Package ‘mlr’

February 22, 2021

Title Machine Learning in R

Version 2.19.0

Description Interface to a large number of classification and regression techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Generic resampling, including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.

License BSD_2_clause + file LICENSE

BugReports https://github.com/mlr-org/mlr/issues

Depends ParamHelpers (>= 1.10), R (>= 3.0.2)

Imports backports (>= 1.1.0), BBmisc (>= 1.11), checkmate (>= 1.8.2), data.table (>= 1.12.4), ggplot2, methods, parallelMap (>= 1.3), stats, stringi, survival, utils, XML

Suggests ada, adabag, bartMachine, batchtools, bit64, brnn, bst, C50, care, caret (>= 6.0-57), class, clue, cluster, ClusterR, clusterSim (>= 0.44-5), cmaes, cowplot, crs, Cubist, deepnet, DiceKriging, DiscrMiner, e1071, earth, elasticnet, emoa, evtree, extraTrees, fda.usc, FDbest, FNN, forecast (>= 8.3), fpc, frbs, FSelector, FSelectorRcpp (>= 0.3.5), gbm, GenSA, ggpdb, glmnet, GPfit, h2o (>= 3.6.0.8), Hmisc, irace (>= 2.0), kernlab, kknn, klaR, knitr, laGP, LiblineaR, lintr (>= 1.0.0.9001), MASS, mboost, mco, mda, memoise, mlbench, mlr, mlrMBO, mmpf, modeltools, mRMRe, neuralnet, nnet, nodeHarvest (>= 0.7-3), numDeriv, pamr, pander, party, pec, penalized (>= 0.9-47), pls, PMCMRplus, praznik (>= 5.0.0), randomForest, randomForestSRC (>= 2.7.0), ranger (>= 0.8.0), rappdirs,
refund, rex, rFerns, rgenoud, rknn, rmarkdown, Rmpi, ROCR, rotationForest, rpart, RRF, rrlida, rsm, RS NNS, rucrdtw, RWeka, sda, sf, smoof, snow, sparseLDA, stepPlr, survAUC, svglite, SwarmSVM, testthat, tgp, TH.data, tidyr, tfeatures, vdiffr, wavelets, xgboost (>= 0.7)

VignetteBuilder knitr

ByteCompile yes

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first base_generateHyperParsEffect, classif_bartMachine, tune_tuneIrace, featsel_filters, learners_all*, regr_h2ogbm

Encoding UTF-8

LazyData yes

RoxygenNote 7.1.1

SystemRequirements gdal (optional), geos (optional), proj (optional), udunits (optional), gsl (optional), gmp (optional), glu (optional), jags (optional), mpfr (optional), openmpi (optional)

NeedsCompilation yes

Author Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>), Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>), Lars Kotthoff [aut], Patrick Schratz [aut, cre] (<https://orcid.org/0000-0003-0748-6624>), Julia Schiffner [aut], Jakob Richter [aut], Zachary Jones [aut], Giuseppe Casalicchio [aut] (<https://orcid.org/0000-0001-5324-5966>), Mason Gallo [aut], Jakob Bossek [ctb] (<https://orcid.org/0000-0002-4121-4668>), Erich Studerus [ctb] (<https://orcid.org/0000-0003-4233-0182>), Leonard Judt [ctb], Tobias Kuehn [ctb], Pascal Kerschke [ctb] (<https://orcid.org/0000-0003-2862-1418>), Florian Fendt [ctb], Philipp Probst [ctb] (<https://orcid.org/0000-0001-8402-6790>), Xudong Sun [ctb] (<https://orcid.org/0000-0003-3269-2307>), Janek Thomas [ctb] (<https://orcid.org/0000-0003-4511-6245>), Bruno Vieira [ctb], Laura Beggel [ctb] (<https://orcid.org/0000-0002-8872-8535>), Quay Au [ctb] (<https://orcid.org/0000-0002-5252-8902>), Martin Binder [ctb], Florian Pfisterer [ctb], Stefan Coors [ctb], Steve Bronder [ctb],
Alexander Engelhardt [ctb],
Christoph Molnar [ctb],
Annette Spooner [ctb]

Maintainer Patrick Schratz <patrick.schratz@gmail.com>
Repository CRAN
Date/Publication 2021-02-22 14:50:09 UTC

R topics documented:

- mlr-package ... 9
- addRRMeasure ... 10
- Aggregation ... 11
- aggregations ... 11
- agri.task .. 12
- analyzeFeatSelResult ... 13
- asROCRPrediction .. 13
- batchmark .. 14
- bc.task .. 16
- benchmark .. 16
- BenchmarkResult .. 18
- bh.task .. 18
- cache_helpers .. 19
- calculateConfusionMatrix 19
- calculateROCMeasures .. 21
- capLargeValues .. 22
- configureMlr ... 24
- ConfusionMatrix ... 25
- convertBMRToRankMatrix .. 26
- convertMLBenchObjToTask 27
- costiris.task ... 28
- createDummyFeatures ... 28
- createSpatialResamplingPlots 29
- crossover .. 32
- downsample ... 33
- dropFeatures ... 33
- estimateRelativeOverfitting 34
- estimateResidualVariance 35
- extractFDABsignal ... 36
- extractFDADTWKernel .. 37
- extractFDAFeatures ... 38
- extractFDAFourier .. 39
- extractFDAPCA ... 40
- extractFDAMultiResFeatures 40
- extractFDAFeatures ... 41
- extractFDATsfeatures .. 42
- FailureModel ... 43
-FeatSelControl .. 44
R topics documented:

FeatSelResult ... 48
filterFeatures .. 48
friedmanPostHocTestBMR 50
friedmanTestBMR ... 51
fuelsubset.task .. 52
generateCalibrationData 53
generateCritDifferencesData 54
generateFeatureImportanceData 56
generateFilterValuesData 58
generateHyperParsEffectData 60
generateLearningCurveData 62
generatePartialDependenceData 63
generateThreshVsPerfData 66
getBMRAggrPerformances 67
getBMRFeatSelResults ... 69
getBMRFilteredFeatures 70
getBMRLearnerIds .. 71
getBMR Learners ... 72
getBMR LearnerShortNames 72
getBMRMeasureIds ... 73
getBMRMeasures .. 74
getBMRModels .. 74
getBMRPerformances .. 75
getBMRPredictions .. 76
getBMRTaskDescriptions 78
getBMRTaskDescs ... 78
getBMRTaskIds .. 79
getBMRTuneResults .. 80
getCaretParamSet ... 81
classWeightParam .. 82
getConfMatrix .. 83
getDefaultMeasure ... 84
getFailureModelDump ... 84
getFailureModelMsg .. 85
getFeatSelResult ... 85
getFeatureImportance .. 86
getFilteredFeatures .. 87
getFunctionalFeatures .. 88
getHomogeneousEnsembleModels 89
getHyperPars ... 89
getLearnerId ... 90
getLearnerModel .. 91
getLearnerNote .. 91
getLearnerPackages .. 92
getLearnerParamSet .. 92
getLearnerParVals ... 93
getLearnerPredictType 94
getLearnerShortName ... 94
R topics documented:

- `getLearnerType`.......................... 95
- `getMlrOptions`.......................... 96
- `getMultilabelBinaryPerformances`..... 96
- `getNestedTuneResultsOptPathDf`....... 97
- `getNestedTuneResultsX`................ 98
- `getOOBPreds`............................ 98
- `getParamSet`......................... 99
- `getPredictionDump`................... 100
- `getPredictionProbabilities`......... 100
- `getPredictionResponse`............... 101
- `getPredictionTaskDesc`............. 102
- `getProbabilities`.................... 103
- `getResamplingIndices`............... 103
- `getRRDump`.................................. 104
- `getRRPredictionList`................ 105
- `getRRPredictions`................... 105
- `getRRTaskDesc`....................... 106
- `getRRTaskDescription`.............. 107
- `getStackedBaseLearnerPredictions`.. 107
- `getTaskClassLevels`................ 108
- `getTaskCosts`......................... 108
- `getTaskData`........................... 109
- `getTaskDesc`............................ 110
- `getTaskDescription`.................. 111
- `getTaskFeatureNames`............... 111
- `getTaskFormula`...................... 112
- `getTaskId`.............................. 113
- `getTaskNFeats`....................... 113
- `getTaskSize`............................ 114
- `getTaskTargetNames`............... 114
- `getTaskTargets`...................... 115
- `getTaskType`............................ 116
- `getTuneResult`....................... 116
- `getTuneResultOptPath`............. 117
- `gunpoint.task`....................... 117
- `hasFunctionalFeatures`............ 118
- `hasProperties`....................... 118
- `helpLearner`............................ 119
- `helpLearnerParam`................... 119
- `imputations`............................ 120
- `impute`................................ 122
- `iris.task`............................... 124
- `isFailureModel`..................... 124
- `joinClassLevels`..................... 124
- `learnerArgsToControl`............. 125
- `LearnerProperties`.................. 125
- `learners`............................... 126
- `listFilterEnsembleMethods`......... 127
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>listFilterMethods</td>
<td>128</td>
</tr>
<tr>
<td>listLearnerProperties</td>
<td>129</td>
</tr>
<tr>
<td>listLearners</td>
<td>129</td>
</tr>
<tr>
<td>listMeasureProperties</td>
<td>131</td>
</tr>
<tr>
<td>listMeasures</td>
<td>132</td>
</tr>
<tr>
<td>listTaskTypes</td>
<td>132</td>
</tr>
<tr>
<td>lung.task</td>
<td>133</td>
</tr>
<tr>
<td>makeAggregation</td>
<td>133</td>
</tr>
<tr>
<td>makeBaggingWrapper</td>
<td>134</td>
</tr>
<tr>
<td>makeClassificationViaRegressionWrapper</td>
<td>135</td>
</tr>
<tr>
<td>makeClassifTask</td>
<td>136</td>
</tr>
<tr>
<td>makeClusterTask</td>
<td>138</td>
</tr>
<tr>
<td>makeConstantClassWrapper</td>
<td>139</td>
</tr>
<tr>
<td>makeCostMeasure</td>
<td>140</td>
</tr>
<tr>
<td>makeCostSensClassifWrapper</td>
<td>141</td>
</tr>
<tr>
<td>makeCostSensRegrWrapper</td>
<td>142</td>
</tr>
<tr>
<td>makeCostSensTask</td>
<td>143</td>
</tr>
<tr>
<td>makeCostSensWeightedPairsWrapper</td>
<td>144</td>
</tr>
<tr>
<td>makeCustomResampledMeasure</td>
<td>145</td>
</tr>
<tr>
<td>makeDownsampleWrapper</td>
<td>146</td>
</tr>
<tr>
<td>makeDummyFeaturesWrapper</td>
<td>147</td>
</tr>
<tr>
<td>makeExtractFDAFeatMethod</td>
<td>148</td>
</tr>
<tr>
<td>makeExtractFDAFeatsWrapper</td>
<td>149</td>
</tr>
<tr>
<td>makeFeatSelWrapper</td>
<td>150</td>
</tr>
<tr>
<td>makeFilter</td>
<td>151</td>
</tr>
<tr>
<td>makeFilterEnsemble</td>
<td>152</td>
</tr>
<tr>
<td>makeFilterWrapper</td>
<td>153</td>
</tr>
<tr>
<td>makeFixedHoldoutInstance</td>
<td>156</td>
</tr>
<tr>
<td>makeFunctionalData</td>
<td>157</td>
</tr>
<tr>
<td>makeImputeMethod</td>
<td>158</td>
</tr>
<tr>
<td>makeImputeWrapper</td>
<td>158</td>
</tr>
<tr>
<td>makeLearner</td>
<td>160</td>
</tr>
<tr>
<td>makeLearners</td>
<td>163</td>
</tr>
<tr>
<td>makeMeasure</td>
<td>164</td>
</tr>
<tr>
<td>makeModelMultiplexer</td>
<td>166</td>
</tr>
<tr>
<td>makeModelMultiplexerParamSet</td>
<td>167</td>
</tr>
<tr>
<td>makeMulticlassWrapper</td>
<td>169</td>
</tr>
<tr>
<td>makeMultilabelBinaryRelevanceWrapper</td>
<td>170</td>
</tr>
<tr>
<td>makeMultilabelClassifierChainsWrapper</td>
<td>171</td>
</tr>
<tr>
<td>makeMultilabelDBRWrapper</td>
<td>172</td>
</tr>
<tr>
<td>makeMultilabelNestedStackingWrapper</td>
<td>174</td>
</tr>
<tr>
<td>makeMultilabelStackingWrapper</td>
<td>175</td>
</tr>
<tr>
<td>makeMultilabelTask</td>
<td>176</td>
</tr>
<tr>
<td>makeOverBaggingWrapper</td>
<td>178</td>
</tr>
<tr>
<td>makePreprocWrapper</td>
<td>179</td>
</tr>
<tr>
<td>makePreprocWrapperCaret</td>
<td>181</td>
</tr>
<tr>
<td>makeRegrTask</td>
<td>182</td>
</tr>
<tr>
<td>makeRemoveConstantFeaturesWrapper</td>
<td>183</td>
</tr>
</tbody>
</table>
R topics documented:

