abundance at weight and logged weights (natural logs, not log to base
10, are used). You can specify minimum and maximum weight or length range for the species.
Lengths take precedence over weights (i.e. if both min_l and min_w are supplied, only min_l will
be used). You can also specify the species to be used in the calculation.

Usage

getCommunitySlope(object, ...)

S4 method for signature 'MizerSim'
getCommunitySlope(object,
species = 1:nrow(object@params@species_params), biomass = TRUE, ...)

Arguments

object An object of class MizerSim.

... Optional parameters include

• min_w Minimum weight of species to be used in the calculation.
• max_w Maximum weight of species to be used in the calculation.
• min_l Minimum length of species to be used in the calculation.
• max_l Maximum length of species to be used in the calculation.

species Numeric or character vector of species to include in the calculation.

biomass Boolean. If TRUE (default), the abundance is based on biomass, if FALSE the
abundance is based on numbers.

Value

A data frame with slope, intercept and R2 values.

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=40, dt = 1, t_save = 1)
Slope based on biomass, using all species and sizes
slope_biomass <- getCommunitySlope(sim)
Slope based on numbers, using all species and sizes
slope_numbers <- getCommunitySlope(sim, biomass=FALSE)

8 getEGrowth

Slope based on biomass, using all species and sizes between 10g and 1000g
slope_biomass <- getCommunitySlope(sim, min_w = 10, max_w = 1000)
Slope based on biomass, using only demersal species and sizes between 10g and 1000g
dem_species <- c("Dab","Whiting","Sole","Gurnard","Plaice","Haddock", "Cod","Saithe")
slope_biomass <- getCommunitySlope(sim, species = dem_species, min_w = 10, max_w = 1000)

End(Not run)

getEGrowth Get energy rate available for growth

Description

Calculates the energy rate gi(w) available by species and size for growth after metabolism, move-
ment and reproduction have been accounted for. Used by the project method for performing
simulations.

Usage

getEGrowth(object, n, n_pp, e_spawning, e)

S4 method for signature 'MizerParams,matrix,numeric,matrix,matrix'
getEGrowth(object, n,
n_pp, e_spawning, e)

S4 method for signature 'MizerParams,matrix,numeric,missing,missing'
getEGrowth(object,
n, n_pp)

Arguments

object A MizerParams object.

n A matrix of species abundance (species x size).

n_pp A vector of the background abundance by size.

e_spawning The energy available for spawning (optional, although if specified, e must also
be specified). A matrix of size no. species x no. size bins. If not supplied, is
calculated internally using the getESpawning method.

e The energy available for reproduction and growth (optional, although if speci-
fied, e_spawning must also be specified). A matrix of size no. species x no. size
bins. If not supplied, is calculated internally using the getEReproAndGrowth
method.

Value

A two dimensional array (prey species x prey size)

getEReproAndGrowth 9

See Also

project

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the energy at a particular time step
getEGrowth(params,sim@n[21,,],sim@n_pp[21,])

End(Not run)

getEReproAndGrowth Get energy after metabolism and movement

Description

Calculates the energy rate available by species and size for reproduction and growth after metabolism
and movement have been accounted for: Er.i(w). Used by the project method for performing
simulations.

Usage

getEReproAndGrowth(object, n, n_pp, feeding_level)

S4 method for signature 'MizerParams,matrix,numeric,matrix'
getEReproAndGrowth(object, n,
n_pp, feeding_level)

S4 method for signature 'MizerParams,matrix,numeric,missing'
getEReproAndGrowth(object,
n, n_pp)

Arguments

object A MizerParams object.
n A matrix of species abundance (species x size).
n_pp A vector of the background abundance by size.
feeding_level The current feeding level (optional). A matrix of size no. species x no. size bins.

If not supplied, is calculated internally using the getFeedingLevel() method.

Value

A two dimensional array (species x size)

10 getESpawning

See Also

project and getFeedingLevel.

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the energy at a particular time step
getEReproAndGrowth(params,sim@n[21,,],sim@n_pp[21,])

End(Not run)

getESpawning Get energy rate available for reproduction

Description

Calculates the energy rate available by species and size for reproduction after metabolism and move-
ment have been accounted for: ψi(w)Er.i(w). Used by the project method for performing simu-
lations.

Usage

getESpawning(object, n, n_pp, e)

S4 method for signature 'MizerParams,matrix,numeric,matrix'
getESpawning(object, n, n_pp,
e)

S4 method for signature 'MizerParams,matrix,numeric,missing'
getESpawning(object, n,
n_pp)

Arguments

object A MizerParams object.

n A matrix of species abundance (species x size).

n_pp A vector of the background abundance by size.

e The energy available for reproduction and growth (optional). A matrix of size
no. species x no. size bins. If not supplied, is calculated internally using the
getEReproAndGrowth() method.

getFeedingLevel 11

Value

A two dimensional array (prey species x prey size)

See Also

project and getEReproAndGrowth.

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the energy at a particular time step
getESpawning(params,sim@n[21,,],sim@n_pp[21,])

End(Not run)

getFeedingLevel Get feeding level

Description

Calculates the feeding level fi(w) as a by predator size based on food availability, search volume
and maximum intake. The feeding level is the proportion of the encountered food that is actually
consumed.This method is used by the project method for performing simulations.

Usage

getFeedingLevel(object, n, n_pp, phi_prey, ...)

S4 method for signature 'MizerParams,matrix,numeric,matrix'
getFeedingLevel(object, n,
n_pp, phi_prey, ...)

S4 method for signature 'MizerParams,matrix,numeric,missing'
getFeedingLevel(object, n,
n_pp, phi_prey, ...)

S4 method for signature 'MizerSim,missing,missing,missing'
getFeedingLevel(object,
time_range = dimnames(object@n)$time, drop = FALSE, ...)

12 getFeedingLevel

Arguments

object A MizerParams or MizerSim object

n A matrix of species abundance (species x size). Only used if object argument
is of type MizerParams.

n_pp A vector of the background abundance by size. Only used if object argument
is of type MizerParams.

phi_prey The PhiPrey matrix (optional) of dimension no. species x no. size bins. If not
passed in, it is calculated internally using the getPhiPrey method. Only used if
object argument is of type MizerParams.

... Other arguments (currently unused).

time_range Subset the returned fishing mortalities by time. The time range is either a vector
of values, a vector of min and max time, or a single value. Default is the whole
time range. Only used if the object argument is of type MizerSim.

drop should extra dimensions of length 1 in the output be dropped, simplifying the
output. Defaults to TRUE.

Note

If a MizerParams object is passed in, the method returns a two dimensional array (predator species
x predator size) based on the abundances also passed in.

If a MizerSim object is passed in, the method returns a three dimensional array (time step x predator
species x predator size) with the feeding level calculated at every time step in the simulation.

See Also

getPhiPrey

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the feeding level at one time step
n <- sim@n[21,,]
n_pp <- sim@n_pp[21,]
fl <- getFeedingLevel(params,n,n_pp)
Get the feeding level at all saved time steps
fl <- getFeedingLevel(sim)
Get the feeding level for time 15 - 20
fl <- getFeedingLevel(sim, time_range = c(15,20))

End(Not run)

getFMort 13

getFMort Get the total fishing mortality rate from all fishing gears by time,
species and size.

Description

Calculates the total fishing mortality from all gears by species and size at each time step in the
effort argument. The total fishing mortality is just the sum of the fishing mortalities imposed by
each gear, µf.i(w) =

∑
g Fg,i,w.

Usage

getFMort(object, effort, ...)

S4 method for signature 'MizerParams,numeric'
getFMort(object, effort, ...)

S4 method for signature 'MizerParams,matrix'
getFMort(object, effort, ...)

S4 method for signature 'MizerSim,missing'
getFMort(object, effort,
time_range = dimnames(object@effort)$time, drop = TRUE, ...)

Arguments

object A MizerParams object or a MizerSim object

effort The effort of each fishing gear. Only needed if the object argument is of class
MizerParams. See notes below.

... Other arguments passed to getFMortGear method.

time_range Subset the returned fishing mortalities by time. The time range is either a vector
of values, a vector of min and max time, or a single value. Default is the whole
time range. Only used if the object argument is of type MizerSim.

drop Only used when object is of type MizerSim. Should dimensions of length 1 be
dropped, e.g. if your community only has one species it might make presentation
of results easier. Default is TRUE

Value

An array. If the effort argument has a time dimension, or object is of class MizerSim, the output
array has three dimensions (time x species x size). If the effort argument does not have a time
dimension, the output array has two dimensions (species x size).

14 getFMortGear

Note

Here: fishing mortality = catchability x selectivity x effort.

The effort argument is only used if a MizerParams object is passed in. The effort argument can
be a two dimensional array (time x gear), a vector of length equal to the number of gears (each gear
has a different effort that is constant in time), or a single numeric value (each gear has the same
effort that is constant in time). The order of gears in the effort argument must be the same the
same as in the MizerParams object.

If the object argument is of class MizerSim then the effort slot of the MizerSim object is used and
the effort argument is not used.

See Also

getFMortGear, project

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
Get the total fishing mortality when effort is constant for all
gears and time:
getFMort(params, effort = 1)
Get the total fishing mortality when effort is different
between the four gears but constant in time:
getFMort(params, effort = c(0.5,1,1.5,0.75))
Get the total fishing mortality when effort is different
between the four gears and changes with time:
effort <- array(NA, dim = c(20,4))
effort[,1] <- seq(from=0, to = 1, length=20)
effort[,2] <- seq(from=1, to = 0.5, length=20)
effort[,3] <- seq(from=1, to = 2, length=20)
effort[,4] <- seq(from=2, to = 1, length=20)
getFMort(params, effort=effort)
Get the total fishing mortality using the effort already held in a
MizerSim object.
sim <- project(params, t_max = 20, effort = 0.5)
getFMort(sim)
getFMort(sim, time_range = c(10,20))

End(Not run)

getFMortGear Get the fishing mortality by time, gear, species and size

Description

Calculates the fishing mortality rate Fg,i,w by gear, species and size at each time step in the effort
argument. Used by the project method to perform simulations.

getFMortGear 15

Usage

getFMortGear(object, effort, ...)

S4 method for signature 'MizerParams,numeric'
getFMortGear(object, effort, ...)

S4 method for signature 'MizerParams,matrix'
getFMortGear(object, effort, ...)

S4 method for signature 'MizerSim,missing'
getFMortGear(object, effort,
time_range = dimnames(object@effort)$time, ...)

Arguments

object A MizerParams object or a MizerSim object.

effort The effort of each fishing gear. Only needed if the object argument is of class
MizerParams. See notes below.

... Other arguments (currently unused).

time_range Subset the returned fishing mortalities by time. The time range is either a vector
of values, a vector of min and max time, or a single value. Default is the whole
time range. Only used if the object argument is of type MizerSim.

Value

An array. If the effort argument has a time dimension, or a MizerSim is passed in, the output array
has four dimensions (time x gear x species x size). If the effort argument does not have a time
dimension (i.e. it is a vector or a single numeric), the output array has three dimensions (gear x
species x size).

Note

Here: fishing mortality = catchability x selectivity x effort.

The effort argument is only used if a MizerParams object is passed in. The effort argument can
be a two dimensional array (time x gear), a vector of length equal to the number of gears (each gear
has a different effort that is constant in time), or a single numeric value (each gear has the same
effort that is constant in time). The order of gears in the effort argument must be the same the
same as in the MizerParams object.

If the object argument is of class MizerSim then the effort slot of the MizerSim object is used and
the effort argument is not used.

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
Get the fishing mortality when effort is constant

16 getM2

for all gears and time:
getFMortGear(params, effort = 1)
Get the fishing mortality when effort is different
between the four gears but constant in time:
getFMortGear(params, effort = c(0.5,1,1.5,0.75))
Get the fishing mortality when effort is different
between the four gears and changes with time:
effort <- array(NA, dim = c(20,4))
effort[,1] <- seq(from=0, to = 1, length=20)
effort[,2] <- seq(from=1, to = 0.5, length=20)
effort[,3] <- seq(from=1, to = 2, length=20)
effort[,4] <- seq(from=2, to = 1, length=20)
getFMortGear(params, effort=effort)
Get the fishing mortality using the effort already held in a MizerSim object.
sim <- project(params, t_max = 20, effort = 0.5)
getFMortGear(sim)
getFMortGear(sim, time_range=c(10,20))

End(Not run)

getM2 getM2 method for the size based model

Description

Calculates the total predation mortality rate µp,i(wp) on each prey species by prey size. This method
is used by the project method for performing simulations.

Usage

getM2(object, n, n_pp, pred_rate, ...)

S4 method for signature 'MizerParams,missing,missing,array'
getM2(object, pred_rate)

S4 method for signature 'MizerParams,matrix,numeric,missing'
getM2(object, n, n_pp)

S4 method for signature 'MizerSim,missing,missing,missing'
getM2(object,
time_range = dimnames(object@n)$time, drop = TRUE, ...)

Arguments

object A MizerParams or MizerSim object.

n A matrix of species abundance (species x size). Only used if object argument
is of type MizerParams.

getM2 17

n_pp A vector of the background abundance by size. Only used if object argument
is of type MizerParams.

pred_rate An array of predation rates of dimension no. sp x no. community size bins x no.
of size bins in whole spectra (i.e. community + background, the w_full slot).
The array is optional. If it is not provided it is calculated by the getPredRate()
method.

... Other arguments (currently unused).

time_range Subset the returned fishing mortalities by time. The time range is either a vector
of values, a vector of min and max time, or a single value. Default is the whole
time range. Only used if the object argument is of type MizerSim.

drop Only used when object is of type MizerSim. Should dimensions of length 1 in
the output be dropped, simplifying the output. Defaults to TRUE

Value

If a MizerParams object is passed in, the method returns a two dimensional array (prey species x
prey size) based on the abundances also passed in. If a MizerSim object is passed in, the method
returns a three dimensional array (time step x prey species x prey size) with the predation mortality
calculated at every time step in the simulation.

See Also

getPredRate and project.

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get M2 at one time step
n <- sim@n[21,,]
n_pp <- sim@n_pp[21,]
getM2(params,n,n_pp)
Get M2 at all saved time steps
getM2(sim)
Get M2 over the time 15 - 20
getM2(sim, time_range = c(15,20))

End(Not run)

18 getM2Background

getM2Background Get predation mortality rate for plankton

Description

Calculates the predation mortality rate µp(w) on the plankton spectrum by plankton size. Used by
the project method for running size based simulations.

Usage

getM2Background(object, n, n_pp, pred_rate)

S4 method for signature 'MizerParams,matrix,numeric,array'
getM2Background(object, n,
n_pp, pred_rate)

S4 method for signature 'MizerParams,matrix,numeric,missing'
getM2Background(object, n,
n_pp, pred_rate)

Arguments

object A MizerParams object.

n A matrix of species abundance (species x size).

n_pp A vector of the background abundance by size.

pred_rate An array of predation rates of dimension no. sp x no. community size bins x no.
of size bins in whole spectra (i.e. community + background, the w_full slot).
The array is optional. If it is not provided it is calculated by the getPredRate()
method.

Value

A vector of predation mortalities by background prey size.

See Also

project and getM2.

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get M2 of the background spectrum at one time step

getMeanMaxWeight 19

n <- sim@n[21,,]
n_pp <- sim@n_pp[21,]
getM2Background(params,n,n_pp)

End(Not run)

getMeanMaxWeight Calculate the mean maximum weight of the community

Description

Calculates the mean maximum weight of the community through time. This can be calculated by
numbers or biomass. The calculation is the sum of the w_inf * abundance of each species, divided
by the total abundance community, where abundance is either in biomass or numbers. You can
specify minimum and maximum weight or length range for the species. Lengths take precedence
over weights (i.e. if both min_l and min_w are supplied, only min_l will be used). You can also
specify the species to be used in the calculation.

Usage

getMeanMaxWeight(object, ...)

S4 method for signature 'MizerSim'
getMeanMaxWeight(object,
species = 1:nrow(object@params@species_params), measure = "both",
...)

Arguments

object An object of class MizerSim.

... Other arguments for the getN and getBiomass methods such as min_w, max_w
min_l and max_l.

species numeric or character vector of species to include in the calculation.

measure The measure to return. Can be ’numbers’, ’biomass’ or ’both’

Value

A matrix or vector containing the mean maximum weight of the community through time

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=10)
getMeanMaxWeight(sim)
getMeanMaxWeight(sim, species=c("Herring","Sprat","N.pout"))

20 getMeanWeight

getMeanMaxWeight(sim, min_w = 10, max_w = 5000)

End(Not run)

getMeanWeight Calculate the mean weight of the community

Description

Calculates the mean weight of the community through time. This is simply the total biomass of
the community divided by the abundance in numbers. You can specify minimum and maximum
weight or length range for the species. Lengths take precedence over weights (i.e. if both min_l and
min_w are supplied, only min_l will be used). You can also specify the species to be used in the
calculation.

Usage

getMeanWeight(object, ...)

S4 method for signature 'MizerSim'
getMeanWeight(object,
species = 1:nrow(object@params@species_params), ...)

Arguments

object An object of class MizerSim

... Other arguments for the getN and getBiomass methods such as min_w, max_w
min_l and max_l.

species numeric or character vector of species to include in the calculation

Value

A vector containing the mean weight of the community through time

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=10)
getMeanWeight(sim)
getMeanWeight(sim, species=c("Herring","Sprat","N.pout"))
getMeanWeight(sim, min_w = 10, max_w = 5000)

End(Not run)

getN 21

getN Calculate the total abundance in terms of numbers of species within a
size range

Description

Calculates the total numbers through time of the species in the MizerSim class within user defined
size limits. The default option is to use the whole size range You can specify minimum and max-
imum weight or lengths for the species. Lengths take precedence over weights (i.e. if both min_l
and min_w are supplied, only min_l will be used)

Usage

getN(object, ...)

S4 method for signature 'MizerSim'
getN(object, ...)

Arguments

object An object of class MizerSim.

... Other arguments to select the size range of the species to be used in the calcula-
tion (min_w, max_w, min_l, max_l).

Value

An array containing the total numbers (time x species)

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
getN(sim)
getN(sim, min_w = 10, max_w = 1000)

End(Not run)

22 getPhiPrey

getPhiPrey Get available energy

Description

Calculates the amount Ea,i(w) of food exposed to each predator as a function of predator size.

Usage

getPhiPrey(object, n, n_pp, ...)

S4 method for signature 'MizerParams,matrix,numeric'
getPhiPrey(object, n, n_pp, ...)

Arguments

object An MizerParams object

n A matrix of species abundances (species x size)

n_pp A vector of the background abundance by size

... Other arguments (currently unused)

Details

This method is used by the project method for performing simulations.

Value

A two dimensional array (predator species x predator size)

See Also

project

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
n <- sim@n[21,,]
n_pp <- sim@n_pp[21,]
getPhiPrey(params,n,n_pp)

End(Not run)

getPredRate 23

getPredRate Get predation rate

Description

Calculates the predation rate of each predator species at size on prey size. In formulas∫
φi(wp/w)(1− fi(w))γiw

qNi(w)dw

This method is used by the project method for performing simulations. In the simulations, it is
combined with the interaction matrix (see MizerParams) to calculate the realised predation mortal-
ity (see getM2).

Usage

getPredRate(object, n, n_pp, feeding_level)

S4 method for signature 'MizerParams,matrix,numeric,matrix'
getPredRate(object, n, n_pp,
feeding_level)

S4 method for signature 'MizerParams,matrix,numeric,missing'
getPredRate(object, n, n_pp)

Arguments

object A MizerParams object.

n A matrix of species abundance (species x size).

n_pp A vector of the background abundance by size.

feeding_level The current feeding level (optional). A matrix of size no. species x no. size bins.
If not supplied, is calculated internally using the getFeedingLevel() method.

Value

A two dimensional array (predator species x prey size), where the prey size runs over community
plus background spectrum.

See Also

project, getM2, getFeedingLevel and MizerParams

24 getProportionOfLargeFish

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the feeding level at one time step
n <- sim@n[21,,]
n_pp <- sim@n_pp[21,]
getPredRate(params,n,n_pp)

End(Not run)

getProportionOfLargeFish

Calculate the proportion of large fish

Description

Calculates the proportion of large fish through time in the MizerSim class within user defined size
limits. The default option is to use the whole size range. You can specify minimum and maximum
size ranges for the species and also the threshold size for large fish. Sizes can be expressed as
weight or size. Lengths take precedence over weights (i.e. if both min_l and min_w are supplied,
only min_l will be used). You can also specify the species to be used in the calculation. This
method can be used to calculate the Large Fish Index. The proportion is based on either abundance
or biomass.