makeResampleDesc .. 184
makeResampleInstance .. 187
makeRLearner.classif.fdauc.glm 188
makeRLearner.classif.fdauc.kernel 188
makeRLearner.classif.fdauc.np 189
makeSMOTETWrapper .. 189
makeStackedLearner .. 190
makeSurvTask .. 193
makeTuneControlCMAES .. 194
makeTuneControlDesign .. 196
makeTuneControlGenSA .. 197
makeTuneControlGrid .. 199
makeTuneControlIrace ... 201
makeTuneControlMBO ... 203
makeTuneControlRandom .. 205
makeTuneWrapper .. 206
makeUndersampleWrapper ... 208
makeWeightedClassesWrapper .. 209
makeWrappedModel ... 211
MeasureProperties .. 212
measures ... 213
mergeBenchmarkResults .. 216
mergeSmallFactorLevels .. 217
mlrFamilies ... 218
mtcars.task ... 219
normalizeFeatures .. 220
oversample ... 221
parallelization .. 222
performance .. 223
phoneme.task ... 224
pid.task ... 224
plotBMRBoxplots .. 225
plotBMRRanksAsBarChart .. 226
plotBMRSummary .. 227
plotCalibration .. 229
plotCritDifferences ... 230
plotFilterValues ... 231
plotHyperParsEffect .. 232
plotLearnerPrediction .. 235
plotLearningCurve .. 237
plotPartialDependence ... 238
plotResiduals ... 239
plotROCCurves .. 240
plotThreshVsPerf ... 241
plotTuneMultiCritResult .. 243
predictWrappedModel ... 244
predictLearner ... 245
reduceBatchmarkResults ... 246
reextractFDAFeatures .. 247
reimpute .. 248
removeConstantFeatures ... 249
removeHyperPars .. 250
resample ... 251
ResamplePrediction .. 255
ResampleResult ... 256
RLearner ... 257
selectFeatures ... 259
setAggregation ... 261
setHyperPars ... 262
setHyperPars2 ... 263
setId ... 263
setLearnerId ... 264
setMeasurePars ... 265
setPredictThreshold ... 265
setPredictType ... 266
setThreshold ... 267
simplifyMeasureNames ... 268
smote .. 269
sonar.task .. 270
spam.task ... 270
spatial.task .. 270
subsetTask .. 271
summarizeColumns ... 272
summarizeLevels .. 273
Task .. 273
TaskDesc .. 275
train ... 276
trainLearner ... 277
TuneControl ... 278
TuneMultiCritControl ... 279
TuneMultiCritResult ... 283
tuneParams ... 283
tuneParamsMultiCrit ... 286
TuneResult .. 287
tuneThreshold ... 288
wpbc.task .. 289
yeast.task .. 289

Index .. 290
mlr-package

mlr-package

mlr: Machine Learning in R

Description

Interface to a large number of classification and regression techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Generic resampling, including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.

Author(s)

Maintainer: Patrick Schratz <patrick.schratz@gmail.com> (ORCID)
Authors:

- Bernd Bischl <bernd_bischl@gmx.net> (ORCID)
- Michel Lang <michellang@gmail.com> (ORCID)
- Lars Kotthoff <larsko@uwyo.edu>
- Julia Schiffner <schiffner@math.uni-duesseldorf.de>
- Jakob Richter <code@jakob-r.de>
- Zachary Jones <zmj@zmjones.com>
- Giuseppe Casalicchio <giuseppe.casalicchio@stat.uni-muenchen.de> (ORCID)
- Mason Gallo <masonagallo@gmail.com>

Other contributors:

- Jakob Bossek <jakob.bossek@tu-dortmund.de> (ORCID) [contributor]
- Erich Studerus <erich.studerus@upkbs.ch> (ORCID) [contributor]
- Leonard Judt <leonard.judt@tu-dortmund.de> [contributor]
- Tobias Kuehn <tobi.kuehn@gmx.de> [contributor]
- Pascal Kerschke <kerschke@uni-muenster.de> (ORCID) [contributor]
- Florian Fendt <floh_fendt@gmx.de> [contributor]
- Philipp Probst <philipp.probst@gmx.de> (ORCID) [contributor]
- Xudong Sun <xudong.sun@stat.uni-muenchen.de> (ORCID) [contributor]
- Janek Thomas <janek.thomas@stat.uni-muenchen.de> (ORCID) [contributor]
- Bruno Vieira <bruno.hebling.vieira@usp.br> [contributor]
- Laura Beggel <laura.beggel@web.de> (ORCID) [contributor]
- Quay Au <quay.au@stat.uni-muenchen.de> (ORCID) [contributor]
- Martin Binder <ma.binder@campus.lmu.de> [contributor]
addRRMeasure

Compute new measures for existing ResampleResult

Description

Adds new measures to an existing ResampleResult.

Usage

addRRMeasure(res, measures)

Arguments

res
(ResampleResult)
The result of resample run with keep.pred = TRUE.

measures
(Measure | list of Measure)
Performance measure(s) to evaluate. Default is the default measure for the task, see here getDefaultMeasure.

Value

(ResampleResult).

See Also

Other resample: ResamplePrediction, ResampleResult, getRRPredictionList(), getRRPredictions(), getRRTaskDescription(), getRRTaskDesc(), makeResampleDesc(), makeResampleInstance(), resample()
Description

An aggregation method reduces the performance values of the test (and possibly the training sets) to a single value. To see all possible implemented aggregations look at aggregations.

The aggregation can access all relevant information of the result after resampling and combine them into a single value. Though usually something very simple like taking the mean of the test set performances is done.

Object members:

id (character(1)) Name of the aggregation method.
name (character(1)) Long name of the aggregation method.
properties (character) Properties of the aggregation.
fun (‘function(task, perf.test, perf.train, measure, group, pred) ’) Aggregation function.

See Also

makeAggregation

Description

- **test.mean**
 Mean of performance values on test sets.
- **test.sd**
 Standard deviation of performance values on test sets.
- **test.median**
 Median of performance values on test sets.
- **test.min**
 Minimum of performance values on test sets.
- **test.max**
 Maximum of performance values on test sets.
- **test.sum**
 Sum of performance values on test sets.
- **train.mean**
 Mean of performance values on training sets.
- **train.sd**
 Standard deviation of performance values on training sets.
- **train.median**
 Median of performance values on training sets.

- **train.min**
 Minimum of performance values on training sets.

- **train.max**
 Maximum of performance values on training sets.

- **train.sum**
 Sum of performance values on training sets.

- **b632**
 Aggregation for B632 bootstrap.

- **b632plus**
 Aggregation for B632+ bootstrap.

- **testgroup.mean**
 Performance values on test sets are grouped according to resampling method. The mean for every group is calculated, then the mean of those means. Mainly used for repeated CV.

- **testgroup.sd**
 Similar to **testgroup.mean** - after the mean for every group is calculated, the standard deviation of those means is obtained. Mainly used for repeated CV.

- **test.join**
 Performance measure on joined test sets. This is especially useful for small sample sizes where unbalanced group sizes have a significant impact on the aggregation, especially for cross-validation. **test.join** might make sense now. For the repeated CV, the performance is calculated on each repetition and then aggregated with the arithmetic mean.

See Also
Aggregation
analyzeFeatSelResult Show and visualize the steps of feature selection.

Description
This function prints the steps selectFeatures took to find its optimal set of features and the reason why it stopped. It can also print information about all calculations done in each intermediate step.
Currently only implemented for sequential feature selection.

Usage
analyzeFeatSelResult(res, reduce = TRUE)

Arguments
- res (FeatSelResult)
The result of selectFeatures.
- reduce (logical(1))
 Per iteration: Print only the selected feature (or all features that were evaluated)? Default is TRUE.

Value
(invisible(NULL)).

See Also
Other featsel: FeatSelControl, getFeatSelResult(), makeFeatSelWrapper(), selectFeatures()

asROCRPrediction Converts predictions to a format package ROCR can handle.

Description
Converts predictions to a format package ROCR can handle.

Usage
asROCRPrediction(pred)

Arguments
- pred (Prediction)
 Prediction object.
See Also

Other roc: `calculateROCMeasures()`
Other predict: `getPredictionProbabilities()`, `getPredictionResponse()`, `getPredictionTaskDesc()`, `predict.WrappedModel()`, `setPredictThreshold()`, `setPredictType()`

batchmark

Run machine learning benchmarks as distributed experiments.

Description

This function is a very parallel version of `benchmark` using `batchtools`. Experiments are created in the provided registry for each combination of learners, tasks and resamplings. The experiments are then stored in a registry and the runs can be started via `batchtools::submitJobs`. A job is one train/test split of the outer resampling. In case of nested resampling (e.g. with `makeTuneWrapper`), each job is a full run of inner resampling, which can be parallelized in a second step with `ParallelMap`.

For details on the usage and support backends have a look at the `batchtools` tutorial page: https://github.com/mllg/batchtools.

The general workflow with `batchmark` looks like this:

1. Create an ExperimentRegistry using `batchtools::makeExperimentRegistry`.
2. Call `batchmark(...)` which defines jobs for all learners and tasks in an `base::expand.grid` fashion.
3. Submit jobs using `batchtools::submitJobs`.
4. Babysit the computation, wait for all jobs to finish using `batchtools::waitForJobs`.
5. Call `reduceBatchmarkResult()` to reduce results into a `BenchmarkResult`.

If you want to use this with `OpenML` datasets you can generate tasks from a vector of dataset IDs easily with `tasks = lapply(data.ids,function(x) convertOMLDataSetToMlr(getOMLDataSet(x)))`.

Usage

```r
batchmark(
  learners, 
  tasks, 
  resamplings, 
  measures, 
  keep.pred = TRUE, 
  keep.extract = FALSE, 
  models = FALSE, 
  reg = batchtools::getDefaultRegistry()
)
```
Arguments

learners (list of Learner | character)
Learning algorithms which should be compared, can also be a single learner. If
you pass strings the learners will be created via makeLearner.

tasks list of Task
Tasks that learners should be run on.

resamplings [(list of) ResampleDesc)
Resampling strategy for each tasks. If only one is provided, it will be replicated
to match the number of tasks. If missing, a 10-fold cross validation is used.

measures (list of Measure)
Performance measures for all tasks. If missing, the default measure of the first
task is used.

keep.pred (logical(1))
Keep the prediction data in the pred slot of the result object. If you do many ex-
periments (on larger data sets) these objects might unnecessarily increase object
size / mem usage, if you do not really need them. The default is set to TRUE.

keep.extract (logical(1))
Keep the extract slot of the result object. When creating a lot of benchmark
results with extensive tuning, the resulting R objects can become very large in
size. That is why the tuning results stored in the extract slot are removed by
default (keep.extract = FALSE). Note that when keep.extract = FALSE you
will not be able to conduct analysis in the tuning results.

models (logical(1))
Should all fitted models be stored in the ResampleResult? Default is FALSE.

reg (batchtools::Registry)
Registry, created by batchtools::makeExperimentRegistry. If not explicitly passed,
uses the last created registry.

Value

(data.table). Generated job ids are stored in the column “job.id”.

See Also

Other benchmark: BenchmarkResult, benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(),
friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(),
getBMRFILTEREDFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRFMeasureIds(), getBMRFMeasures(), getBMRFModels(), getBMRFPerformances(), getBMRFPredictions(),
getBMRtaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRRboxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()
bc.task
Wisconsin Breast Cancer classification task.

Description
Contains the task (bc.task).

References
See mlbench::BreastCancer. The column "Id" and all incomplete cases have been removed from the task.

benchmark
Benchmark experiment for multiple learners and tasks.

Description
Complete benchmark experiment to compare different learning algorithms across one or more tasks w.r.t. a given resampling strategy. Experiments are paired, meaning always the same training / test sets are used for the different learners. Furthermore, you can of course pass “enhanced” learners via wrappers, e.g., a learner can be automatically tuned using `makeTuneWrapper`.

Usage
```r
benchmark(
  learners,
  tasks,
  resamplings,
  measures,
  keep.pred = TRUE,
  keep.extract = FALSE,
  models = FALSE,
  show.info = getMlrOption("show.info")
)
```

Arguments
- **learners** (list of Learner | character)
 Learning algorithms which should be compared, can also be a single learner. If you pass strings the learners will be created via `makeLearner`.
- **tasks** list of Task
 Tasks that learners should be run on.
- **resamplings** (list of ResampleDesc | ResampleInstance)
 Resampling strategy for each tasks. If only one is provided, it will be replicated to match the number of tasks. If missing, a 10-fold cross validation is used.
measures (list of Measure)
Performance measures for all tasks. If missing, the default measure of the first task is used.

keep.pred (logical(1))
Keep the prediction data in the pred slot of the result object. If you do many experiments (on larger data sets) these objects might unnecessarily increase object size / mem usage, if you do not really need them. The default is set to TRUE.

keep.extract (logical(1))
Keep the extract slot of the result object. When creating a lot of benchmark results with extensive tuning, the resulting R objects can become very large in size. That is why the tuning results stored in the extract slot are removed by default (keep.extract = FALSE). Note that when keep.extract = FALSE you will not be able to conduct analysis in the tuning results.

models (logical(1))
Should all fitted models be stored in the ResampleResult? Default is FALSE.

show.info (logical(1))
Print verbose output on console? Default is set via configureMlr.

Value
BenchmarkResult.

See Also
Other benchmark: BenchmarkResult, batchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFitSelResults(), getBMRFitedFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(), getBMRMesureIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMROxplot(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()

Examples

lrns = list(makeLearner("classif.lda"), makeLearner("classif.rpart"))
tasks = list(iris.task, sonar.task)
rdesc = makeResampleDesc("CV", iters = 2L)
meas = list(acc, ber)
bmr = benchmark(lrns, tasks, rdesc, measures = meas)
rm = convertBMRToRankMatrix(bmr)
print(rm)
plotBMRSummary(bmr)
plotBMROxplot(bmr, ber, style = "violin")
plotBMRRanksAsBarChart(bmr, pos = "stack")
friedmanTestBMR(bmr)
friedmanPostHocTestBMR(bmr, p.value = 0.05)
BenchmarkResult

BenchmarkResult object.