Usage

getProportionOfLargeFish(object, ...)

S4 method for signature 'MizerSim'
getProportionOfLargeFish(object,
species = 1:nrow(object@params@species_params), threshold_w = 100,
threshold_l = NULL, biomass_proportion = TRUE, ...)

Arguments

object An object of class MizerSim.
... Other arguments to select the size range of the species to be used in the calcula-

tion (min_w, max_w, min_l, max_l).
species numeric or character vector of species to include in the calculation.
threshold_w the size used as the cutoff between large and small fish. Default value is 100.
threshold_l the size used as the cutoff between large and small fish.
biomass_proportion

a boolean value. If TRUE the proportion calculated is based on biomass, if
FALSE it is based on numbers of individuals. Default is TRUE.

getRDD 25

Value

An array containing the proportion of large fish through time

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=10)
getProportionOfLargeFish(sim)
getProportionOfLargeFish(sim, species=c("Herring","Sprat","N.pout"))
getProportionOfLargeFish(sim, min_w = 10, max_w = 5000)
getProportionOfLargeFish(sim, min_w = 10, max_w = 5000, threshold_w = 500)
getProportionOfLargeFish(sim, min_w = 10, max_w = 5000,

threshold_w = 500, biomass_proportion=FALSE)

End(Not run)

getRDD Get density dependent recruitment

Description

Calculates the density dependent recruitment (total egg production) Ri for each species. This is the
flux entering the smallest size class of each species. The density dependent recruitment is the den-
sity independent recruitment after it has been put through the density dependent stock-recruitment
relationship function. This method is used by the project method for performing simulations.

Usage

getRDD(object, n, n_pp, rdi, ...)

S4 method for signature 'MizerParams,matrix,numeric,matrix'
getRDD(object, n, n_pp, rdi,
sex_ratio = 0.5)

S4 method for signature 'MizerParams,matrix,numeric,missing'
getRDD(object, n, n_pp,
sex_ratio = 0.5)

Arguments

object An MizerParams object

n A matrix of species abundance (species x size)

n_pp A vector of the background abundance by size

26 getRDI

rdi A matrix of density independent recruitment (optional) with dimensions no. sp
x 1. If not specified rdi is calculated internally using the getRDI method.

... Other arguments (currently unused).

sex_ratio Proportion of the population that is female. Default value is 0.5

Value

A numeric vector the length of the number of species.

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the energy at a particular time step
getRDD(params,sim@n[21,,],sim@n_pp[21,])

End(Not run)

getRDI Get density independent recruitment

Description

Calculates the density independent recruitment (total egg production) Rp.i before density depen-
dence, by species. Used by the project method for performing simulations.

Usage

getRDI(object, n, n_pp, e_spawning, ...)

S4 method for signature 'MizerParams,matrix,numeric,matrix'
getRDI(object, n, n_pp,
e_spawning, sex_ratio = 0.5)

S4 method for signature 'MizerParams,matrix,numeric,missing'
getRDI(object, n, n_pp,
sex_ratio = 0.5)

Arguments

object A MizerParams object.

n A matrix of species abundance (species x size).

n_pp A vector of the background abundance by size.

getSSB 27

e_spawning The energy available for spawning (optional). A matrix of size no. species x
no. size bins. If not supplied, is calculated internally using the getESpawning
method.

... Other arguments (currently unused).

sex_ratio Proportion of the population that is female. Default value is 0.5.

Value

A numeric vector the length of the number of species

See Also

project

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the recruitment at a particular time step
getRDI(params,sim@n[21,,],sim@n_pp[21,])

End(Not run)

getSSB Calculate the SSB of species

Description

Calculates the spawning stock biomass (SSB) through time of the species in the MizerSim class.
SSB is calculated as the total mass of all mature individuals.

Usage

getSSB(object)

S4 method for signature 'MizerSim'
getSSB(object)

Arguments

object An object of class MizerSim.

Value

An array containing the SSB (time x species)

28 getSSBFrame

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
getSSB(sim)

End(Not run)

getSSBFrame Get data frame of spawning stock biomass of species through time,
ready for ggplot2

Description

After running a projection, the spawning stock biomass of each species can be plotted against time.

Usage

getSSBFrame(sim, ...)

S4 method for signature 'MizerSim'
getSSBFrame(sim,
species = sim@params@species_params$species[!is.na(sim@params@A)],
start_time = as.numeric(dimnames(sim@n)[[1]][1]),
end_time = as.numeric(dimnames(sim@n)[[1]][dim(sim@n)[1]]),
ylim = c(NA, NA), total = FALSE, ...)

Arguments

sim An object of class MizerSim
... Other arguments to pass to getSBB method, currently unused.
species Name or vector of names of the species to be plotted. By default all species are

plotted.
start_time The first time to be plotted. Default is the beginning of the time series.
end_time The last time to be plotted. Default is the end of the time series.
ylim A numeric vector of length two providing limits of for the y axis. Use NA to

refer to the existing minimum or maximum. Any values below 1e-20 are always
cut off.

total A boolean value that determines whether the total SSB from all species is plotted
as well. Default is FALSE

Value

A data frame that can be used in display_frames

getYield 29

See Also

getSSB

getYield Calculate the total yield of each species

Description

Calculates the total yield of each species across all gears at each simulation time step.

Usage

getYield(object)

S4 method for signature 'MizerSim'
getYield(object)

Arguments

object An object of class MizerSim.

Value

An array containing the total yield (time x species)

See Also

getYieldGear

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=10)
y <- getYield(sim)

End(Not run)

30 getZ

getYieldGear Calculate the total yield per gear and species

Description

Calculates the total yield per gear and species at each simulation time step.

Usage

getYieldGear(object)

S4 method for signature 'MizerSim'
getYieldGear(object)

Arguments

object An object of class MizerSim.

Value

An array containing the total yield (time x gear x species)

See Also

getYield

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
getYieldGear(sim)

End(Not run)

getZ Get total mortality rate

Description

Calculates the total mortality rate µi(w) on each species by size from predation mortality, back-
ground mortality and fishing mortality for a single time step.

getZ 31

Usage

getZ(object, n, n_pp, effort, m2)

S4 method for signature 'MizerParams,matrix,numeric,numeric,matrix'
getZ(object, n, n_pp,
effort, m2)

S4 method for signature 'MizerParams,matrix,numeric,numeric,missing'
getZ(object, n,
n_pp, effort)

Arguments

object A MizerParams object.

n A matrix of species abundance (species x size).

n_pp A vector of the background abundance by size.

effort A numeric vector of the effort by gear or a single numeric effort value which is
used for all gears.

m2 A two dimensional array of predation mortality (optional). Has dimensions no.
sp x no. size bins in the community. If not supplied is calculated using the
getM2() method.

Value

A two dimensional array (prey species x prey size).

See Also

getM2, getFMort

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the total mortality at a particular time step
getZ(params,sim@n[21,,],sim@n_pp[21,],effort=0.5)

End(Not run)

32 inter

get_initial_n Calculate initial population abundances for the community popula-
tions

Description

This function uses the model parameters and other parameters to calculate initial population abun-
dances for the community populations. These initial abundances should be reasonable guesses at
the equilibrium values. The returned population can be passed to the project method.

Usage

get_initial_n(params, n0_mult = NULL, a = 0.35)

Arguments

params The model parameters. An object of type MizerParams.
n0_mult Multiplier for the abundance at size 0. Default value is kappa/1000.
a A parameter with a default value of 0.35.

Value

A matrix (species x size) of population abundances.

Examples

Not run:
data(NS_species_params_gears)
params <- MizerParams(NS_species_params_gears)
init_n <- get_initial_n(params)

End(Not run)

inter Example interaction matrix for the North Sea example

Description

The interaction coefficient between predators and preys in the North Sea.

Format

A 12 x 12 matrix.

Source

Blanchard et al.

knife_edge 33

knife_edge Size based knife-edge selectivity function

Description

A knife-edge selectivity function where only sizes greater or equal to knife_edge_size are se-
lected.

Usage

knife_edge(w, knife_edge_size)

Arguments

w The size of the individual.
knife_edge_size

The size at which the knife-edge operates.

log_breaks Helper function to produce nice breaks on logarithmic axes

Description

This is needed when the logarithmic y-axis spans less than one order of magnitude, in which case the
ggplot2 default produces no ticks. Thanks to Heather Turner at https://stackoverflow.com/questions/14255533/pretty-
ticks-for-log-normal-scale-using-ggplot2-dynamic-not-manual

Usage

log_breaks(n = 6)

Arguments

n Approximate number of ticks

Value

A function that can be used as the break argument in calls to scale_y_continuous() or scale_x_continuous()

34 MizerParams

mizer mizer: Multi-species size-based modelling in R

Description

The mizer package implements multi-species size-based modelling in R. It has been designed for
modelling marine ecosystems.

Details

Using mizer is relatively simple. There are three main stages:

1. Setting the model parameters. This is done by creating an object of class MizerParams. This
includes model parameters such as the life history parameters of each species, and the range
of the size spectrum.

2. Running a simulation. This is done by calling the project() method on the model parameters.
This produces an object of MizerSim which contains the results of the simulation.

3. Exploring results. After a simulation has been run, the results can be explored using a range
of plots and summaries.

See the accompanying vignette for full details of the principles behind mizer and how the package
can be used to perform size-based modelling.

MizerParams Constructors for objects of MizerParams class

Description

Constructor method for the MizerParams class. Provides the simplest way of making a MizerParams
object to be used in a simulation.

Only really used to make MizerParams of the right size and shouldn’t be used by user

Usage

MizerParams(object, interaction, ...)

S4 method for signature 'numeric,missing'
MizerParams(object, min_w = 0.001,
max_w = 1000, no_w = 100, min_w_pp = 1e-10, no_w_pp = NA,
species_names = 1:object, gear_names = species_names)

S4 method for signature 'data.frame,matrix'
MizerParams(object, interaction, n = 2/3,
p = 0.7, q = 0.8, r_pp = 10, kappa = 1e+11, lambda = (2 + q -
n), w_pp_cutoff = 10, max_w = max(object$w_inf) * 1.1, f0 = 0.6,

MizerParams 35

z0pre = 0.6, z0exp = n - 1, ...)

S4 method for signature 'data.frame,missing'
MizerParams(object, interaction, ...)

Arguments

object A data frame of species specific parameter values (see notes below).

interaction Optional argument to specify the interaction matrix of the species (predator by
prey). If missing a default interaction is used where all interactions between
species are set to 1. Note that any dimnames of the interaction matrix argu-
ment are ignored by the constructor. The dimnames of the interaction matrix
in the returned MizerParams object are taken from the species names in the
species_params slot. This means that the order of the columns and rows of
the interaction matrix argument should be the same as the species name in the
species_params slot.

... Additional arguments.

min_w The smallest size of the community spectrum.

max_w The largest size of the community spectrum. Default value is the largest w_inf
in the community x 1.1.

no_w The number of size bins in the community spectrum.

min_w_pp The smallest size of the background spectrum.

no_w_pp Obsolete argument that is no longer used because the number of plankton size
bins is determined because all size bins have to be logarithmically equally spaced.

species_names Names of the species. Generally not needed as normally taken from the object
data.frame.

gear_names Names of the gears that catch each species. Generally not needed as normally
taken from the object data.frame. Default is species_names.

n Scaling of the intake. Default value is 2/3.

p Scaling of the standard metabolism. Default value is 0.7.

q Exponent of the search volume. Default value is 0.8.

r_pp Growth rate of the primary productivity. Default value is 10.

kappa Carrying capacity of the resource spectrum. Default value is 1e11.

lambda Exponent of the resource spectrum. Default value is (2+q-n).

w_pp_cutoff The cut off size of the background spectrum. Default value is 10.

f0 Average feeding level. Used to calculated h and gamma if those are not columns
in the species data frame. Also requires k_vb (the von Bertalanffy K parameter)
to be a column in the species data frame. If h and gamma are supplied then this
argument is ignored. Default is 0.6..

z0pre If z0, the mortality from other sources, is not a column in the species data frame,
it is calculated as z0pre * w_inf ^ z0exp. Default value is 0.6.

z0exp If z0, the mortality from other sources, is not a column in the species data frame,
it is calculated as z0pre * w_inf ^ z0exp. Default value is n-1.

36 MizerParams-class

Value

An object of type MizerParams

Note

The only essential argument to the MizerParams constructor is a data frame which contains the
species data. The data frame is arranged species by parameter, so each column of the parameter
data frame is a parameter and each row has the parameters for one of the species in the model.

There are some essential columns that must be included in the parameter data.frame and that do not
have default values. Other columns do have default values, so that if they are not included in the
species parameter data frame, they will be automatically added when the MizerParams object is
created. See the accompanying vignette for details of these columns.

An additional constructor method which takes an integer of the number of species in the model.
This is only used in internally to set up a MizerParams object with the correct dimensions. It is not
recommended that this method is used by users.

See Also

project MizerSim

Examples

data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)

MizerParams-class A class to hold the parameters for a size based model.

Description

These parameters include the model species, their life history parameters and the size ranges of the
model.

Details

MizerParams objects can be created using a range of MizerParams constructor methods.

Dynamic simulations are performed using the project method on objects of this class.

Slots

w A numeric vector of size bins used for the community (i.e. fish) part of the model. These are
usually spaced on a log10 scale

dw The absolute difference between the size bins specified in the w slot. A vector the same length
as the w slot. The final value is the same as the second to last value

MizerParams-class 37

w_full A numeric vector of size bins used for the whole model (i.e. the community and back-
ground spectra) . These are usually spaced on a log10 scale

dw_full The absolute difference between the size bins specified in the w_full slot. A vector the
same length as the w_full slot. The final value is the same as the second to last value

psi An array (species x size) that holds the allocation to reproduction for each species at size,
ψi(w)

intake_max An array (species x size) that holds the maximum intake for each species at size, hiwn

search_vol An array (species x size) that holds the search volume for each species at size, γiwq

activity An array (species x size) that holds the activity for each species at size, kiw

std_metab An array (species x size) that holds the standard metabolism for each species at size,
ks.iw

p

mu_b An array (species x size) that holds the background death µb.i(w)

ft_pred_kernel_e An array (species x log of predator/prey size ratio) that holds the Fourier trans-
form of the feeding kernel in a form appropriate for evaluating the available energy integral

ft_pred_kernel_p An array (species x log of predator/prey size ratio) that holds the Fourier trans-
form of the feeding kernel in a form appropriate for evaluating the predation mortality integral

rr_pp A vector the same length as the w_full slot. The size specific growth rate of the background
spectrum, r0wp−1

cc_pp A vector the same length as the w_full slot. The size specific carrying capacity of the
background spectrum, κw−λ

sc The community abundance of the scaling community

species_params A data.frame to hold the species specific parameters (see the mizer vignette,
Table 2, for details)

interaction The species specific interaction matrix, θij
srr Function to calculate the realised (density dependent) recruitment. Has two arguments which

are rdi and species_params

selectivity An array (gear x species x w) that holds the selectivity of each gear for species and
size, Sg,i,w

catchability An array (gear x species) that holds the catchability of each species by each gear,
Qg,i

initial_n An array (species x size) that holds abundance of each species at each weight at our
candidate steady state solution.

initial_n_pp A vector the same length as the w_full slot that describes the abundance of the
background background resource at each weight.

n Exponent of maximum intake rate.

p Exponent of metabolic cost.

lambda Exponent of resource spectrum.

q Exponent for volumetric search rate.

f0 Initial feeding level.

kappa Magnitude of resource spectrum.

38 MizerSim

A Abundance multipliers.

linecolour A named vector of colour values, named by species. Used to give consistent colours
to species in plots.

linetype A named vector of linetypes, named by species. Used to give consistent colours to
species in plots.

Note

The MizerParams class is fairly complex with a large number of slots, many of which are multidi-
mensional arrays. The dimensions of these arrays is strictly enforced so that MizerParams objects
are consistent in terms of number of species and number of size classes.

Although it is possible to build a MizerParams object by hand it is not recommended and several
constructors are available.

The MizerParams class does not hold any dynamic information, e.g. abundances or harvest effort
through time. These are held in MizerSim objects.

See Also

project MizerSim

MizerSim Constructor for the MizerSim class

Description

A constructor for the MizerSim class. This is used by the project method to create MizerSim
objects of the right dimensions. It is not necessary for users to use this constructor.

Usage

MizerSim(object, ...)

S4 method for signature 'MizerParams'
MizerSim(object, t_dimnames = NA, t_max = 100,
t_save = 1)

Arguments

object a MizerParams object

... Other arguments (currently not used).

t_dimnames Numeric vector that is used for the time dimensions of the slots. Default = NA.

t_max The maximum time step of the simulation. Only used if t_dimnames = NA.
Default value = 100.

t_save How often should the results of the simulation be stored. Only used if t_dimnames
= NA. Default value = 1.

MizerSim-class 39

Value

An object of type MizerSim

See Also

project MizerParams MizerSim

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params)

End(Not run)

MizerSim-class MizerSim

Description

A class that holds the results of projecting a MizerParams object through time.

Details

MizerSim objects are created by using the project method on an object of type MizerParams.

There are several plotting methods available to explore the contents of a MizerSim object. See the
package vignette for more details.

Slots

params An object of type MizerParams.

n Array that stores the projected community population abundances by time, species and size

effort Array that stores the fishing effort through time by time and gear

n_pp Array that stores the projected background population by time and size

See Also

project MizerParams

40 NS_species_params_gears

NS_species_params Example parameter set based on the North Sea

Description

This data set is based on species in the North Sea (Blanchard et al.). It is a data.frame that contains
all the necessary information to be used by the MizerParams constructor. As there is no gear
column, each species is assumed to be fished by a separate gear.

Format

A data frame with 12 rows and 7 columns. Each row is a species.

species Name of the species

w_inf The von Bertalanffy W_infinity parameter

w_mat Size at maturity

beta Size preference ratio

sigma Width of the size-preference

r_max Maximum recruitment

k_vb The von Bertalanffy k parameter

Source

Blanchard et al.

NS_species_params_gears

Example parameter set based on the North Sea with different gears

Description

This data set is based on species in the North Sea (Blanchard et al.). It is similar to the data set
NS_species_params except that this one has an additional column specifying the fishing gear that
operates on each species.

Format

A data frame with 12 rows and 8 columns. Each row is a species.

species Name of the species

w_inf The von Bertalanffy W_infinity parameter

w_mat Size at maturity

beta Size preference ratio

plot,MizerSim,missing-method 41

sigma Width of the size-preference

r_max Maximum recruitment

k_vb The von Bertalanffy k parameter

gear Name of the fishing gear

Source

Blanchard et al.

plot,MizerSim,missing-method

Summary plot for MizerSim objects

Description

After running a projection, produces 5 plots in the same window: feeding level, abundance spectra,
predation mortality and fishing mortality of each species by size; and biomass of each species
through time. This method just uses the other plotting methods and puts them all in one window.

Usage

S4 method for signature 'MizerSim,missing'
plot(x, y, ...)

Arguments

x An object of class MizerSim

y Not used

... For additional arguments see the documentation for plotBiomass, plotFeedingLevel,plotSpectra,plotM2
and plotFMort.

Value

A viewport object

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 2)
plot(sim)
plot(sim, time_range = 10:20) # change time period for size-based plots
plot(sim, min_w = 10, max_w = 1000) # change size range for biomass plot

End(Not run)

42 plotBiomass

plotBiomass Plot the biomass of species through time

Description

After running a projection, the biomass of each species can be plotted against time. The biomass is
calculated within user defined size limits (min_w, max_w, min_l, max_l, see getBiomass).

Usage

plotBiomass(sim, ...)

S4 method for signature 'MizerSim'
plotBiomass(sim,
species = sim@params@species_params$species[!is.na(sim@params@A)],
start_time = as.numeric(dimnames(sim@n)[[1]][1]),
end_time = as.numeric(dimnames(sim@n)[[1]][dim(sim@n)[1]]),
y_ticks = 6, print_it = TRUE, ylim = c(NA, NA), total = FALSE,
background = TRUE, ...)

Arguments

sim An object of class MizerSim

... Other arguments to pass to getBiomass method, for example min_w and max_w

species Name or vector of names of the species to be plotted. By default all species are
plotted.

start_time The first time to be plotted. Default is the beginning of the time series.

end_time The last time to be plotted. Default is the end of the time series.

y_ticks The approximate number of ticks desired on the y axis

print_it Display the plot, or just return the ggplot2 object. Default value is TRUE

ylim A numeric vector of length two providing limits of for the y axis. Use NA to
refer to the existing minimum or maximum. Any values below 1e-20 are always
cut off.

total A boolean value that determines whether the total biomass from all species is
plotted as well. Default is FALSE

background A boolean value that determines whether background species are included. Ig-
nored if the model does not contain background species. Default is TRUE.