Description

Result of a benchmark experiment conducted by benchmark with the following members:

results (list of ResampleResult): A nested list of resample results, first ordered by task id, then by learner id.

measures (list of Measure): The performance measures used in the benchmark experiment.

learners (list of Learner): The learning algorithms compared in the benchmark experiment.

The print method of this object shows aggregated performance values for all tasks and learners.

It is recommended to retrieve required information via the getBMR* getter functions. You can also convert the object using as.data.frame.

See Also

Other benchmark: batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(), getBMRMeasureIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMR TuneResults(), plotBMRboxplots(), plotBMRanksAsBarChart(), plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()

bh.task

Boston Housing regression task.

Description

Contains the task (bh.task).

References

See mlbench::BostonHousing.
cache_helpers

Get or delete mlr cache directory

Description

Helper functions to deal with mlr caching.

Usage

getCacheDir()

deleteCacheDir()

Details

getCacheDir() returns the default mlr cache directory
deleteCacheDir() clears the default mlr cache directory. Custom cache directories must be deleted by hand.

calculateConfusionMatrix

Confusion matrix.

Description

Calculates the confusion matrix for a (possibly resampled) prediction. Rows indicate true classes, columns predicted classes. The marginal elements count the number of classification errors for the respective row or column, i.e., the number of errors when you condition on the corresponding true (rows) or predicted (columns) class. The last bottom right element displays the total amount of errors.

A list is returned that contains multiple matrices. If `relative = TRUE` we compute three matrices, one with absolute values and two with relative. The relative confusion matrices are normalized based on rows and columns respectively, if `FALSE` we only compute the absolute value matrix.

The `print` function returns the relative matrices in a compact way so that both row and column marginals can be seen in one matrix. For details see `ConfusionMatrix`.

Note that for resampling no further aggregation is currently performed. All predictions on all test sets are joined to a vector yhat, as are all labels joined to a vector y. Then yhat is simply tabulated vs. y, as if both were computed on a single test set. This probably mainly makes sense when cross-validation is used for resampling.

Usage

calculateConfusionMatrix(pred, relative = FALSE, sums = FALSE, set = "both")

S3 method for class 'ConfusionMatrix'
print(x, both = TRUE, digits = 2, ...)
calculateConfusionMatrix

Arguments

- **pred** *(Prediction)*

 Prediction object.

- **relative** *(logical(1))*

 If TRUE two additional matrices are calculated. One is normalized by rows and one by columns.

- **sums** *(logical(1))*

 If TRUE add absolute number of observations in each group.

- **set** *(character(1))*

 Specifies which part(s) of the data are used for the calculation. If set equals train or test, the pred object must be the result of a resampling, otherwise an error is thrown. Defaults to “both”. Possible values are “train”, “test”, or “both”.

- **x** *(ConfusionMatrix)*

 Object to print.

- **both** *(logical(1))*

 If TRUE both the absolute and relative confusion matrices are printed.

- **digits** *(integer(1))*

 How many numbers after the decimal point should be printed, only relevant for relative confusion matrices.

- **...** *(any)*

 Currently not used.

Value

(ConfusionMatrix).

Methods (by generic)

- **print:**

See Also

Other performance: `ConfusionMatrix, calculateROCMeasures(), estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(), measures, performance(), setAggregation(), setMeasurePars()`

Examples

```r
# get confusion matrix after simple manual prediction
allinds = 1:150
train = sample(allinds, 75)
test = setdiff(allinds, train)
mod = train("classif.lda", iris.task, subset = train)
pred = predict(mod, iris.task, subset = test)
print(calculateConfusionMatrix(pred))
print(calculateConfusionMatrix(pred, sums = TRUE))
print(calculateConfusionMatrix(pred, relative = TRUE))
```
now after cross-validation
r = crossval("classif.lda", iris.task, iters = 2L)
print(calculateConfusionMatrix(r$pred))

calculateROCMeasures Calculate receiver operator measures.

Description

Calculate the absolute number of correct/incorrect classifications and the following evaluation measures:

- `tpr` True positive rate (Sensitivity, Recall)
- `fpr` False positive rate (Fall-out)
- `fnr` False negative rate (Miss rate)
- `tnr` True negative rate (Specificity)
- `ppv` Positive predictive value (Precision)
- `for` False omission rate
- `1rp` Positive likelihood ratio (LR+)
- `fdr` False discovery rate
- `npv` Negative predictive value
- `acc` Accuracy
- `1rm` Negative likelihood ratio (LR-)
- `dor` Diagnostic odds ratio

For details on the used measures see measures and also https://en.wikipedia.org/wiki/Receiver_operating_characteristic.

The element for the false omission rate in the resulting object is not called for but fomr since for should never be used as a variable name in an object.

Usage

calculateROCMeasures(pred)

S3 method for class 'ROCMeasures'
print(x, abbreviations = TRUE, digits = 2, ...)
Arguments

pred \text{(Prediction)} \hspace{1cm} \text{Prediction object.}

x \text{(ROCMeasures)} \hspace{1cm} \text{Created by \texttt{calculateROCMeasures}.}

abbreviations \text{(logical(1))} \hspace{1cm} \text{If TRUE a short paragraph with explanations of the used measures is printed additionally.}

digits \text{(integer(1))} \hspace{1cm} \text{Number of digits the measures are rounded to.}

... \text{(any)} \hspace{1cm} \text{Currently not used.}

Value

\text{(ROCMeasures). A list containing two elements confusion.matrix which is the 2 times 2 confusion matrix of absolute frequencies and measures, a list of the above mentioned measures.}

Methods (by generic)

- \text{print:}

See Also

Other roc: \texttt{asROCRPrediction()}

Other performance: \texttt{ConfusionMatrix, calculateConfusionMatrix(), estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(), measures, performance(), setAggregation(), setMeasurePars()}

Examples

lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, sonar.task)
pred = predict(fit, task = sonar.task)
calculateROCMeasures(pred)

capLargeValues \textit{Convert large/infinite numeric values in a data.frame or task.}

Description

Convert numeric entries which large/infinite (absolute) values in a data.frame or task. Only numeric/integer columns are affected.
Usage

capLargeValues(
 obj,
 target = character(0L),
 cols = NULL,
 threshold = Inf,
 impute = threshold,
 what = "abs"
)

Arguments

obj (data.frame | Task)
Input data.

target (character)
Name of the column(s) specifying the response. Target columns will not be
capped. Default is character(0).

cols (character)
Which columns to convert. Default is all numeric columns.

threshold (numeric(1))
Threshold for capping. Every entry whose absolute value is equal or larger is
converted. Default is Inf.

impute (numeric(1))
Replacement value for large entries. Large negative entries are converted to
-impute. Default is threshold.

what (character(1))
What kind of entries are affected? “abs” means abs(x) > threshold, “pos”
means abs(x) > threshold && x > 0, “neg” means abs(x) > threshold && x
< 0. Default is “abs”.

Value

(data.frame)

See Also

Other eda_and_preprocess: createDummyFeatures(), dropFeatures(), mergeSmallFactorLevels(),
normalizeFeatures(), removeConstantFeatures(), summarizeColumns(), summarizeLevels()

Examples

capLargeValues(iris, threshold = 5, impute = 5)
configureMlr

Configure the behavior of the package.

Description

Configuration is done by setting custom options.

If you do not set an option here, its current value will be kept.

If you call this function with an empty argument list, everything is set to its defaults.

Usage

configureMlr(
 show.info,
 on.learner.error,
 on.learner.warning,
 on.par.without.desc,
 on.par.out.of.bounds,
 on.measure.not.applicable,
 show.learner.output,
 on.error.dump
)

Arguments

show.info (logical(1))
Some methods of mlr support a show.info argument to enable verbose output on the console. This option sets the default value for these arguments. Setting the argument manually in one of these functions will overwrite the default value for that specific function call. Default is TRUE.

on.learner.error (character(1))
What should happen if an error in an underlying learning algorithm is caught:
 “stop”: R exception is generated.
 “warn”: A FailureModel will be created, which predicts only NAs and a warning will be generated.
 “quiet”: Same as “warn” but without the warning.
Default is “stop”.

on.learner.warning (character(1))
What should happen if a warning in an underlying learning algorithm is generated:
 “warn”: The warning is generated as usual.
 “quiet”: The warning is suppressed.
Default is “warn”.

on.par.without.desc
(character(1))
What should happen if a parameter of a learner is set to a value, but no parameter
description object exists, indicating a possibly wrong name:
“stop”: R exception is generated.
“warn”: Warning, but parameter is still passed along to learner.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.

on.par.out.of.bounds
(character(1))
What should happen if a parameter of a learner is set to an out of bounds value.
“stop”: R exception is generated.
“warn”: Warning, but parameter is still passed along to learner.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.

on.measure.not.applicable
(logical(1))
What should happen if a measure is not applicable to a learner.
“stop”: R exception is generated.
“warn”: Warning, but value of the measure will be NA.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.

show.learner.output
(logical(1))
Should the output of the learning algorithm during training and prediction be
shown or captured and suppressed? Default is TRUE.

on.error.dump
(logical(1))
Specify whether FailureModel models and failed predictions should contain an
error dump that can be used with debugger to inspect an error. This option is
only effective if on.learner.error is “warn” or “quiet”. If it is TRUE, the dump
can be accessed using getFailureModelDump on the FailureModel, getPredictionDump on the failed prediction, and getRRDump on resample predictions.
Default is FALSE.

Value
(invisible(NULL)).

See Also
Other configure: getMlrOptions()
convertBMRToRankMatrix

Description

Convert BenchmarkResult to a rank-matrix.

Usage

```r
convertBMRToRankMatrix(
  bmr,
  measure = NULL,
  ties.method = "average",
  aggregation = "default"
)
```
convertMLBenchObjToTask

Convert a machine learning benchmark / demo object from package mlbench to a task.

Description

We auto-set the target column, drop any column which is called “Id” and convert logicals to factors.

Usage

convertMLBenchObjToTask(x, n = 100L, ...)
Arguments

x (character(1))
Name of an mlbench function or dataset.

n (integer(1))
Number of observations for data simul functions. Note that for a few mlbench function this setting is not exactly respected by mlbench. Default is 100.

... (any)
Passed on to data simul functions.

Examples

print(convertMLBenchObjToTask("Ionosphere"))
print(convertMLBenchObjToTask("mlbench.spirals", n = 100, sd = 0.1))

costiris.task
Iris cost-sensitive classification task.

Description

Contains the task (costiris.task).

References

See datasets::iris. The cost matrix was generated artificially following

createDummyFeatures
Generate dummy variables for factor features.

Description

Replace all factor features with their dummy variables. Internally model.matrix is used. Non factor features will be left untouched and passed to the result.

Usage

createDummyFeatures(
 obj,
 target = character(0L),
 method = "1-of-n",
 cols = NULL
)
Arguments

- **obj** *(data.frame | Task)*
 - Input data.

- **target** *(character(1) | character(2) | character(n.classes))*
 - Name(s) of the target variable(s). Only used when `obj` is a data.frame, otherwise ignored. If survival analysis is applicable, these are the names of the survival time and event columns, so it has length 2. For multilabel classification these are the names of logical columns that indicate whether a class label is present and the number of target variables corresponds to the number of classes.

- **method** *(character(1))*
 - Available are:
 - "1-of-n": For n factor levels there will be n dummy variables.
 - "reference": There will be n-1 dummy variables leaving out the first factor level of each variable.
 - Default is “1-of-n”.

- **cols** *(character)*
 - Columns to create dummy features for. Default is to use all columns.

Value

- **data.frame | Task**. Same type as `obj`.

See Also

Other eda_and_preprocess: capLargeValues(), dropFeatures(), mergeSmallFactorLevels(), normalizeFeatures(), removeConstantFeatures(), summarizeColumns(), summarizeLevels()
```r
point.size = 0.5,
axis.text.size = 14,
x.axis.breaks = waiver(),
y.axis.breaks = waiver()
)
```

Arguments

- `task` *Task*
 Task object.

- `resample` *ResampleResult or named list with (multiple) ResampleResult*
 As returned by `resample`.

- `crs` *integer*
 Coordinate reference system (EPSG code number) for the supplied coordinates in the Task.

- `datum` *integer*
 Coordinate reference system which should be used in the resulting map.

- `repetitions` *integer*
 Number of repetitions.

- `color.train` *character*
 Color for train set.

- `color.test` *character*
 Color for test set.

- `point.size` *integer*
 Point size.

- `axis.text.size` *integer*
 Font size of axis labels.

- `x.axis.breaks` *numeric*
 Custom x axis breaks

- `y.axis.breaks` *numeric*
 Custom y axis breaks

Details

If a named list is given to `resample`, names will appear in the title of each fold. If multiple inputs are given to `resample`, these must be named.

This function makes a hard cut at five columns of the resulting gridded plot. This means if the `resample` object consists of folds > 5, these folds will be put into the new row.

For file saving, we recommend to use `cowplot::save_plot`.

When viewing the resulting plot in RStudio, margins may appear to be different than they really are. Make sure to save the file to disk and inspect the image.

When modifying axis breaks, negative values need to be used if the area is located in either the western or southern hemisphere. Use positive values for the northern and eastern hemisphere.
createSpatialResamplingPlots

Value

(list of 2L containing (1) multiple ‘gg’ objects and (2) their corresponding labels.

CRS

The crs has to be suitable for the coordinates stored in the Task. For example, if the coordinates are UTM, crs should be set to a UTM projection. Due to a limited axis space in the resulting grid (especially on the x-axis), the data will by default projected into a lat/lon projection, specifically EPSG 4326. If other projections are desired for the resulting map, please set argument datum accordingly. This argument will be passed onto ggplot2::coord_sf.

Author(s)

Patrick Schratz

See Also

Other plot: plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(), plotROCCurves(), plotResiduals(), plotThreshVsPerf()

Examples

rdesc = makeResampleDesc("SpRepCV", folds = 5, reps = 4)
r = resample(makeLearner("classif.qda"), spatial.task, rdesc)
single unnamed resample input with 5 folds and 2 repetitions

plots = createSpatialResamplingPlots(spatial.task, r, crs = 32717,
 repetitions = 2, x.axis.breaks = c(-79.065, -79.085),
 y.axis.breaks = c(-3.970, -4))
cowplot::plot_grid(plotlist = plots[["Plots"]], ncol = 5, nrow = 2,
 labels = plots[["Labels"]])
single named resample input with 5 folds and 1 repetition and 32717 datum
--
plots = createSpatialResamplingPlots(spatial.task, list("Resamp" = r),
 crs = 32717, datum = 32717, repetitions = 1)
cowplot::plot_grid(plotlist = plots[["Plots"]], ncol = 5, nrow = 1,
 labels = plots[["Labels"]])
multiple named resample inputs with 5 folds and 1 repetition
--
rdesc1 = makeResampleDesc("SpRepCV", folds = 5, reps = 4)
r1 = resample(makeLearner("classif.qda"), spatial.task, rdesc1)
rdesc2 = makeResampleDesc("RepCV", folds = 5, reps = 4)
r2 = resample(makeLearner("classif.qda"), spatial.task, rdesc2)

plots = createSpatialResamplingPlots(spatial.task,
list("SpRepCV" = r1, "RepCV" = r2), crs = 32717, repetitions = 1,
x.axis.breaks = c(-79.055, -79.085), y.axis.breaks = c(-3.975, -4))
cowplot::plot_grid(plotlist = plots[["Plots"]], ncol = 5, nrow = 2,
labels = plots[["Labels"]])

Complex arrangements of multiple named resample inputs with 5 folds and 1 repetition

pl = cowplot::plot_grid(plots[["Plots"]][[1]], plots[["Plots"]][[2]],
plots[["Plots"]][[3]], ncol = 3, nrow = 1, labels = plots[["Labels"]][1:3],
label_size = 18)
pl2 = cowplot::plot_grid(plots[["Plots"]][[4]], plots[["Plots"]][[5]],
ncol = 2, nrow = 1, labels = plots[["Labels"]][4:5], label_size = 18)
p2 = cowplot::plot_grid(plots[["Plots"]][[6]], plots[["Plots"]][[7]],
plots[["Plots"]][[8]], ncol = 3, nrow = 1, labels = plots[["Labels"]][6:8],
label_size = 18)
p22 = cowplot::plot_grid(plots[["Plots"]][[9]], plots[["Plots"]][[10]],
ncol = 2, nrow = 1, labels = plots[["Labels"]][9:10], label_size = 18)
cowplot::plot_grid(pl, pl2, p2, p22, ncol = 1)

crossover

Description

Takes two bit strings and creates a new one of the same size by selecting the items from the first string or the second, based on a given rate (the probability of choosing an element from the first string).

Arguments

- **x** (logical)
 - First parent string.
- **y** (logical)
 - Second parent string.
- **rate** (numeric(1))
 - A number representing the probability of selecting an element of the first string. Default is 0.5.
downsample

Downsample (subsample) a task or a data.frame.

Description

Decrease the observations in a task or a ResampleInstance to a given percentage of observations.

Usage

downsample(obj, perc = 1, stratify = FALSE)

Arguments

- **obj**
 (Task | ResampleInstance)
 Input data or a ResampleInstance.

- **perc**
 (numeric(1))
 Percentage from (0, 1). Default is 1.

- **stratify**
 (logical(1))
 Only for classification: Should the downsampled data be stratified according to the target classes? Default is FALSE.

Value

([data.frame] | [Task] | [ResampleInstance]). Same type as obj.

See Also

- makeResampleInstance
- Other downsample: makeDownsampleWrapper()

dropFeatures

Drop some features of task.

Description

Drop some features of task.

Usage

dropFeatures(task, features)
estimateRelativeOverfitting

Arguments

- **task** *(Task)*
 - The task.
- **features** *(character)*
 - Features to drop.

Value

- **Task**.

See Also

Other eda_and_preprocess: `capLargeValues()`, `createDummyFeatures()`, `mergeSmallFactorLevels()`, `normalizeFeatures()`, `removeConstantFeatures()`, `summarizeColumns()`, `summarizeLevels()`

Description

Estimates the relative overfitting of a model as the ratio of the difference in test and train performance to the difference of test performance in the no-information case and train performance. In the no-information case the features carry no information with respect to the prediction. This is simulated by permuting features and predictions.

Usage

```r
estimateRelativeOverfitting(
  predish,
  measures,
  task,
  learner = NULL,
  pred.train = NULL,
  iter = 1
)
```

Arguments

- **predish** *(ResampleDesc | ResamplePrediction | Prediction)*
 - Resampling strategy or resampling prediction or test predictions.
- **measures** *(Measure | list of Measure)*
 - Performance measure(s) to evaluate. Default is the default measure for the task, see here `getDefaultMeasure`.
- **task** *(Task)*
 - The task.
estimateResidualVariance

learner

(Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

pred.train

(Prediction)
Training predictions. Only needed if test predictions are passed.

iter

(integer)
Iteration number. Default 1, usually you don’t need to specify this. Only needed if test predictions are passed.

Details

Currently only support for classification and regression tasks is implemented.

Value

(data.frame). Relative overfitting estimate(s), named by measure(s), for each resampling iteration.

References

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(), makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(), measures, performance(), setAggregation(), setMeasurePars()

Examples

task = makeClassifTask(data = iris, target = "Species")
rdesc = makeResampleDesc("CV", iters = 2)
estimateRelativeOverfitting(rdesc, acc, task, makeLearner("classif.knn"))
estimateRelativeOverfitting(rdesc, acc, task, makeLearner("classif.lda"))
rpred = resample("classif.knn", task, rdesc)$pred
estimateRelativeOverfitting(rpred, acc, task)

estimateResidualVariance

Estimate the residual variance.

Description

Estimate the residual variance of a regression model on a given task. If a regression learner is provided instead of a model, the model is trained (see train) first.

Usage

estimateResidualVariance(x, task, data, target)
Arguments

- **x** (Learner or WrappedModel)
 Learner or wrapped model.

- **task** (RegrTask)
 Regression task. If missing, data and target must be supplied.

- **data** (data.frame)
 A data frame containing the features and target variable. If missing, task must be supplied.

- **target** (character(1))
 Name of the target variable. If missing, task must be supplied.

extractFDABsignal
Bspline mlq features

Description

The function extracts features from functional data based on the Bspline fit. For more details refer to `FDboost::bsignal()`.

Usage

```r
extractFDABsignal(bsignal.knots = 10L, bsignal.df = 3)
```

Arguments

- **bsignal.knots** (integer(1))
 The number of knots for bspline.

- **bsignal.df** (numeric(1))
 The effective degree of freedom of penalized bspline.

Value

(data.frame).

See Also

Other fda_feaextactor: `extractFDADTWKernel()`, `extractFDAPCA()`, `extractFDAFourier()`, `extractFDAMultiResFeatures()`, `extractFDATsfeatures()`, `extractFDAWavelets()`
Description

The function extracts features from functional data based on the DTW distance with a reference dataframe.

Usage

```r
eventFDADTWKernel(
  ref.method = "random",
  n.refs = 0.05,
  refs = NULL,
  dtwwindow = 0.05
)
```

Arguments

- `ref.method` (character(1))
 How should the reference curves be obtained? Method random draws `n.refs` random reference curves, while all uses all curves as references. In order to use user-provided reference curves, this parameter is set to fixed.

- `n.refs` (numeric(1))
 Number of reference curves to be drawn (as a fraction of the number of observations in the training data).

- `refs` (matrix|integer(n))
 Integer vector of training set row indices or a matrix of reference curves with the same length as the functionals in the training data. Overwrites ref.method and n.refs.

- `dtwwindow` (numeric(1))
 Size of the warping window size (as a proportion of query length).

Value

(data.frame).

See Also

Other fda_featextractor: extractFDABsignal(), extractFDAFPCA(), extractFDAFourier(), extractFDAMultiResFeatures(), extractFDATsfeatures(), extractFDAWavelets()
extractFDAFeatures

Extract features from functional data.

Description

Extract non-functional features from functional features using various methods.

The function `extractFDAFeatures` performs the extraction for all functional features via the methods specified in `feat.methods` and transforms all mentioned functional (matrix) features into regular data.frame columns. Additionally, a “extractFDAFeatDesc” object which contains learned coefficients and other helpful data for re-extraction during the predict-phase is returned. This can be used with `reextractFDAFeatures` in order to extract features during the prediction phase.

Usage

```r
extractFDAFeatures(obj, target = character(0L), feat.methods = list(), ...)
```

Arguments

- `obj` *(Task | data.frame)*
 Task or data.frame to extract functional features from. Must contain functional features as matrix columns.

- `target` *(character(1))*
 Task target column. Only necessary for data.frames Default is character(0).

- `feat.methods` *(named list)*
 List of functional features along with the desired methods for each functional feature. “all” applies the `extractFDAFeatures` method to each functional feature. Names of `feat.methods` must match column names of functional features. Available feature extraction methods are available under family `fda_featextractor`. Specifying a functional feature multiple times with different extraction methods allows for the extraction of different features from the same functional. Default is `list()` which does nothing.

- `...` *(any)*
 Further hyperparameters passed on to the `feat.methods` specified above.

Details

The description object contains these slots:

- `target` *character*: See argument.
- `coln` *character*: Column names of data.
- `fd.cols` *character*: Functional feature names.
- `extractFDAFeat` *list*: Contains `feat.methods` and relevant parameters for reextraction.
extractFDAFourier

Value

- **data|task** *(data.frame | Task)*

 Extracted features, same type as obj.

- **desc** *(extractFDAFeatDesc)*

 Description object. See description for details.

See Also

Other fda: `makeExtractFDAFeatMethod()`, `makeExtractFDAFeatsWrapper()`

Examples

```r
df = data.frame(x = matrix(rnorm(24), ncol = 8), y = factor(c("a", "a", "b")))
fdf = makeFunctionalData(df, fd.features = list(x1 = 1:4, x2 = 5:8), exclude.cols = "y")
task = makeClassifTask(data = fdf, target = "y")
extracted = extractFDAFeatures(task, feat.methods = list("x1" = extractFDAFourier(), "x2" = extractFDAWavelets(filter = "haar"))
print(extracted$task)
reextractFDAFeatures(task, extracted$desc)
```

Description

The function extracts features from functional data based on the fast fourier transform. For more details refer to `stats::fft`.

Usage

```r
extractFDAFourier(trafo.coeff = "phase")
```

Arguments

- **trafo.coeff** *(character(1))*

 Specifies which transformation of the complex frequency domain representation should be calculated as a feature representation. Must be one of “amplitude” or “phase”. Default is “phase”. The phase shift is returned in Rad, i.e. values lie in [-180, 180].

Value

- **(data.frame)**

See Also

Other fda_feature: `extractFDAwsignal()`, `extractFDADTWKernel()`, `extractFDAFPCA()`, `extractFDAwMultiresFeatures()`, `extractFDATsfeatures()`, `extractFDAWavelets()`
extractFDAFPCA

Extract functional principal component analysis features.

Description

The function extracts the functional principal components from a data.frame containing functional features. Uses `stats::prcomp`.

Usage

```r
extractFDAFPCA(rank. = NULL, center = TRUE, scale. = FALSE)
```

Arguments

- **rank.** (integer(1))
 Number of principal components to extract. Default is `NULL`
- **center** (logical(1))
 Should data be centered before applying PCA?
- **scale.** (logical(1))
 Should data be scaled before applying PCA?

Value

(data.frame).

See Also

Other `fda_featextractor`:
- `extractFDABsignal()
- extractFDADTWKernel()
- extractFDAFourier()
- extractFDAMultiResFeatures()
- extractFDATsfeatures()
- extractFDAWavelets()

extractFDAMultiResFeatures

Multiresolution feature extraction.

Description

The function extracts currently the mean of multiple segments of each curve and stacks them as features. The segments length are set in a hierarchy way so the features cover different resolution levels.

Usage

```r
extractFDAMultiResFeatures(res.level = 3L, shift = 0.5, seg.lens = NULL)
```
extractFDATsfeatures

Arguments

- **res.level** (integer(1))
 The number of resolution hierarchy, each length is divided by a factor of 2.
- **shift** (numeric(1))
 The overlapping proportion when slide the window for one step.
- **seg.lens** (integer(1))
 Curve subsequence lengths. Needs to sum up to the length of the functional.

Value

(data.frame).

See Also

Other fda_featextractor: `extractFDABsignal()`, `extractFDADTWKernel()`, `extractFDAQPCA()`, `extractFDAOFourier()`, `extractFDATsfeatures()`, `extractFDAWavelets()`

extractFDATsfeatures
Time-Series Feature Heuristics

Description

The function extracts features from functional data based on known Heuristics. For more details refer to `tsfeatures::tsfeatures()`. Under the hood this function uses the package `tsfeatures::tsfeatures()`. For more information see Hyndman, Wang and Laptev, Large-Scale Unusual Time Series Detection, ICDM 2015.