Value

A ggplot2 object

See Also

getBiomass

plotFeedingLevel 43

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 0.2)
plotBiomass(sim)
plotBiomass(sim, species = c("Cod", "Herring"), total = TRUE)
plotBiomass(sim, min_w = 10, max_w = 1000)
plotBiomass(sim, start_time = 10, end_time = 15)
plotBiomass(sim, y_ticks = 3)

End(Not run)

plotFeedingLevel Plot the feeding level of species by size

Description

After running a projection, plot the feeding level of each species by size. The feeding level is
averaged over the specified time range (a single value for the time range can be used).

Usage

plotFeedingLevel(sim, ...)

S4 method for signature 'MizerSim'
plotFeedingLevel(sim,
species = as.character(sim@params@species_params$species),
time_range = max(as.numeric(dimnames(sim@n)$time)), print_it = TRUE,
...)

Arguments

sim An object of class MizerSim.

... Other arguments to pass to getFeedingLevel method

species Name or vector of names of the species to be plotted. By default all species are
plotted.

time_range The time range (either a vector of values, a vector of min and max time, or a
single value) to average the abundances over. Default is the final time step.

print_it Display the plot, or just return the ggplot2 object. Defaults to TRUE

Value

A ggplot2 object

44 plotFMort

See Also

getFeedingLevel

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 2)
plotFeedingLevel(sim)
plotFeedingLevel(sim, time_range = 10:20)

End(Not run)

plotFMort Plot total fishing mortality of each species by size

Description

After running a projection, plot the total fishing mortality of each species by size. The total fishing
mortality is averaged over the specified time range (a single value for the time range can be used to
plot a single time step).

Usage

plotFMort(sim, ...)

S4 method for signature 'MizerSim'
plotFMort(sim,
species = as.character(sim@params@species_params$species),
time_range = max(as.numeric(dimnames(sim@n)$time)), print_it = TRUE,
...)

Arguments

sim An object of class MizerSim.

... Other arguments to pass to getFMort method

species Name or vector of names of the species to be plotted. By default all species are
plotted.

time_range The time range (either a vector of values, a vector of min and max time, or a
single value) to average the abundances over. Default is the final time step.

print_it Display the plot, or just return the ggplot2 object. Defaults to TRUE

Value

A ggplot2 object

plotGrowthCurves 45

See Also

getFMort

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 2)
plotFMort(sim)
plotFMort(sim, time_range = 10:20)

End(Not run)

plotGrowthCurves Plot growth curves giving weight as a function of age

Description

If given a MizerSim object, uses the growth rates at the final time of a simulation to calculate the
size at age. If given a MizerParams object, uses the initial growth rates instead.

Usage

plotGrowthCurves(object, ...)

S4 method for signature 'MizerSim'
plotGrowthCurves(object,
species = as.character(sim@params@species_params$species),
max_age = 20, percentage = FALSE, print_it = TRUE)

S4 method for signature 'MizerParams'
plotGrowthCurves(object,
species = as.character(params@species_params$species), max_age = 20,
percentage = FALSE, print_it = TRUE)

Arguments

object MizerSim or MizerParams object

... Other arguments (unused)

species Name or vector of names of the species to be plotted. By default all species are
plotted.

max_age The age up to which the weight is to be plotted. Default is 20

percentage Boolean value. If TRUE, the size is shown as a percentage of the maximal size.

print_it Display the plot, or just return the ggplot2 object. Defaults to TRUE

46 plotM2

Details

When the growth curve for only a single species is plotted, horizontal lines are included that indicate
the maturity size and the maximum size for that species. If furthermore the species parameters
contain the variables a and b for length to weight conversion and the von Bertalanffy parameter
k_vb, then the von Bertalanffy growth curve is superimposed in black.

Value

A ggplot2 object

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 2)
plotGrowthCurves(sim, percentage = TRUE)
plotGrowthCurves(sim, species = "Cod", max_age = 24)

End(Not run)

plotM2 Plot predation mortality rate of each species against size

Description

After running a projection, plot the predation mortality rate of each species by size. The mortality
rate is averaged over the specified time range (a single value for the time range can be used to plot
a single time step).

Usage

plotM2(sim, ...)

S4 method for signature 'MizerSim'
plotM2(sim,
species = as.character(sim@params@species_params$species),
time_range = max(as.numeric(dimnames(sim@n)$time)), print_it = TRUE,
...)

Arguments

sim An object of class MizerSim

... Other arguments to pass to getM2 method.

species Name or vector of names of the species to be plotted. By default all species are
plotted.

plotSpectra 47

time_range The time range (either a vector of values, a vector of min and max time, or a
single value) to average the abundances over. Default is the final time step.

print_it Display the plot, or just return the ggplot2 object. Defaults to TRUE

Value

A ggplot2 object

See Also

getM2

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 2)
plotM2(sim)
plotM2(sim, time_range = 10:20)

End(Not run)

plotSpectra Plot the abundance spectra

Description

What is plotted is the number density multiplied by a power of the weight, with the power specified
by the power argument.

Usage

plotSpectra(object, ...)

S4 method for signature 'MizerSim'
plotSpectra(object, species = NULL,
time_range = max(as.numeric(dimnames(object@n)$time)),
min_w = min(object@params@w)/100, ylim = c(NA, NA), power = 1,
biomass = TRUE, print_it = TRUE, total = FALSE, plankton = TRUE,
background = TRUE, ...)

S4 method for signature 'MizerParams'
plotSpectra(object, species = NULL,
min_w = min(object@w)/100, ylim = c(NA, NA), power = 1,
biomass = TRUE, print_it = TRUE, total = FALSE, plankton = TRUE,
background = TRUE, ...)

48 plotSpectra

Arguments

object An object of class MizerSim or MizerParams.

... Other arguments (currently unused)

species Name or vector of names of the species to be plotted. By default all species are
plotted.

time_range The time range (either a vector of values, a vector of min and max time, or
a single value) to average the abundances over. Default is the final time step.
Ignored when called with a MizerParams object.

min_w Minimum weight to be plotted (useful for truncating the background spectrum).
Default value is a hundredth of the minimum size value of the community.

ylim A numeric vector of length two providing limits of for the y axis. Use NA to
refer to the existing minimum or maximum. Any values below 1e-20 are always
cut off.

power The abundance is plotted as the number density times the weight raised to power.
The default power = 1 gives the biomass density, whereas power = 2 gives the
biomass density with respect to logarithmic size bins.

biomass Obsolete. Only used if power argument is missing. Then biomass = TRUE is
equivalent to power=1 and biomass = FALSE is equivalent to power=0

print_it Display the plot, or just return the ggplot2 object. Defaults to TRUE

total A boolean value that determines whether the total over all species in the system
is plotted as well. Default is FALSE

plankton A boolean value that determines whether plankton is included. Default is TRUE.

background A boolean value that determines whether background species are included. Ig-
nored if the model does not contain background species. Default is TRUE.

Details

When called with a MizerSim object, the abundance is averaged over the specified time range
(a single value for the time range can be used to plot a single time step). When called with a
MizerParams object the initial abundance is plotted.

Value

A ggplot2 object

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 2)
plotSpectra(sim)
plotSpectra(sim, min_w = 1e-6)
plotSpectra(sim, time_range = 10:20)
plotSpectra(sim, time_range = 10:20, power = 0)

plotYield 49

plotSpectra(sim, species = c("Cod", "Herring"), power = 1)

End(Not run)

plotYield Plot the total yield of species through time

Description

After running a projection, the total yield of each species across all fishing gears can be plotted
against time. The yield is obtained with getYield.

Usage

plotYield(sim, sim2, ...)

S4 method for signature 'MizerSim,missing'
plotYield(sim,
species = as.character(sim@params@species_params$species),
print_it = TRUE, total = FALSE, log = TRUE, ...)

S4 method for signature 'MizerSim,MizerSim'
plotYield(sim, sim2,
species = as.character(sim@params@species_params$species),
print_it = TRUE, total = FALSE, log = TRUE, ...)

Arguments

sim An object of class MizerSim

sim2 An optional second object of class MizerSim. If this is provided its yields will
be shown on the same plot in bolder lines.

... Other arguments to pass to getYield method

species Name or vector of names of the species to be plotted. By default all species
contained in sim are plotted.

print_it Display the plot, or just return the ggplot2 object. Defaults to TRUE

total A boolean value that determines whether the total yield from all species in the
system is plotted as well. Default is FALSE

log Boolean whether yield should be plotted on a logarithmic axis. Defaults to true.

Value

A ggplot2 object

See Also

getYield

50 plotYieldGear

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 0.2)
plotYield(sim)
plotYield(sim, species = c("Cod", "Herring"), total = TRUE)

Comparing with yield from twice the effort
sim2 <- project(params, effort=2, t_max=20, t_save = 0.2)
plotYield(sim, sim2, species = c("Cod", "Herring"), log = FALSE)

End(Not run)

plotYieldGear Plot the total yield of each species by gear through time

Description

After running a projection, the total yield of each species by fishing gear can be plotted against time.

Usage

plotYieldGear(sim, ...)

S4 method for signature 'MizerSim'
plotYieldGear(sim,
species = as.character(sim@params@species_params$species),
print_it = TRUE, total = FALSE, ...)

Arguments

sim An object of class MizerSim

... Other arguments to pass to getYieldGear method

species Name or vector of names of the species to be plotted. By default all species are
plotted.

print_it Display the plot, or just return the ggplot2 object. Defaults to TRUE

total A boolean value that determines whether the total yield per gear over all species
in the system is plotted as well. Default is FALSE

Details

This plot is pretty easy to do by hand. It just gets the biomass using the getYieldGear method and
plots using the ggplot2 package. You can then fiddle about with colours and linetypes etc. Just look
at the source code for details.

project 51

Value

A ggplot2 object

See Also

getYieldGear

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 0.2)
plotYieldGear(sim)
plotYieldGear(sim, species = c("Cod", "Herring"), total = TRUE)

End(Not run)

project project method for the size based modelling

Description

Runs the size-based model simulation and projects the size based model through time. project is
called using an object of type MizerParams and an object that contains the effort of the fishing gears
through time. The method returns an object of type MizerSim which can then be explored with a
range of summary and plotting methods.