Note: Currently computes the following features:

Usage

```r
extractFDATsfeatures(
  scale = TRUE,
  trim = FALSE,
  trim_amount = 0.1,
  parallel = FALSE,
  na.action = na.pass,
  feats = NULL,
  ...
)
```
extractFDWavelets

Discrete Wavelet transform features.

Description

The function extracts discrete wavelet transform coefficients from the raw functional data. See `wavelets::dwt` for more information.
Usage

```r
extractFDAWavelets(filter = "la8", boundary = "periodic")
```

Arguments

- `filter` (character(1))
 Specifies which filter should be used. Must be one of `dlablc` followed by an even number for the level of the filter. The level of the filter needs to be smaller or equal then the time-series length. For more information and acceptable filters see `help(wt.filter)`. Defaults to `la8`.

- `boundary` (character(1))
 Boundary to be used. “periodic” assumes circular time series, for “reflection” the series is extended to twice its length. Default is “periodic”.

Value

`(data.frame)`.

See Also

Other `fda_featextractor`: `extractFDABsignal()`, `extractFDADTWKernel()`, `extractFDAFPCA()`, `extractFDAMultiResFeatures()`, `extractFDATsfeatures()`

FailureModel

Failure model.

Description

A subclass of `WrappedModel`. It is created

- if you set the respective option in `configureMlr` - when a model internally crashed during training. The model always predicts NAs.

The if `mlr` option `on.error.dump` is `TRUE`, the `FailureModel` contains the debug trace of the error. It can be accessed with `getFailureModelDump` and inspected with `debugger`.

Its encapsulated `learner.model` is simply a string: The error message that was generated when the model crashed. The following code shows how to access the message.

See Also

Other debug: `ResampleResult`, `getPredictionDump()`, `getRRDump()`
Examples

```r
configureMlr(on.learner.error = "warn")
data = iris
data$newfeat = 1 # will make LDA crash
task = makeClassifTask(data = data, target = "Species")
m = train("classif.lda", task) # LDA crashed, but mlr catches this
print(m)
print(m$learner.model) # the error message
p = predict(m, task) # this will predict NAs
print(p)
print(performance(p))
configureMlr(on.learner.error = "stop")
```

FeatSelControl

Create control structures for feature selection.

Description

Feature selection method used by `selectFeatures`.
The methods used here follow a wrapper approach, described in Kohavi and John (1997) (see references).

The following optimization algorithms are available:

- **FeatSelControlExhaustive** Exhaustive search. All feature sets (up to a certain number of features `max.features`) are searched.
- **FeatSelControlRandom** Random search. Features vectors are randomly drawn, up to a certain number of features `max.features`. A feature is included in the current set with probability `prob`. So we are basically drawing (0,1)-membership-vectors, where each element is Bernoulli(`prob`) distributed.
- **FeatSelControlSequential** Deterministic forward or backward search. That means extending (forward) or shrinking (backward) a feature set. Depending on the given method different approaches are taken.
 - `sfs` Sequential Forward Search: Starting from an empty model, in each step the feature increasing the performance measure the most is added to the model.
 - `sbs` Sequential Backward Search: Starting from a model with all features, in each step the feature decreasing the performance measure the least is removed from the model.
 - `sffs` Sequential Floating Forward Search: Starting from an empty model, in each step the algorithm chooses the best model from all models with one additional feature and from all models with one feature less.
 - `sfbs` Sequential Floating Backward Search: Similar to `sffs` but starting with a full model.
- **FeatSelControlGA** Search via genetic algorithm. The GA is a simple (mu, lambda) or (mu + lambda) algorithm, depending on the comma setting. A comma strategy selects a new population of size `mu` out of the `lambda > mu` offspring. A plus strategy uses the joint pool of `mu` parents and `lambda` offspring for selecting `mu` new candidates. Out of those `mu` features, the new `lambda` features are generated by randomly choosing pairs of parents. These are crossed over and crossover.rate represents the probability of choosing a feature from the first parent instead of the second parent. The resulting offspring is mutated, i.e., its bits are flipped.
with probability \texttt{mutation.rate}. If \texttt{max.features} is set, offspring are repeatedly generated until the setting is satisfied.

\textbf{Usage}

\begin{verbatim}
makeFeatSelControlExhaustive(
 same.resampling.instance = TRUE,
 maxit = NA_integer_,
 max.features = NA_integer_,
 tune.threshold = FALSE,
 tune.threshold.args = list(),
 log.fun = "default"
)

makeFeatSelControlGA(
 same.resampling.instance = TRUE,
 impute.val = NULL,
 maxit = NA_integer_,
 max.features = NA_integer_,
 comma = FALSE,
 mu = 10L,
 lambda,
 crossover.rate = 0.5,
 mutation.rate = 0.05,
 tune.threshold = FALSE,
 tune.threshold.args = list(),
 log.fun = "default"
)

makeFeatSelControlRandom(
 same.resampling.instance = TRUE,
 maxit = 100L,
 max.features = NA_integer_,
 prob = 0.5,
 tune.threshold = FALSE,
 tune.threshold.args = list(),
 log.fun = "default"
)

makeFeatSelControlSequential(
 same.resampling.instance = TRUE,
 impute.val = NULL,
 method,
 alpha = 0.01,
 beta = -0.001,
 maxit = NA_integer_,
 max.features = NA_integer_,
 tune.threshold = FALSE,
 tune.threshold.args = list(),
 tune.threshold.args = list()
)
\end{verbatim}
log.fun = "default"
)

Arguments

same.resampling.instance
 (logical(1))
 Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

maxit
 (integer(1))
 Maximal number of iterations. Note, that this is usually not equal to the number of function evaluations.

max.features
 (integer(1))
 Maximal number of features.

tune.threshold
 (logical(1))
 Should the threshold be tuned for the measure at hand, after each feature set evaluation, via tuneThreshold? Only works for classification if the predict type is "prob". Default is FALSE.

tune.threshold.args
 (list)
 Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.

log.fun
 (function | character(1))
 Function used for logging. If set to "default" (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to "memory" the memory usage for each evaluation will also be displayed, with character(1) small increase in run time. Otherwise character(1) function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

impute.val
 (numeric)
 If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. Imputation is only active if on.learner.error is configured not to stop in configureMlr. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

comma
 (logical(1))
 Parameter of the GA feature selection, indicating whether to use a (mu, lambda) or (mu + lambda) GA. The default is FALSE.
FeatSelControl

- **mu** (integer(1)) Parameter of the GA feature selection. Size of the parent population.
- **lambda** (integer(1)) Parameter of the GA feature selection. Size of the children population (should be smaller or equal to mu).
- **crossover.rate** (numeric(1)) Parameter of the GA feature selection. Probability of choosing a bit from the first parent within the crossover mutation.
- **mutation.rate** (numeric(1)) Parameter of the GA feature selection. Probability of flipping a feature bit, i.e. switch between selecting / deselecting a feature.
- **prob** (numeric(1)) Parameter of the random feature selection. Probability of choosing a feature.
- **method** (character(1)) Parameter of the sequential feature selection. A character representing the method. Possible values are sfs (forward search), sbs (backward search), sffs (floating forward search) and sfbs (floating backward search).
- **alpha** (numeric(1)) Parameter of the sequential feature selection. Minimal required value of improvement difference for a forward / adding step. Default is 0.01.
- **beta** (numeric(1)) Parameter of the sequential feature selection. Minimal required value of improvement difference for a backward / removing step. Negative values imply that you allow a slight decrease for the removal of a feature. Default is -0.001.

Value

(FeatSelControl). The specific subclass is one of FeatSelControlExhaustive, FeatSelControlRandom, FeatSelControlSequential, FeatSelControlGA.

References

See Also

Other featsel: analyzeFeatSelResult(), getFeatSelResult(), makeFeatSelWrapper(), selectFeatures()
FeatSelResult

Result of feature selection.

Description

Container for results of feature selection. Contains the obtained features, their performance values and the optimization path which lead there. You can visualize it using `analyzeFeatSelResult`.

Details

Object members:

- **learner** (**Learner**): Learner that was optimized.
- **control** (**FeatSelControl**): Control object from feature selection.
- **x** (**character**): Vector of feature names identified as optimal.
- **y** (**numeric**): Performance values for optimal `x`.
- **threshold** (**numeric**): Vector of finally found and used thresholds if `tune.threshold` was enabled in `FeatSelControl`, otherwise not present and hence NULL.
- **opt.path** (**ParamHelpers::OptPath**): Optimization path which lead to `x`.

filterFeatures

Filter features by thresholding filter values.

Description

First, calls `generateFilterValuesData`. Features are then selected via `select` and `val`.

Usage

```r
filterFeatures(
  task,
  method = "randomForestSRC_importance",
  fval = NULL,
  perc = NULL,
  abs = NULL,
  threshold = NULL,
  fun = NULL,
  fun.args = NULL,
  mandatory.feat = NULL,
  select.method = NULL,
  base.methods = NULL,
  cache = FALSE,
  ...
)
```
Arguments

- **task**: (Task)
 The task.
- **method**: (character(1))
 See `listFilterMethods`. Default is “randomForestSRC_importance”.
- **fval**: (FilterValues)
 Result of `generateFilterValuesData`. If you pass this, the filter values in the object are used for feature filtering. `method` and ... are ignored then. Default is `NULL` and not used.
- **perc**: (numeric(1))
 If set, select `perc*100` top scoring features. `perc = 1` means to select all features. Mutually exclusive with arguments `abs`, `threshold` and `fun`.
- **abs**: (numeric(1))
 If set, select `abs` top scoring features. Mutually exclusive with arguments `perc`, `threshold` and `fun`.
- **threshold**: (numeric(1))
 If set, select features whose score exceeds `threshold`. Mutually exclusive with arguments `perc`, `abs` and `fun`.
- **fun**: (function)
 If set, select features via a custom thresholding function, which must return the number of top scoring features to select. Mutually exclusive with arguments `perc`, `abs` and `threshold`.
- **fun.args**: (any)
 Arguments passed to the custom thresholding function.
- **mandatory.feat**: (character)
 Mandatory features which are always included regardless of their scores
- **select.method**: If multiple methods are supplied in argument `method`, specify the method that is used for the final subsetting.
- **base.methods**: If method is an ensemble filter, specify the base filter methods which the ensemble method will use.
- **cache**: (character(1) | logical)
 Whether to use caching during filter value creation. See details.
- **...**: (any)
 Passed down to selected filter method.

Value

- **Task**.

Caching

If `cache = TRUE`, the default mlr cache directory is used to cache filter values. The directory is operating system dependent and can be checked with `getCacheDir()`.

The default cache can be cleared with `deleteCacheDir()`. Alternatively, a custom directory can be passed to store the cache.
Note that caching is not thread safe. It will work for parallel computation on many systems, but there is no guarantee.

Simple and ensemble filters

Besides passing (multiple) simple filter methods you can also pass an ensemble filter method (in a list). The ensemble method will use the simple methods to calculate its ranking. See `listFilterEnsembleMethods()` for available ensemble methods.

See Also

Other filter: `generateFilterValuesData()`, `getFilteredFeatures()`, `listFilterEnsembleMethods()`, `listFilterMethods()`, `makeFilterEnsemble()`, `makeFilterWrapper()`, `makeFilter()`, `plotFilterValues()`

Examples

```r
# simple filter
filterFeatures(iris.task, method = "FSelectorRcpp_gain.ratio", abs = 2)
# ensemble filter
filterFeatures(iris.task, method = "E-min",
              base.methods = c("FSelectorRcpp_gain.ratio",
                                "FSelectorRcpp_information.gain"), abs = 2)
```

friedmanPostHocTestBMR

Perform a posthoc Friedman-Nemenyi test.

Description

Performs a `PMCMRplus::frdAllPairsNemenyiTest` for a `BenchmarkResult` and a selected measure. This means all pairwise comparisons of learners are performed. The null hypothesis of the post hoc test is that each pair of learners is equal. If the null hypothesis of the included ad hoc stats::friedman.test can be rejected an object of class pairwise.htest is returned. If not, the function returns the corresponding friedman.test.

Note that benchmark results for at least two learners on at least two tasks are required.

Usage

```r
friedmanPostHocTestBMR(
  bmr,
  measure = NULL,
  p.value = 0.05,
  aggregation = "default"
)
```
Arguments

- **bmr** (BenchmarkResult): Benchmark result.
- **measure** (Measure): Performance measure. Default is the first measure used in the benchmark experiment.
- **p.value** (numeric(1)): p-value for the tests. Default: 0.05
- **aggregation** (character(1)): “mean” or “default”. See `getBMRAggrPerformances` for details on “default”.

Value

(pairwise.htest): See PMCMRplus::frdAllPairsNemenyiTest for details. Additionally two components are added to the list:

- **f.rejnull** (logical(1)): Whether the according friedman.test rejects the Null hypothesis at the selected p.value
- **crit.difference** (list(2)): Minimal difference the mean ranks of two learners need to have in order to be significantly different

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(), getBMRMMeasureIds(), getBMRMMeasures(), getBMRMModels(), getBMRMPerformances(), getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRRboxplots(), plotBMRRanksAsBarChart(), plotBMRSsummary(), plotCritDifferences(), reduceBatchmarkResults()

Examples

see benchmark

friedmanTestBMR Perform overall Friedman test for a BenchmarkResult.