Usage

project(object, effort, ...)

S4 method for signature 'MizerParams,missing'
project(object, effort, ...)

S4 method for signature 'MizerParams,numeric'
project(object, effort, t_max = 100,
dt = 0.1, ...)

S4 method for signature 'MizerParams,array'
project(object, effort, t_save = 1,
dt = 0.1, initial_n = object@initial_n,
initial_n_pp = object@initial_n_pp, shiny_progress = NULL, ...)

52 project

Arguments

object A MizerParams object

effort The effort of each fishing gear through time. See notes below.

... Currently unused.

t_max The maximum time the projection runs for. The default value is 100. However,
this argument is not needed if an array is used for the effort argument, in which
case this argument is ignored. See notes below.

dt Time step of the solver. The default value is 0.1.

t_save The frequency with which the output is stored. The default value is 1. Must be
an integer multiple of dt.

initial_n The initial populations of the species. By default the initial_n slot of the
MizerParams argument is used. See the notes below.

initial_n_pp The initial population of the background spectrum. It should be a numeric vector
of the same length as the w_full slot of the MizerParams argument. By default
the initial_n_pp slot of the MizerParams argument is used.

shiny_progress A shiny progress object used to update shiny progress bar. Default NULL.

Value

An object of type MizerSim.

Note

The effort argument specifies the level of fishing effort during the simulation. It can be specified
in three different ways:

• A single numeric value. This specifies the effort of all fishing gears which is constant through
time (i.e. all the gears have the same constant effort).

• A numerical vector which has the same length as the number of fishing gears. The vector
must be named and the names must correspond to the gear names in the MizerParams object.
The values in the vector specify the constant fishing effort of each of the fishing gears, i.e. the
effort is constant through time but each gear may have a different fishing effort.

• A numerical array with dimensions time step x gear. This specifies the fishing effort of each
gear at each time step. The first dimension, time, must be named numerically and contigu-
ously. The second dimension of the array must be named and the names must correspond to
the gear names in the MizerParams argument. The value for the effort for a particular time is
used during the interval from that time to the next time in the array.

If effort is specified as an array then the smallest time in the array is used as the initial time for
the simulation. Otherwise the initial time is set to 0. Also, if the effort is an array then the t_max
argument is ignored and the maximum simulation time is the largest time of the effort array.

The initial_n argument is a matrix with dimensions species x size. It specifies the abundances of
the species at the initial time. The order of species must be the same as in the MizerParams argu-
ment. If the initial population is not specified, the argument is set by default by the get_initial_n
function which is set up for a North Sea model.

project_methods 53

See Also

MizerParams

Examples

Not run:
Data set with different fishing gears
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
With constant fishing effort which is different for each gear
effort <- c(Industrial = 0, Pelagic = 1, Beam = 0.5, Otter = 0.5)
sim <- project(params, t_max = 20, effort = effort)
With fishing effort that varies through time for each gear
gear_names <- c("Industrial","Pelagic","Beam","Otter")
times <- seq(from = 1, to = 10, by = 1)
effort_array <- array(NA, dim = c(length(times), length(gear_names)),

dimnames = list(time = times, gear = gear_names))
effort_array[,"Industrial"] <- 0.5
effort_array[,"Pelagic"] <- seq(from = 1, to = 2, length = length(times))
effort_array[,"Beam"] <- seq(from = 1, to = 0, length = length(times))
effort_array[,"Otter"] <- seq(from = 1, to = 0.5, length = length(times))
sim <- project(params, effort = effort_array)

End(Not run)

project_methods Methods used for projecting

Description

The methods defined in the file project_methods calculate the various quantities needed to project
the size-spectra forward in time, using the model described in section 3 of the mizer vignette.

List of Methods

In this list we relate the methods in this file to the quantities named in the mizer vignette.

Method name Expression Description Section in vignette
getPhiPrey Ea.i(w) Available energy 3.2
getFeedingLevel fi(w) Feeding level 3.3
getPredRate φi(wp/w)(1− fi(w))γiw

qNi(w)dw Predation 3.7
getM2 µp.i(w) Predation mortality 3.7
getM2Background µp(w) Predation mortality on background 3.8
getFMortGear Fg,i(w) Fishing mortality by gear 8.3
getFMort µf.i(w) Total fishing mortality 8.3
getZ µi(w) Total mortality 3.7

54 retune_abundance

getEReproAndGrowth Er.i(w) Energy put into growth and reproduction 3.4
getESpawning ψi(w)Er.i(w) Energy put reproduction 3.5
getEGrowth gi(w) Energy put growth 3.4
getRDI Rp.i Egg production 3.5
getRDD Ri Recruitment 3.6

retune_abundance Retunes abundance of background species.

Description

An unexported helper function.

Usage

retune_abundance(params, retune)

Arguments

params A MizerParams object

retune A boolean vector that determines whether a species can be retuned or not.

Details

If N_i(w) is a steady state of the McKendrik-von Foerster (MVF) equation with fixed growth and
death rates, then A_i*N_i(w) is also a steady state, where A_i is an abundance multiplier. When
we add a foreground species to our model, we want to choose new abundance multipliers of the
background species so that the community abundance after adding the new species is close to the
original community abundance, stored in params@sc.

Value

An object of type MizerParams

See Also

MizerParams

setBackground 55

setBackground Designate species as background species

Description

Background species are handled differently in some plots and their abundance is automatically
adjusted in addSpecies() to keep the community close to the Sheldon spectrum.

Usage

setBackground(object, ...)

S4 method for signature 'MizerParams'
setBackground(object,
species = object@species_params$species)

S4 method for signature 'MizerSim'
setBackground(object,
species = object@params@species_params$species)

Arguments

object An object of class MizerParams or MizerSim.

... Other arguments (unused)

species Name or vector of names of the species to be designated as background species.
By default this is set to all species.

Value

An object of the same class as the object argument

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears, inter)
sim <- project(params, effort=1, t_max=20, t_save = 0.2)
sim <- setBackground(sim, species = c("Sprat", "Sandeel",

"N.pout", "Dab", "Saithe"))
plotSpectra(sim)

End(Not run)

56 set_community_model

set_community_model Sets up parameters for a community-type model

Description

This functions creates a MizerParams object so that community-type models can be easily set up
and run. A community model has several features that distinguish it from the food-web type models.
Only one ’species’ is resolved, i.e. one ’species’ is used to represent the whole community. The
resource spectrum only extends to the start of the community spectrum. Recruitment to the smallest
size in the community spectrum is constant and set by the user. As recruitment is constant, the
proportion of energy invested in reproduction (the slot psi of the returned MizerParams object) is
set to 0. Standard metabolism has been turned off (the parameter ks is set to 0). Consequently, the
growth rate is now determined solely by the assimilated food (see the package vignette for more
details).

Usage

set_community_model(max_w = 1e+06, min_w = 0.001, z0 = 0.1,
alpha = 0.2, h = 10, beta = 100, sigma = 2, q = 0.8, n = 2/3,
kappa = 1000, lambda = 2 + q - n, f0 = 0.7, r_pp = 10,
gamma = NA, knife_edge_size = 1000, knife_is_min = TRUE,
recruitment = kappa * min_w^-lambda, rec_mult = 1, ...)

Arguments

max_w The maximum size of the community. The w_inf of the species used to repre-
sent the community is set to 0.9 * this value. The default value is 1e6.

min_w The minimum size of the community. Default value is 1e-3.

z0 The background mortality of the community. Default value is 0.1.

alpha The assimilation efficiency of the community. Default value 0.2

h The maximum food intake rate. Default value is 10.

beta The preferred predator prey mass ratio. Default value is 100.

sigma The width of the prey preference. Default value is 2.0.

q The search volume exponent. Default value is 0.8.

n The scaling of the intake. Default value is 2/3.

kappa The carrying capacity of the background spectrum. Default value is 1000.

lambda The exponent of the background spectrum. Default value is 2 + q - n.

f0 The average feeding level of individuals who feed mainly on the resource. This
value is used to calculate the search rate parameter gamma (see the package vi-
gnette). Default value is 0.7.

r_pp Growth rate of the primary productivity. Default value is 10.

gamma Volumetric search rate. Estimated using h, f0 and kappa if not supplied.

set_community_model 57

knife_edge_size

The size at the edge of the knife-selectivity function. Default value is 1000.

knife_is_min Is the knife-edge selectivity function selecting above (TRUE) or below (FALSE)
the edge. Default is TRUE.

recruitment The constant recruitment in the smallest size class of the community spectrum.
This should be set so that the community spectrum continues the background
spectrum. Default value = kappa * min_w^-lambda.

rec_mult Additional multiplier for the constant recruitment. Default value is 1.

... Other arguments to pass to the MizerParams constructor.

Details

The function has many arguments, all of which have default values. The main arguments that the
users should be concerned with are z0, recruitment, alpha and f0 as these determine the average
growth rate of the community.

Fishing selectivity is modelled as a knife-edge function with one parameter, knife_edge_size,
which determines the size at which species are selected.

The resulting MizerParams object can be projected forward using project() like any other MizerParams
object. When projecting the community model it may be necessary to reduce dt to 0.1 to avoid any
instabilities with the solver. You can check this by plotting the biomass or abundance through time
after the projection.

Value

An object of type MizerParams

References

K. H. Andersen,J. E. Beyer and P. Lundberg, 2009, Trophic and individual efficiencies of size-
structured communities, Proceedings of the Royal Society, 276, 109-114

Examples

Not run:
params <- set_community_model(f0=0.7, z0=0.2, recruitment=3e7)
sim <- project(params, effort = 0, t_max = 100, dt=0.1)
plotBiomass(sim)
plotSpectra(sim)

End(Not run)

58 set_scaling_model

set_scaling_model Sets up parameters for a scale free trait-based model

Description

This functions creates a MizerParams object so that scale free trait-based-type models can be easily
set up and run. The scale free trait-based size spectrum model can be derived as a simplification of
the general size-based model used in mizer. All the species-specific parameters are the same for
all species, except for the egg size, maturity size and asymptotic size. These differ over the species,
but the ratio of egg size to maturity size and the ratio of egg size to asymptotic size are the same
for each species. The asymptotic sizes of the species are spread evenly on a logarithmic scale. See
the mizer vignette and the Details section below for more details and examples of the scale free
trait-based model.

Usage

set_scaling_model(no_sp = 11, min_w_inf = 10, max_w_inf = 10^3,
min_egg = 10^(-4), min_w_mat = 10^(0.4),
no_w = log10(max_w_inf/min_egg) * 100 + 1, min_w_pp = min_egg/(beta *
exp(5 * sigma)), n = 2/3, q = 3/4, lambda = 2 + q - n,
r_pp = 0.1, kappa = 0.005, alpha = 0.4, ks = 4, h = 30,
beta = 100, sigma = 1.3, f0 = 0.6, knife_edge_size = 100,
gear_names = "knife_edge_gear", rfac = Inf, ...)

Arguments

no_sp The number of species in the model. The default value is 11.

min_w_inf The asymptotic size of the smallest species in the community. Default value is
10.

max_w_inf The asymptotic size of the largest species in the community. Default value is
1000.

min_egg The size of the the egg of the smallest species. Default value is 10^(-4).

min_w_mat The maturity size of the smallest species. Default value is 10^(0.4),

no_w The number of size bins in the community spectrum. Default value is such that
there are 100 bins for each factor of 10 in weight.

min_w_pp The smallest size of the background spectrum. Default value is min_egg/(beta*exp(5*sigma))
so that it covers the entire range of the feeding kernel of even the smallest fish
larva.

n Scaling of the intake. Default value is 2/3.

q Exponent of the search volume. Default value is 3/4 unless lambda is provided,
in which case this argument is ignored and q = lambda - 2 + n.

lambda Exponent of the abundance power law. If supplied, this overrules the q argu-
ment. Otherwise the default value is 2+q-n.

r_pp Growth rate of the primary productivity. Default value is 0.1.

set_scaling_model 59

kappa Coefficient in abundance power law. Default value is 0.005.

alpha The assimilation efficiency of the community. The default value is 0.4.

ks Standard metabolism coefficient. Default value is 4.

h Maximum food intake rate. Default value is 30.

beta Preferred predator prey mass ratio. Default value is 100.

sigma Width of prey size preference. Default value is 1.3.

f0 Expected average feeding level. Used to set gamma, the coefficient in the search
rate. The default value is 0.6.

knife_edge_size

The minimum size at which the gear or gears select species. Must be of length
1 or no_sp. Default value is 100.

gear_names The names of the fishing gears. A character vector, the same length as the
knife_edge_size parameter. Default value is "knife_edge_gear".

rfac The factor such that Rmax = rfac * R, where Rmax is the maximum recruitment
allowed and R is the steady-state recruitment. Thus the larger rfac the less the
impact of the non-linear stock-recruitment curve. The default is Inf.

... Other arguments to pass to the MizerParams constructor.

Details

The scale free trait-based model is similar to the standard trait-based model, with three main differ-
ences:

1. We have an exact equation for a steady state of this system which is often stable, even when
we include no extra stabilization effects like density dependence or stock recruitment relation-
ships.

2. The egg size is proportional to the maturity size for each species

3. The parameters are chosen so that R_0 (the expected number of offspring produced by an
individual over a lifetime) is close to 1 for each species.

The function has many arguments, all of which have default values. Of particular interest to the
user are the number of species in the model and the minimum and maximum asymptotic sizes.

The characteristic weights of the different species are defined by min_egg, min_w_mat, min_w_inf,
max_w_inf and no_sp, in the sense that the egg weights of the no_sp species are logarithmically
evenly spaced, ranging from min_w=min_egg to max_w=max_w_inf. The maturity weights of the
species can be obtained by multiplying the egg_weights by min_w_mat/min_egg. The asymptotic
weights of the species can be obtained by multiplying the egg weights by min_w_inf/min_egg.

Although the scale free trait based model’s default steady state is often stable without imposing a
stock recruitment relationship, the function can set a Beverton-Holt type stock recruitment relation-
ship that imposes a maximal reproduction rate that is a multiple of the recruitment rate at steady
state. That multiple is set by the argument rfac.

In addition to setting up the parameters, this function also evaluates the analytic expression for a
steady state of the scale free trait-based model and sets it as the initial condition.

The search rate coefficient gamma is calculated using the expected feeding level, f0.

60 set_trait_model

The option of including fishing is given, but the steady state may lose its natural stability if too
much fishing is included. In such a case the user may wish to include stabilizing effects (like
Rmax and chi) to ensure the steady state is stable. Fishing selectivity is modelled as a knife-edge
function with one parameter, knife_edge_size, which is the size at which species are selected.
Each species can either be fished by the same gear (knife_edge_size has a length of 1) or by a
different gear (the length of knife_edge_size has the same length as the number of species and
the order of selectivity size is that of the asymptotic size).

The resulting MizerParams object can be projected forward using project() like any other MizerParams
object. When projecting the model it may be necessary to reduce dt to 0.1 to avoid any instabilities
with the solver. You can check this by plotting the biomass or abundance through time after the
projection.

Value

An object of type MizerParams

See Also

MizerParams

Examples

Not run:
s_params <- set_scaling_model()
sim <- project(s_params, t_max=5, effort = 0)
plotSpectra(sim)

End(Not run)

set_trait_model Sets up parameters for a trait-based model

Description

This functions creates a MizerParams object so that trait-based-type models can be easily set up and
run. The trait-based size spectrum model can be derived as a simplification of the general size-based
model used in mizer. All the species-specific parameters are the same, except for the asymptotic
size, which is considered the most important trait characterizing a species. Other parameters are
related to the asymptotic size. For example, the size at maturity is given by w_inf * eta, where eta
is the same for all species. For the trait-based model the number of species is not important. For
applications of the trait-based model see Andersen & Pedersen (2010). See the mizer vignette for
more details and examples of the trait-based model.

set_trait_model 61

Usage

set_trait_model(no_sp = 10, min_w_inf = 10, max_w_inf = 1e+05,
no_w = 100, min_w = 0.001, max_w = max_w_inf * 1.1,
min_w_pp = 1e-10, no_w_pp = NA, w_pp_cutoff = 1, k0 = 50,
n = 2/3, p = 0.75, q = 0.9, eta = 0.25, r_pp = 4,
kappa = 0.005, lambda = 2 + q - n, alpha = 0.6, ks = 4,
z0pre = 0.6, h = 30, beta = 100, sigma = 1.3, f0 = 0.5,
gamma = NA, knife_edge_size = 1000, gear_names = "knife_edge_gear",
...)

Arguments

no_sp The number of species in the model. The default value is 10. The more species,
the longer takes to run.

min_w_inf The asymptotic size of the smallest species in the community.

max_w_inf The asymptotic size of the largest species in the community.

no_w The number of size bins in the community spectrum.

min_w The smallest size of the community spectrum.

max_w The largest size of the community spectrum. Default value is the largest w_inf
in the community x 1.1.

min_w_pp The smallest size of the background spectrum.

no_w_pp Obsolete argument that is no longer used because the number of plankton size
bins is determined because all size bins have to be logarithmically equally spaced.

w_pp_cutoff The cut off size of the background spectrum. Default value is 1.

k0 Multiplier for the maximum recruitment. Default value is 50.

n Scaling of the intake. Default value is 2/3.

p Scaling of the standard metabolism. Default value is 0.75.

q Exponent of the search volume. Default value is 0.9.

eta Factor to calculate w_mat from asymptotic size.

r_pp Growth rate of the primary productivity. Default value is 4.

kappa Coefficient in abundance power law. Default value is 0.005.

lambda Exponent of the abundance power law. Default value is (2+q-n).

alpha The assimilation efficiency of the community. The default value is 0.6

ks Standard metabolism coefficient. Default value is 4.

z0pre The coefficient of the background mortality of the community. z0 = z0pre *
w_inf ^ (n-1). The default value is 0.6.

h Maximum food intake rate. Default value is 30.

beta Preferred predator prey mass ratio. Default value is 100.

sigma Width of prey size preference. Default value is 1.3.

f0 Expected average feeding level. Used to set gamma, the factor for the search
volume. The default value is 0.5.

62 set_trait_model

gamma Volumetric search rate. Estimated using h, f0 and kappa if not supplied.
knife_edge_size

The minimum size at which the gear or gears select species. Must be of length
1 or no_sp.

gear_names The names of the fishing gears. A character vector, the same length as the num-
ber of species. Default is 1 - no_sp.

... Other arguments to pass to the MizerParams constructor.

Details

The function has many arguments, all of which have default values. Of particular interest to the
user are the number of species in the model and the minimum and maximum asymptotic sizes. The
asymptotic sizes of the species are spread evenly on a logarithmic scale within this range.

The stock recruitment relationship is the default Beverton-Holt style. The maximum recruitment is
calculated using equilibrium theory (see Andersen & Pedersen, 2010) and a multiplier, k0. Users
should adjust k0 to get the spectra they want.

The factor for the search volume, gamma, is calculated using the expected feeding level, f0.

Fishing selectivity is modelled as a knife-edge function with one parameter, knife_edge_size,
which is the size at which species are selected. Each species can either be fished by the same gear
(knife_edge_size has a length of 1) or by a different gear (the length of knife_edge_size has
the same length as the number of species and the order of selectivity size is that of the asymptotic
size).

The resulting MizerParams object can be projected forward using project() like any other MizerParams
object. When projecting the community model it may be necessary to reduce dt to 0.1 to avoid any
instabilities with the solver. You can check this by plotting the biomass or abundance through time
after the projection.

Value

An object of type MizerParams

References

K. H. Andersen and M. Pedersen, 2010, Damped trophic cascades driven by fishing in model marine
ecosystems. Proceedings of the Royal Society V, Biological Sciences, 1682, 795-802.

See Also

MizerParams

Examples

Not run:
trait_params <- set_trait_model(no_sp = 15)
init_pop <- get_initial_n(trait_params, n0_mult = 0.001)
sim <- project(trait_params, effort = 0, t_max = 50, dt=0.2,

initial_n = init_pop, t_save = 1)
plot(sim)

sigmoid_length 63

Set up industrial fishery that only fishes on species with w_inf <= 500 g
And where the selectivity of the industrial fishery = w_inf * 0.05
no_sp <- 10
min_w_inf <- 10
max_w_inf <- 1e5
w_inf <- 10^seq(from=log10(min_w_inf), to = log10(max_w_inf), length=no_sp)
knife_edges <- w_inf * 0.05
industrial_gears <- w_inf <= 500
other_gears <- w_inf > 500
gear_names <- rep("Industrial", no_sp)
gear_names[other_gears] <- "Other"
params_gear <- set_trait_model(no_sp = no_sp, min_w_inf = min_w_inf,

max_w_inf = max_w_inf, knife_edge_size = knife_edges,
gear_names = gear_names)

Only turn on Industrial fishery. Set effort of the Other gear to 0
sim <- project(params_gear, t_max = 20, effort = c(Industrial = 1, Other = 0))

End(Not run)

sigmoid_length Length based sigmoid selectivity function

Description

A sigmoid shaped selectivity function. Based on two parameters l25 and l50 which determine
the length at which 25% and 50% of the stock is selected respectively. As the size-based model
is weight based, and this selectivity function is length based, it is also necessary to supply the
length-weight parameters a and b.