Description

Performs a stats::friedman.test for a selected measure. The null hypothesis is that apart from an effect of the different (Task), the location parameter (aggregated performance measure) is the same for each Learner. Note that benchmark results for at least two learners on at least two tasks are required.
Usage

friedmanTestBMR(bmr, measure = NULL, aggregation = "default")

Arguments

bmr (BenchmarkResult)
 Benchmark result.
measure (Measure)
 Performance measure. Default is the first measure used in the benchmark experiment.
aggregation (character(1))
 “mean” or “default”. See getBMRAggrPerformances for details on “default”.

Value

(htest): See stats::friedman.test for details.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMLearnerIds(), getBMLearnerShortNames(),
getBMLearners(), getBMRMeasureIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(),
getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(),
plotBMRRanksAsBarChart(), plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()

Examples

see benchmark

fuelsubset.task FuelSubset functional data regression task.

Description

Contains the task (fuelsubset.task). 2 functional covariates and 1 scalar covariate. You have to predict the heat value of some fuel based on the ultraviolet radiation spectrum and infrared ray radiation and one scalar column called h2o.

Details

The features and grids are scaled in the same way as in FDboost::FDboost.

References

generateCalibrationData

Generate classifier calibration data.

Description

A calibrated classifier is one where the predicted probability of a class closely matches the rate at which that class occurs, e.g. for data points which are assigned a predicted probability of class A of .8, approximately 80 percent of such points should belong to class A if the classifier is well calibrated. This is estimated empirically by grouping data points with similar predicted probabilities for each class, and plotting the rate of each class within each bin against the predicted probability bins.

Usage

generateCalibrationData(obj, breaks = "Sturges", groups = NULL, task.id = NULL)

Arguments

- **obj** (list of Prediction | list of ResampleResult | BenchmarkResult): Single prediction object, list of them, single resample result, list of them, or a benchmark result. In case of a list probably produced by different learners you want to compare, then name the list with the names you want to see in the plots, probably learner shortnames or ids.

- **breaks** (character(1) | numeric): If character(1), the algorithm to use in generating probability bins. See hist for details. If numeric, the cut points for the bins. Default is “Sturges”.

- **groups** (integer(1)): The number of bins to construct. If specified, breaks is ignored. Default is NULL.

- **task.id** (character(1)): Selected task in BenchmarkResult to do plots for, ignored otherwise. Default is first task.

Value

- **CalibrationData**: A list containing:

 - **proportion**: data.frame with columns:
 - Learner: Name of learner.
 - bin: Bins calculated according to the breaks or groups argument.
 - Class: Class labels (for binary classification only the positive class).
 - Proportion: Proportion of observations from class Class among all observations with posterior probabilities of class Class within the interval given in bin.
data frame with columns:

- Learner Name of learner.
- truth True class label.
- Class Class labels (for binary classification only the positive class).
- Probability Predicted posterior probability of Class.
- bin Bin corresponding to Probability.

(task)

Task description.

References

See Also

Other generate_plot_data: generateCritDifferencesData(), generateFeatureImportanceData(), generateFilterValuesData(), generateLearningCurveData(), generatePartialDependenceData(), generateThreshVsPerfData(), plotFilterValues()

Other calibration: plotCalibration()

generateCritDifferencesData

Generate data for critical-differences plot.

Description

Generates data that can be used to plot a critical differences plot. Computes the critical differences according to either the "Bonferroni-Dunn" test or the "Nemenyi" test. "Bonferroni-Dunn" usually yields higher power as it does not compare all algorithms to each other, but all algorithms to a baseline instead. Learners are drawn on the y-axis according to their average rank. For test = "nemenyi" a bar is drawn, connecting all groups of not significantly different learners. For test = "bd" an interval is drawn around the algorithm selected as a baseline. All learners within this interval are not significantly different from the baseline. Calculation:

\[CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}} \]

Where \(q_{\alpha} \) is based on the studentized range statistic. See references for details.
Usage

generateCritDifferencesData(
 bmr,
 measure = NULL,
 p.value = 0.05,
 baseline = NULL,
 test = "bd"
)

Arguments

bmr (BenchmarkResult)
Benchmark result.

measure (Measure)
Performance measure. Default is the first measure used in the benchmark experiment.

p.value (numeric(1))
P-value for the critical difference. Default: 0.05

baseline (character(1)): (learner.id)
Select a learner.id as baseline for the test = "bd" ("Bonferroni-Dunn") critical differences diagram. The critical difference interval will then be positioned around this learner. Defaults to best performing algorithm.
For test = "nemenyi", no baseline is needed as it performs all pairwise comparisons.

test (character(1))
Test for which the critical differences are computed.
"bd" for the Bonferroni-Dunn Test, which is comparing all classifiers to a baseline, thus performing a comparison of one classifier to all others.
Algorithms not connected by a single line are statistically different from the baseline.
"nemenyi" for the PMCMRplus::frdAllPairsNemenyiTest which is comparing all classifiers to each other. The null hypothesis that there is a difference between the classifiers can not be rejected for all classifiers that have a single grey bar connecting them.

Value

(critDifferencesData). List containing:

data (data.frame) containing the info for the descriptive part of the plot
friedman.nemenyi.test (list) of class pairwise.htest contains the calculated PMCMRplus::frdAllPairsNemenyiTest
cd.info (list) containing info on the critical difference and its positioning
baseline baseline chosen for plotting
p.value p.value used for the PMCMRplus::frdAllPairsNemenyiTest and for computation of the critical difference
generateFeatureImportanceData

Generate feature importance.

Description

Estimate how important individual features or groups of features are by contrasting prediction performances. For method “permutation.importance” compute the change in performance from permuting the values of a feature (or a group of features) and compare that to the predictions made on the unmcuted data.

Usage

```r
generateFeatureImportanceData(
  task,
  method = "permutation.importance",
  learner,
  features = getTaskFeatureNames(task),
  interaction = FALSE,
  measure,
  contrast = function(x, y) x - y,
  aggregation = mean,
  nmc = 50L,
  replace = TRUE,
  local = FALSE,
  show.info = FALSE
)
```

Arguments

- **task** *(Task)*
 - The task.
- **method** *(character(1))*
 - The method used to compute the feature importance. The only method available is “permutation.importance”. Default is “permutation.importance”.

See Also

Other `generate_plot_data`: `generateCalibrationData()`, `generateFeatureImportanceData()`, `generateFilterValuesData()`, `generateLearningCurveData()`, `generatePartialDependenceData()`, `generateThreshVsPerfData()`, `plotFilterValues()`.

Other benchmark: `BenchmarkResult`, `batchmark()`, `convertBMRToRankMatrix()`, `friedmanPostHocTestBMR()`, `friedmanTestBMR()`, `getBMRAggrPerformances()`, `getBMRFeatSelResults()`, `getBMRFilteredFeatures()`, `getBMRFeatSelResults()`, `getBMRLearnernShortNames()`, `getBMRLearnerners()`, `getBMRMeasureIds()`, `getBMRMeasures()`, `getBMRModels()`, `getBMRPerformances()`, `getBMRpredictions()`, `getBMRTaskDescs()`, `getBMRTaskIds()`, `getBMRTuneResults()`, `plotBMRBoxplots()`, `plotBMRRanksAsBarChart()`, `plotBMRSummary()`, `plotCritDifferences()`, `reduceBatchmarkResults()`.
generateFeatureImportanceData

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

features character
The features to compute the importance of. The default is all of the features contained in the Task.

interaction logical(1)
Whether to compute the importance of the features argument jointly. For method = "permutation.importance" this entails permuting the values of all features together and then contrasting the performance with that of the performance without the features being permuted. The default is FALSE.

measure Measure
Performance measure. Default is the first measure used in the benchmark experiment.

contrast function
A difference function that takes a numeric vector and returns a numeric vector of the same length. The default is element-wise difference between the vectors.

aggregation function
A function which aggregates the differences. This function must take a numeric vector and return a numeric vector of length 1. The default is mean.

nmc integer(1)
The number of Monte-Carlo iterations to use in computing the feature importance. If nmc == -1 and method = "permutation.importance" then all permutations of the features are used. The default is 50.

replace logical(1)
Whether or not to sample the feature values with or without replacement. The default is TRUE.

local logical(1)
Whether to compute the per-observation importance. The default is FALSE.

show.info logical(1)
Whether progress output (feature name, time elapsed) should be displayed.

Value

(FeatureImportance). A named list which contains the computed feature importance and the input arguments.

Object members:

res (data.frame)
Has columns for each feature or combination of features (colon separated) for which the importance is computed. A row corresponds to importance of the feature specified in the column for the target.

interaction logical(1)
Whether or not the importance of the features was computed jointly rather than individually.

measure (Measure)
The measure used to compute performance.

contrast
(function)
The function used to compare the performance of predictions.

aggregation
(function)
The function which is used to aggregate the contrast between the performance of predictions across Monte-Carlo iterations.

replace
(logical(1))
Whether or not, when method = "permutation.importance", the feature values are sampled with replacement.

nmc
(integer(1))
The number of Monte-Carlo iterations used to compute the feature importance. When nmc == -1 and method = "permutation.importance" all permutations are used.

local
(logical(1))
Whether observation-specific importance is computed for the features.

References

See Also
Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFilterValuesData(), generateLearningCurveData(), generatePartialDependenceData(), generateThreshVsPerfData(), plotFilterValues()

Examples

```r
lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, iris.task)
imp = generateFeatureImportanceData(iris.task, "permutation.importance", lrn, "Petal.Width", nmc = 10L, local = TRUE)
```

`generateFilterValuesData`

Calculates feature filter values.

Description
Calculates numerical filter values for features. For a list of features, use `listFilterMethods`.
Usage

```r
generateFilterValuesData(
  task,
  method = "randomForestSRC_importance",
  nselect = getTaskNFeats(task),
  ..., 
  more.args = list()
)
```

Arguments

- **task** *(Task)*
 The task.

- **method** *(character | list)*
 Filter method(s). In case of ensemble filters the list notation needs to be used. See the examples for more information. Default is “randomForestSRC_importance”.

- **nselect** *(integer(1))*
 Number of scores to request. Scores are getting calculated for all features per default.

- **...** *(any)*
 Passed down to selected method. Can only be use if `method` contains one element.

- **more.args** *(named list)*
 Extra args passed down to filter methods. List elements are named with the filter method name the args should be passed down to. A more general and flexible option than `...`. Default is empty list.

Value

- *(FilterValues)*. A list containing:

 - **task.desc** *(TaskDesc)*
 Task description.

 - **data** *(data.frame)* with columns:
 - **name**(character)
 Name of feature.
 - **type**(character)
 Feature column type.
 - **method**(numeric)
 One column for each method with the feature importance values.

Simple and ensemble filters

Besides passing (multiple) simple filter methods you can also pass an ensemble filter method (in a list). The ensemble method will use the simple methods to calculate its ranking. See `listFilterEnsembleMethods()` for available ensemble methods.
generateHyperParsEffectData

Generate cleaned hyperparameter effect data from a tuning result or from a nested cross-validation tuning result. The object returned can be used for custom visualization or passed downstream to an out of the box mlr method, `plotHyperParsEffect`.

Description

Generate cleaned hyperparameter effect data from a tuning result or from a nested cross-validation tuning result. The object returned can be used for custom visualization or passed downstream to an out of the box mlr method, `plotHyperParsEffect`.

Usage

```r
generateHyperParsEffectData(
  tune.result,
  include.diagnostics = FALSE,
  trafo = FALSE,
  partial.dep = FALSE
)
```

Arguments

- `tune.result` *(TuneResult | ResampleResult)*

 Result of `tuneParams` (or `resample` ONLY when used for nested cross-validation). The tuning result (or results if the output is from nested cross-validation), also containing the optimizer results. If nested CV output is passed, each element in the list will be considered a separate run, and the data from each run will be included in the dataframe within the returned `HyperParsEffectData`.

- `include.diagnostics` *(logical(1))*

 Should diagnostic info (eol and error msg) be included? Default is `FALSE`.
Should the units of the hyperparameter path be converted to the transformed scale? This is only useful when trafo was used to create the path. Default is FALSE.

Should partial dependence be requested based on converting to reg task? This sets a flag so that we know to use partial dependence downstream. This should most likely be set to TRUE if 2 or more hyperparameters were tuned simultaneously. Partial dependence should always be requested when more than 2 hyperparameters were tuned simultaneously. Setting to TRUE will cause plotHyperParsEffect to automatically plot partial dependence when called downstream. Default is FALSE.

Value

(HyperParsEffectData) Object containing the hyperparameter effects dataframe, the tuning performance measures used, the hyperparameters used, a flag for including diagnostic info, a flag for whether nested cv was used, a flag for whether partial dependence should be generated, and the optimization algorithm used.

Examples

```r
## Not run:
# 3-fold cross validation
ps = makeParamSet(makeDiscreteParam("C", values = 2^(-4:4)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
res = tuneParams("classif.ksvm", task = pid.task, resampling = rdesc,
  par.set = ps, control = ctrl)
data = generateHyperParsEffectData(res)
plt = plotHyperParsEffect(data, x = "C", y = "mmce.test.mean")
plt + ylab("Misclassification Error")

# nested cross validation
ps = makeParamSet(makeDiscreteParam("C", values = 2^(-4:4)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
lrn = makeTuneWrapper("classif.ksvm", control = ctrl,
  resampling = rdesc, par.set = ps)
res = resample(lrn, task = pid.task, resampling = cv2,
  extract = getTuneResult)
data = generateHyperParsEffectData(res)
plotHyperParsEffect(data, x = "C", y = "mmce.test.mean", plot.type = "line")

## End(Not run)
```
generateLearningCurveData

Generates a learning curve.