Usage

sigmoid_length(w, l25, l50, a, b)

Arguments

w the size of the individual.

l25 the length which gives a selectivity of 25%.

l50 the length which gives a selectivity of 50%.

a the multiplier of the length-weight function.

b the exponent of the length-weight function.

64 summary,MizerParams-method

steady Tune params object to be at steady state

Description

Tune params object to be at steady state

Usage

steady(params, rfac = Inf, effort = 0)

Arguments

params A MizerParams object

rfac A number that determines the strength of the non-linearity in the Beverton-Holt
stock-recruitment relationship. The maximal recruitment will be set to rfac times
the normal steady-state recruitment. Default value is 10.

effort The fishing effort. Default is 0

summary,MizerParams-method

Summarize MizerParams object

Description

Outputs a general summary of the structure and content of the object

Usage

S4 method for signature 'MizerParams'
summary(object, ...)

Arguments

object A MizerParams object.

... Other arguments (currently not used).

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears,inter)
summary(params)

End(Not run)

wrapper_functions 65

summary,MizerSim-method

Summarize MizerSim object

Description

Outputs a general summary of the structure and content of the object

Usage

S4 method for signature 'MizerSim'
summary(object, ...)

Arguments

object A MizerSim object.

... Other arguments (currently not used).

Examples

Not run:
data(NS_species_params_gears)
data(inter)
params <- MizerParams(NS_species_params_gears,inter)
sim <- project(params, effort=1, t_max=5)
summary(sim)

End(Not run)

wrapper_functions Functions used for setting up models

Description

The functions defined in the file wrapper functions set up MizerParams objects for various kinds of
size-spectrum models.

List of Functions

In this list we relate the functions in this file to the sections in the mizer vignette where the corre-
sponding model is described.

Function name Description Section in vignette
set_community_model Community model 5
set_trait_model Trait-based model 6
set_scaling_model Scale-invariant Trait-based model 7

66 wrapper_functions

The file also contains a helper function retune_abundance.

Index

addSpecies, 3
addSpecies,MizerParams-method

(addSpecies), 3

display_frames, 4, 6, 28

get_initial_n, 32
getBiomass, 5, 6, 42
getBiomass,MizerSim-method

(getBiomass), 5
getBiomassFrame, 6
getBiomassFrame,MizerSim-method

(getBiomassFrame), 6
getCommunitySlope, 7
getCommunitySlope,MizerSim-method

(getCommunitySlope), 7
getEGrowth, 8, 54
getEGrowth,MizerParams,matrix,numeric,matrix,matrix-method

(getEGrowth), 8
getEGrowth,MizerParams,matrix,numeric,missing,missing-method

(getEGrowth), 8
getEReproAndGrowth, 8, 9, 11, 54
getEReproAndGrowth,MizerParams,matrix,numeric,matrix-method

(getEReproAndGrowth), 9
getEReproAndGrowth,MizerParams,matrix,numeric,missing-method

(getEReproAndGrowth), 9
getESpawning, 8, 10, 27, 54
getESpawning,MizerParams,matrix,numeric,matrix-method

(getESpawning), 10
getESpawning,MizerParams,matrix,numeric,missing-method

(getESpawning), 10
getFeedingLevel, 10, 11, 23, 44, 53
getFeedingLevel,MizerParams,matrix,numeric,matrix-method

(getFeedingLevel), 11
getFeedingLevel,MizerParams,matrix,numeric,missing-method

(getFeedingLevel), 11
getFeedingLevel,MizerSim,missing,missing,missing-method

(getFeedingLevel), 11
getFMort, 13, 31, 45, 53

getFMort,MizerParams,matrix-method
(getFMort), 13

getFMort,MizerParams,numeric-method
(getFMort), 13

getFMort,MizerSim,missing-method
(getFMort), 13

getFMortGear, 14, 53
getFMortGear,MizerParams,matrix-method

(getFMortGear), 14
getFMortGear,MizerParams,numeric-method

(getFMortGear), 14
getFMortGear,MizerSim,missing-method

(getFMortGear), 14
getM2, 16, 18, 23, 31, 47, 53
getM2,MizerParams,matrix,numeric,missing-method

(getM2), 16
getM2,MizerParams,missing,missing,array-method

(getM2), 16
getM2,MizerSim,missing,missing,missing-method

(getM2), 16
getM2Background, 18, 53
getM2Background,MizerParams,matrix,numeric,array-method

(getM2Background), 18
getM2Background,MizerParams,matrix,numeric,missing-method

(getM2Background), 18
getMeanMaxWeight, 19
getMeanMaxWeight,MizerSim-method

(getMeanMaxWeight), 19
getMeanWeight, 20
getMeanWeight,MizerSim-method

(getMeanWeight), 20
getN, 21
getN,MizerSim-method (getN), 21
getPhiPrey, 12, 22, 53
getPhiPrey,MizerParams,matrix,numeric-method

(getPhiPrey), 22
getPredRate, 17, 23, 53
getPredRate,MizerParams,matrix,numeric,matrix-method

(getPredRate), 23

67

68 INDEX

getPredRate,MizerParams,matrix,numeric,missing-method
(getPredRate), 23

getProportionOfLargeFish, 24
getProportionOfLargeFish,MizerSim-method

(getProportionOfLargeFish), 24
getRDD, 25, 54
getRDD,MizerParams,matrix,numeric,matrix-method

(getRDD), 25
getRDD,MizerParams,matrix,numeric,missing-method

(getRDD), 25
getRDI, 26, 26, 54
getRDI,MizerParams,matrix,numeric,matrix-method

(getRDI), 26
getRDI,MizerParams,matrix,numeric,missing-method

(getRDI), 26
getSSB, 27, 29
getSSB,MizerSim-method (getSSB), 27
getSSBFrame, 28
getSSBFrame,MizerSim-method

(getSSBFrame), 28
getYield, 29, 30, 49
getYield,MizerSim-method (getYield), 29
getYieldGear, 29, 30, 50, 51
getYieldGear,MizerSim-method

(getYieldGear), 30
getZ, 30, 53
getZ,MizerParams,matrix,numeric,numeric,matrix-method

(getZ), 30
getZ,MizerParams,matrix,numeric,numeric,missing-method

(getZ), 30

inter, 32

knife_edge, 33

log_breaks, 33

mizer, 34
mizer, (mizer), 34
mizer-package (mizer), 34
MizerParams, 3, 8, 22, 23, 32, 34, 34, 36,

38–40, 45, 48, 51–57, 60, 62, 64
MizerParams,data.frame,matrix-method

(MizerParams), 34
MizerParams,data.frame,missing-method

(MizerParams), 34
MizerParams,numeric,missing-method

(MizerParams), 34
MizerParams-class, 36

MizerSim, 6, 28, 36, 38, 38, 39, 41–46, 48–51,
55

MizerSim,MizerParams-method (MizerSim),
38

MizerSim-class, 39

NS_species_params, 40
NS_species_params_gears, 40

plot,MizerSim,missing-method, 41
plotBiomass, 41, 42
plotBiomass,MizerSim-method

(plotBiomass), 42
plotFeedingLevel, 41, 43
plotFeedingLevel,MizerSim-method

(plotFeedingLevel), 43
plotFMort, 41, 44
plotFMort,MizerSim-method (plotFMort),

44
plotGrowthCurves, 45
plotGrowthCurves,MizerParams-method

(plotGrowthCurves), 45
plotGrowthCurves,MizerSim-method

(plotGrowthCurves), 45
plotM2, 41, 46
plotM2,MizerSim-method (plotM2), 46
plotSpectra, 41, 47
plotSpectra,MizerParams-method

(plotSpectra), 47
plotSpectra,MizerSim-method

(plotSpectra), 47
plotYield, 49
plotYield,MizerSim,missing-method

(plotYield), 49
plotYield,MizerSim,MizerSim-method

(plotYield), 49
plotYieldGear, 50
plotYieldGear,MizerSim-method

(plotYieldGear), 50
project, 8–11, 16–18, 22, 23, 27, 36, 38, 39,

51
project,MizerParams,array-method

(project), 51
project,MizerParams,missing-method

(project), 51
project,MizerParams,numeric-method

(project), 51
project_methods, 53

INDEX 69

retune_abundance, 54, 66

set_community_model, 56, 65
set_scaling_model, 58, 65
set_trait_model, 60, 65
setBackground, 55
setBackground,MizerParams-method

(setBackground), 55
setBackground,MizerSim-method

(setBackground), 55
sigmoid_length, 63
steady, 64
summary,MizerParams-method, 64
summary,MizerSim-method, 65

wrapper_functions, 65

	addSpecies
	display_frames
	getBiomass
	getBiomassFrame
	getCommunitySlope
	getEGrowth
	getEReproAndGrowth
	getESpawning
	getFeedingLevel
	getFMort
	getFMortGear
	getM2
	getM2Background
	getMeanMaxWeight
	getMeanWeight
	getN
	getPhiPrey
	getPredRate
	getProportionOfLargeFish
	getRDD
	getRDI
	getSSB
	getSSBFrame
	getYield
	getYieldGear
	getZ
	get_initial_n
	inter
	knife_edge
	log_breaks
	mizer
	MizerParams
	MizerParams-class
	MizerSim
	MizerSim-class
	NS_species_params
	NS_species_params_gears
	plot,MizerSim,missing-method
	plotBiomass
	plotFeedingLevel
	plotFMort
	plotGrowthCurves
	plotM2
	plotSpectra
	plotYield
	plotYieldGear
	project
	project_methods
	retune_abundance
	setBackground
	set_community_model
	set_scaling_model
	set_trait_model
	sigmoid_length
	steady
	summary,MizerParams-method
	summary,MizerSim-method
	wrapper_functions
	Index