Description

Observe how the performance changes with an increasing number of observations.

Usage

generateLearningCurveData(
 learners,
 task,
 resampling = NULL,
 percs = seq(0.1, 1, by = 0.1),
 measures,
 stratify = FALSE,
 show.info = getMlrOption("show.info")
)

Arguments

learners ([list of] Learner)
 Learning algorithms which should be compared.

task (Task)
 The task.

resampling (ResampleDesc | ResampleInstance)
 Resampling strategy to evaluate the performance measure. If no strategy is given
 a default "Holdout" will be performed.

percs (numeric)
 Vector of percentages to be drawn from the training split. These values represent
 the x-axis. Internally makeDownsampleWrapper is used in combination with
 benchmark. Thus for each percentage a different set of observations is drawn
 resulting in noisy performance measures as the quality of the sample can differ.

measures ([list of] Measure)
 Performance measures to generate learning curves for, representing the y-axis.

stratify (logical(1))
 Only for classification: Should the downsampled data be stratified according to
 the target classes?

show.info (logical(1))
 Print verbose output on console? Default is set via configureMlr.
generatePartialDependenceData

Value

(LearningCurveData). A list containing:

- The Task
- List of Measure
 Performance measures
- data (data.frame) with columns:
 - learner Names of learners.
 - percentage Percentages drawn from the training split.
 - One column for each Measure passed to generateLearningCurveData.

See Also

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFeatureImportanceData(), generateFilterValuesData(), generatePartialDependenceData(), generateThreshVsPerfData(), plotFilterValues()

Other learning_curve: plotLearningCurve()

Examples

r = generateLearningCurveData(list("classif.rpart", "classif.knn"),
task = sonar.task, percs = seq(0.2, 1, by = 0.2),
measures = list(tp, fp, tn, fn),
resampling = makeResampleDesc(method = "Subsample", iters = 5),
show.info = FALSE)
plotLearningCurve(r)

Usage

generatePartialDependenceData(
 obj, input, features = NULL, interaction = FALSE,
generatePartialDependenceData

derivative = FALSE,
individual = FALSE,
fun = mean,
bounds = c(qnorm(0.025), qnorm(0.975)),
uniform = TRUE,
n = c(10, NA),
...
)

Arguments

obj (WrappedModel)
Result of train.

input (data.frame | Task)
Input data.

features character
A vector of feature names contained in the training data. If not specified all features in the input will be used.

interaction (logical(1))
Whether the features should be interacted or not. If TRUE then the Cartesian product of the prediction grid for each feature is taken, and the partial dependence at each unique combination of values of the features is estimated. Note that if the length of features is greater than two, plotPartialDependence cannot be used. If FALSE each feature is considered separately. In this case features can be much longer than two. Default is FALSE.

derivative (logical(1))
Whether or not the partial derivative of the learned function with respect to the features should be estimated. If TRUE interaction must be FALSE. The partial derivative of individual observations may be estimated. Note that computation time increases as the learned prediction function is evaluated at gridsize points * the number of points required to estimate the partial derivative. Additional arguments may be passed to numDeriv::grad (for regression or survival tasks) or numDeriv::jacobian (for classification tasks). Note that functions which are not smooth may result in estimated derivatives of 0 (for points where the function does not change within +/- epsilon) or estimates trending towards +/- infinity (at discontinuities). Default is FALSE.

individual (logical(1))
Whether to plot the individual conditional expectation curves rather than the aggregated curve, i.e., rather than aggregating (using fun) the partial dependences of features, plot the partial dependences of all observations in data across all values of the features. The algorithm is developed in Goldstein, Kapelner, Bleich, and Pitkin (2015). Default is FALSE.

fun function
A function which operates on the output on the predictions made on the input data. For regression this means a numeric vector, and, e.g., for a multiclass classification problem, this might instead be probabilities which are returned as a
numeric matrix. This argument can return vectors of arbitrary length, however, if their length is greater than one, they must be named, e.g., `fun = mean` or `fun = function(x) c("mean" = mean(x),"variance" = var(x))`. The default is the mean, unless `obj` is classification with `predict.type = "response"` in which case the default is the proportion of observations predicted to be in each class.

- **bounds**
 - `numeric(2)`
 - The value (lower, upper) the estimated standard error is multiplied by to estimate the bound on a confidence region for a partial dependence. Ignored if `predict.type != "se"` for the learner. Default is the 2.5 and 97.5 quantiles (-1.96, 1.96) of the Gaussian distribution.

- **uniform**
 - `logical(1)`
 - Whether or not the prediction grid for the features is a uniform grid of size `n[1]` or sampled with replacement from the input. Default is `TRUE`.

- **n**
 - `integer(2)`
 - The first element of `n` gives the size of the prediction grid created for each feature. The second element of `n` gives the size of the sample to be drawn without replacement from the input data. Setting `n[2]` less than the number of rows in the input will decrease computation time. The default for `n[1]` is 10, and the default for `n[2]` is the number of rows in the input.

- **...**
 - additional arguments to be passed to `mmpf::marginalPrediction`.

Value

- **PartialDependenceData**. A named list, which contains the partial dependence, input data, target, features, task description, and other arguments controlling the type of partial dependences made.

Object members:

- **data**
 - `data.frame`
 - Has columns for the prediction: one column for regression and survival analysis, and a column for class and the predicted probability for classification as well as a column for each element of `features`. If `individual = TRUE` then there is an additional column `idx` which gives the index of the data that each prediction corresponds to.

- **task.desc**
 - `TaskDesc`
 - Task description.

- **target**
 - Target feature for regression, target feature levels for classification, survival and event indicator for survival.

- **features**
 - `character`
 - Features argument input.

- **interaction**
 - `logical(1)`
 - Whether or not the features were interacted (i.e. conditioning).

- **derivative**
 - `logical(1)`
 - Whether or not the partial derivative was estimated.

- **individual**
 - `logical(1)`
 - Whether the partial dependences were aggregated or the individual curves are retained.
References

See Also

Other partial_dependence: plotPartialDependence()

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFeatureImportanceData(), generateFilterValuesData(), generateLearningCurveData(), generateThreshVsPerfData(), plotFilterValues()

Examples

lrn = makeLearner("regr.svm")
fit = train(lrn, bh.task)
pd = generatePartialDependenceData(fit, bh.task, "lstat")
plotPartialDependence(pd, data = getTaskData(bh.task))

lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, iris.task)
pd = generatePartialDependenceData(fit, iris.task, "Petal.Width")
plotPartialDependence(pd, data = getTaskData(iris.task))

generateThreshVsPerfData

Generate threshold vs. performance(s) for 2-class classification.

Description

Generates data on threshold vs. performance(s) for 2-class classification that can be used for plotting.

Usage

generateThreshVsPerfData(
 obj,
 measures,
 gridsize = 100L,
 aggregate = TRUE,
 task.id = NULL
)
getBMRAggrPerformances

Arguments

obj (list of Prediction | list of ResampleResult | BenchmarkResult)
Single prediction object, list of them, single resample result, list of them, or a benchmark result. In case of a list probably produced by different learners you want to compare, then name the list with the names you want to see in the plots, probably learner shortnames or ids.

measures (Measure | list of Measure)
Performance measure(s) to evaluate. Default is the default measure for the task, see here getDefaultMeasure.

gridsize (integer(1))
Grid resolution for x-axis (threshold). Default is 100.

aggregate (logical(1))
Whether to aggregate ResamplePredictions or to plot the performance of each iteration separately. Default is TRUE.

task.id (character(1))
Selected task in BenchmarkResult to do plots for, ignored otherwise. Default is first task.

Value

(ThreshVsPerfData). A named list containing the measured performance across the threshold grid, the measures, and whether the performance estimates were aggregated (only applicable for (list of) ResampleResults).

See Also

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFeatureImportanceData(), generateFilterValuesData(), generateLearningCurveData(), generatePartialDependenceData(), plotFilterValues()

Other thresh_vs_perf: plotROCCurves(), plotThreshVsPerf()

getBMRAggrPerformances

Extract the aggregated performance values from a benchmark result.

Description

Either a list of lists of “aggr” numeric vectors, as returned by resample, or these objects are rbind-ed with extra columns “task.id” and “learner.id”.

getBMRAggrPerformances

Usage

getBMRAggrPerformances(
 bmr,
 task.ids = NULL,
 learner.ids = NULL,
 as.df = FALSE,
 drop = FALSE
)

Arguments

 bmr (BenchmarkResult)
 Benchmark result.

 task.ids (character(1))
 Restrict result to certain tasks. Default is all.

 learner.ids (character(1))
 Restrict result to certain learners. Default is all.

 as.df (character(1))
 Return one data.frame as result - or a list of lists of objects?. Default is FALSE.

 drop (logical(1))
 If drop is FALSE (the default), a nested list with the following structure is re-
 turned:
 res[task.ids][learner.ids].
 If drop is set to TRUE it is checked if the list structure can be simplified.
 If only one learner was passed, a list with entries for each task is returned.
 If only one task was passed, the entries are named after the corresponding
 learner.
 For an experiment with both one task and learner, the whole list structure is re-
 moved.
 Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRFeatSelResults(),
getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasureIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()
getBMRFeatSelResults

Extract the feature selection results from a benchmark result.

Description

Returns a nested list of FeatSelResults. The first level of nesting is by data set, the second by learner, the third for the benchmark resampling iterations. If as.df is TRUE, a data frame with "task.id", "learner.id", the resample iteration and the selected features is returned.

Note that if more than one feature is selected and a data frame is requested, there will be multiple rows for the same dataset-learner-iteration; one for each selected feature.

Usage

getBMRFeatSelResults(
 bmr,
 task.ids = NULL,
 learner.ids = NULL,
 as.df = FALSE,
 drop = FALSE
)

Arguments

bmr (BenchmarkResult) Benchmark result.
task.ids (character(1)) Restrict result to certain tasks. Default is all.
learner.ids (character(1)) Restrict result to certain learners. Default is all.
as.df (character(1)) Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
drop (logical(1)) If drop is FALSE (the default), a nested list with the following structure is returned:
 res[task.ids][learner.ids].
 If drop is set to TRUE it is checked if the list structure can be simplified.
 If only one learner was passed, a list with entries for each task is returned.
 If only one task was passed, the entries are named after the corresponding learner.
 For an experiment with both one task and learner, the whole list structure is removed.
 Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.
getBMRFilteredFeatures

Extract the feature selection results from a benchmark result.

Description

Returns a nested list of characters. The first level of nesting is by data set, the second by learner, the third for the benchmark resampling iterations. The list at the lowest level is the list of selected features. If as.df is TRUE, a data frame with “task.id”, “learner.id”, the resample iteration and the selected features is returned.

Note that if more than one feature is selected and a data frame is requested, there will be multiple rows for the same dataset-learner-iteration; one for each selected feature.

Usage

getBMRFilteredFeatures(
 bmr,
 task.ids = NULL,
 learner.ids = NULL,
 as.df = FALSE,
 drop = FALSE
)

Arguments

bmr (BenchmarkResult) Benchmark result.
task.ids (character(1)) Restrict result to certain tasks. Default is all.
learner.ids (character(1)) Restrict result to certain learners. Default is all.
as.df (character(1)) Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
drop (logical(1)) If drop is FALSE (the default), a nested list with the following structure is returned: res[task.ids][learner.ids].

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(), getBMRMergeIds(), getBMRMergeResults(), getBMRMergeModels(), getBMRMergePerformances(), getBMRMergePredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()
If drop is set to TRUE it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding
learner.
For an experiment with both one task and learner, the whole list structure is re-
moved.
Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.

See Also

Other benchmark: BenchmarkResult, benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(),
getBMRAggrPerformances(), getBMRFeatSelResults(), getBMRLearnerIds(),
getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasureIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()
getBMRLearnerShortNames

Return learner short names used in benchmark.

Description

Gets the learner short names of the learners used in a benchmark experiment.

Usage

getBMRLearnerShortNames(bmr)

Arguments

bmr (BenchmarkResult)
Benchmark result.

Value

(list).

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRMergeIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMTuneResults(), plotBMROxplots(), plotBMRanksAsBarChart(),
plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()
getBMRMeasureIds

Value

(character).

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearners(), getBMRMeasureIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()

Description

Gets the IDs of the measures used in a benchmark experiment.

Usage

getBMRMeasureIds(bmr)

Arguments

bmr (BenchmarkResult) Benchmark result.

Value

(list). See above.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()
getBMRMeasures

Return measures used in benchmark.

Description

Gets the measures used in a benchmark experiment.

Usage

getBMRMeasures(bmr)

Arguments

bmr (BenchmarkResult)
Benchmark result.

Value

(list). See above.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(),
getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFiltereFeatures(), getBMRLearnedIds(), getBMRLearnedShortNames(),
getBMRLearners(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTestResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()

getBMRModels

Extract all models from benchmark result.

Description

A list of lists containing all WrappedModels trained in the benchmark experiment.

If models is FALSE in the call to benchmark, the function will return NULL.

Usage

getBMRModels(bmr, task.ids = NULL, learner.ids = NULL, drop = FALSE)
getBMRPerformances

Extract the test performance values from a benchmark result.

Description

Either a list of lists of “measure.test” data.frames, as returned by resample, or these objects are rbind-ed with extra columns “task.id” and “learner.id”.

Usage

getBMRPerformances(
 bmr,
 task.ids = NULL,
 learner.ids = NULL,
)
getBMRPredictions

Extract the predictions from a benchmark result.

Arguments

- `bmr` *(BenchmarkResult)*
 Benchmark result.
- `task.ids` *(character(1))*
 Restrict result to certain tasks. Default is all.
- `learner.ids` *(character(1))*
 Restrict result to certain learners. Default is all.
- `as.df` *(character(1))*
 Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
- `drop` *(logical(1))*
 If drop is FALSE (the default), a nested list with the following structure is returned:
 res[task.ids][learner.ids].
 If drop is set to TRUE it is checked if the list structure can be simplified.
 If only one learner was passed, a list with entries for each task is returned.
 If only one task was passed, the entries are named after the corresponding learner.
 For an experiment with both one task and learner, the whole list structure is removed.
 Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.

See Also

Other benchmark: `BenchmarkResult`, `batchmark()`, `benchmark()`, `convertBMRToRankMatrix()`,
`friedmanPostHocTestBMR()`, `friedmanTestBMR()`, `generateCritDifferencesData()`,
`getBMRAggrPerformances()`, `getBMRFeatSelResults()`, `getBMRFilteredFeatures()`,
`getBMRLearnerIds()`, `getBMRLearnerShortNames()`,
`getBMRLearners()`, `getBMRMeasureIds()`, `getBMRMeasures()`,
`getBMRTaskDescs()`, `getBMRTaskIds()`, `getBMRTuneResults()`, `plotBMRRanksAsBarChart()`,
`plotBMRSummary()`, `plotCritDifferences()`, `reduceBatchmarkResults()`

description

Either a list of lists of ResamplePrediction objects, as returned by resample, or these objects are
rbind-ed with extra columns “task.id” and “learner.id”.

If predict.type is “prob”, the probabilities for each class are returned in addition to the response.
If keep.pred is FALSE in the call to benchmark, the function will return NULL.
getBMRPredictions

Usage

getBMRPredictions(
 bmr,
 task.ids = NULL,
 learner.ids = NULL,
 as.df = FALSE,
 drop = FALSE
)

Arguments

- **bmr** *(BenchmarkResult)*
 Benchmark result.

- **task.ids** *(character(1))*
 Restrict result to certain tasks. Default is all.

- **learner.ids** *(character(1))*
 Restrict result to certain learners. Default is all.

- **as.df** *(character(1))*
 Return one data.frame as result - or a list of lists of objects?. Default is FALSE.

- **drop** *(logical(1))*
 If drop is FALSE (the default), a nested list with the following structure is returned:
 res[task.ids][learner.ids].
 If drop is set to TRUE it is checked if the list structure can be simplified.
 If only one learner was passed, a list with entries for each task is returned.
 If only one task was passed, the entries are named after the corresponding learner.
 For an experiment with both one task and learner, the whole list structure is removed.
 Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRerfilteredFeatures(), getBMLearnerIds(), getBMLearnerShortNames(),
getBMLearners(), getBMRMeasureIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary(), plotCritDifferences(), reduceBatchmarkResults()
getBMRTaskDescs

Extract all task descriptions from benchmark result (DEPRECATED).

Description

A list containing all TaskDescs for each task contained in the benchmark experiment.

Usage

getBMRTaskDescs(bmr)

Arguments

bmr (BenchmarkResult)
Benchmark result.

Value

(list).

getBMRTaskDescs

Extract all task descriptions from benchmark result.

Description

A list containing all TaskDescs for each task contained in the benchmark experiment.

Usage

getBMRTaskDescs(bmr)

Arguments

bmr (BenchmarkResult)
Benchmark result.

Value

(list).
getBMRTaskIds

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMR LearnerIds(), getBMR Learner ShortNames(),
getBMR Learners(), getBMR MeasureIds(), getBMR Measures(), getBMR Models(), getBMR Performances(),
getBMR Predictions(), getBMRTaskIds(), getBMRTuneResults(), plotBMR Boxplots(), plotBMR RanksAsBarChart(),
plotBMR Summary(), plotCritDifferences(), reduceBatchmarkResults()

getBMRTaskIds

Return task ids used in benchmark.

Description

Gets the task IDs used in a benchmark experiment.

Usage

getBMRTaskIds(bmr)

Arguments

bmr

(BenchmarkResult)

Benchmark result.

Value

(character).

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMR LearnerIds(), getBMR Learner ShortNames(),
getBMR Learners(), getBMR MeasureIds(), getBMR Measures(), getBMR Models(), getBMR Performances(),
getBMR Predictions(), getBMRTaskDescs(), getBMRTuneResults(), plotBMR Boxplots(), plotBMR RanksAsBarChart(),
plotBMR Summary(), plotCritDifferences(), reduceBatchmarkResults()
getBMRTuneResults

Extract the tuning results from a benchmark result.

Description

Returns a nested list of TuneResults. The first level of nesting is by data set, the second by learner, the third for the benchmark resampling iterations. If as.df is TRUE, a data frame with the “task.id”, “learner.id”, the resample iteration, the parameter values and the performances is returned.

Usage

getBMRTuneResults(
 bmr,
 task.ids = NULL,
 learner.ids = NULL,
 as.df = FALSE,
 drop = FALSE
)

Arguments

bmr (BenchmarkResult)
Benchmark result.

task.ids (character(1))
Restrict result to certain tasks. Default is all.

learner.ids (character(1))
Restrict result to certain learners. Default is all.

as.df (character(1))
Return one data.frame as result - or a list of lists of objects?. Default is FALSE.

drop (logical(1))
If drop is FALSE (the default), a nested list with the following structure is returned:
res[task.ids][learner.ids].
If drop is set to TRUE it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding learner.
For an experiment with both one task and learner, the whole list structure is removed.
Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.
getCaretParamSet

Get tuning parameters from a learner of the caret R-package.

Description

Constructs a grid of tuning parameters from a learner of the caret R-package. These values are then converted into a list of non-tunable parameters (par.vals) and a tunable ParamHelpers::ParamSet (par.set), which can be used by tuneParams for tuning the learner. Numerical parameters will either be specified by their lower and upper bounds or they will be discretized into specific values.

Usage

getcaretParamSet(learner, length = 3L, task, discretize = TRUE)

Arguments

learner (character(1))
The name of the learner from caret (cf. https://topepo.github.io/caret/available-models.html). Note that the names in caret often differ from the ones in mlr.

length (integer(1))
A length / precision parameter which is used by caret for generating the grid of tuning parameters. caret generates either as many values per tuning parameter / dimension as defined by length or only a single value (in case of non-tunable par.vals).

task (Task)
Learning task, which might be requested for creating the tuning grid.

discretize (logical(1))
Should the numerical parameters be discretized? Alternatively, they will be defined by their lower and upper bounds. The default is TRUE.

Value

(list(2)). A list of parameters:

- par.vals contains a list of all constant tuning parameters
- par.set is a ParamHelpers::ParamSet, containing all the configurable tuning parameters

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRaggrPerformances(), getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMR LearnerIds(), getBMR Learner ShortNames(), getBMR Learners(), getBMR Measure Ids(), getBMR Measures(), getBMR Models(), getBMR Performances(), getBMR Predictions(), getBMR TaskDescs(), getBMR Task Ids(), plotBMRBoxplots(), plotBMR Ranks As Bar Chart(), plotBMR Summary(), plotCrit Differences(), reduceBatchmarkResults()
Examples

```r
if (requireNamespace("caret") && requireNamespace("mlbench")) {
  library(caret)
  classifTask = makeClassifTask(data = iris, target = "Species")

  # (1) classification (random forest) with discretized parameters
  getCaretParamSet("rf", length = 9L, task = classifTask, discretize = TRUE)

  # (2) regression (gradient boosting machine) without discretized parameters
  library(mlbench)
  data(BostonHousing)
  regrTask = makeRegrTask(data = BostonHousing, target = "medv")
  getCaretParamSet("gbm", length = 9L, task = regrTask, discretize = FALSE)
}
```

getClassWeightParam

Get the class weight parameter of a learner.

Description

Gets the class weight parameter of a learner.

Usage

```r
getClassWeightParam(learner, lrn.id = NULL)
```

Arguments

- **learner** *(Learner | character(1))*
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **lrn.id** *(character)*
 Only used for `BaseEnsembles`. It is possible that multiple learners in a base ensemble have a class weight param. Specify the learner from which the class weight should be extracted.

Value

- numeric LearnerParam: A numeric parameter object, containing the class weight parameter of the given learner.

See Also

Other learner: `LearnerProperties`, `getHyperPars()`, `getLearnerId()`, `getLearnerNote()`, `getLearnerPackages()`, `getLearnerParVals()`, `getLearnerParamSet()`, `getLearnerPredictType()`, `getLearnerShortName()`, `getLearnerType()`, `getParamSet()`, `helpLearnerParam()`, `helpLearner()`, `makeLearners()`, `makeLearner()`, `removeHyperPars()`, `setHyperPars()`, `setId()`, `setLearnerId()`, `setPredictThreshold()`, `setPredictType()`
getConfMatrix

Confusion matrix.

Description

getConfMatrix is deprecated. Please use calculateConfusionMatrix.

Calculates confusion matrix for (possibly resampled) prediction. Rows indicate true classes, columns predicted classes.

The marginal elements count the number of classification errors for the respective row or column, i.e., the number of errors when you condition on the corresponding true (rows) or predicted (columns) class. The last element in the margin diagonal displays the total amount of errors.

Note that for resampling no further aggregation is currently performed. All predictions on all test sets are joined to a vector yhat, as are all labels joined to a vector y. Then yhat is simply tabulated vs y, as if both were computed on a single test set. This probably mainly makes sense when cross-validation is used for resampling.

Usage

getConfMatrix(pred, relative = FALSE)

Arguments

- **pred** (Prediction) Prediction object.
- **relative** (logical(1)) If TRUE rows are normalized to show relative frequencies. Default is FALSE.

Value

(matrix). A confusion matrix.

See Also

predict.WrappedModel
getFailureModelDump

Return the error dump of FailureModel.

Description

Returns the error dump that can be used with debugger() to evaluate errors. If configureMlr configuration on.error.dump is FALSE, this returns NULL.

Usage

getFailureModelDump(model)

Arguments

 model (WrappedModel)

 The model.

Value

 (last.dump).
getFailureModelMsg

Return error message of FailureModel.

Description

Such a model is created when one sets the corresponding option in `configureMlr`. If no failure occurred, `NA` is returned.

For complex wrappers this getter returns the first error message encountered in ANY model that failed.

Usage

```r
getFailureModelMsg(model)
```

Arguments

- `model` *(WrappedModel)*
 - The model.

Value

(character(1)).

getFeatSelResult

Returns the selected feature set and optimization path after training.

Description

Returns the selected feature set and optimization path after training.

Usage

```r
getFeatSelResult(object)
```

Arguments

- `object` *(WrappedModel)*
 - Trained Model created with `makeFeatSelWrapper`.

Value

(FeatSelResult).

See Also

Other featsel: `FeatSelControl`, `analyzeFeatSelResult`, `makeFeatSelWrapper`, `selectFeatures`
getFeatureImportance
Calculates feature importance values for trained models.

Description

For some learners it is possible to calculate a feature importance measure. getFeatureImportance extracts those values from trained models. See below for a list of supported learners.

Usage

```r
getFeatureImportance(object, ...)
```

Arguments

- `object`
 (WrappedModel)
 Wrapped model, result of `train()`.
- `...`
 (any)
 Additional parameters, which are passed to the underlying importance value generating function.

Details

- **boosting**
 Measure which accounts the gain of Gini index given by a feature in a tree and the weight of that tree.
- **cforest**
 Permutation principle of the 'mean decrease in accuracy' principle in randomForest. If `auc=TRUE` (only for binary classification), area under the curve is used as measure. The algorithm used for the survival learner is 'extremely slow and experimental; use at your own risk’. See `party::varimp()` for details and further parameters.
- **gbm**
 Estimation of relative influence for each feature. See `gbm::relative.influence()` for details and further parameters.
- **h2o**
 Relative feature importances as returned by `h2o::h2o.varimp()`.
- **randomForest**
 For `type = 2` (the default) the 'MeanDecreaseGini' is measured, which is based on the Gini impurity index used for the calculation of the nodes. Alternatively, you can set `type` to 1, then the measure is the mean decrease in accuracy calculated on OOB data. Note, that in this case the learner’s parameter `importance` needs to be set to be able to compute feature importance values. See `randomForest::importance()` for details.
- **RRF**
 This is identical to randomForest.
- **randomForestSRC**
 This method can calculate feature importance for various measures. By default the Breiman-Cutler permutation method is used. See `randomForestSRC::vimp()` for details.
• ranger
 Supports both measures mentioned above for the randomForest learner. Note, that you need to specifically set the learners parameter importance, to be able to compute feature importance measures. See ranger::importance() and ranger::ranger() for details.

• rpart
 Sum of decrease in impurity for each of the surrogate variables at each node

• xgboost
 The value implies the relative contribution of the corresponding feature to the model calculated by taking each feature’s contribution for each tree in the model. The exact computation of the importance in xgboost is undocumented.

Value
(FeatureImportance) An object containing a data.frame of the variable importances and further information.

getFilteredFeatures
Returns the filtered features.

Description
Returns the filtered features.

Usage
getFilteredFeatures(model)

Arguments
model (WrappedModel)
 Trained Model created with makeFilterWrapper.

Value
(character).

See Also
Other filter: filterFeatures(), generateFilterValuesData(), listFilterEnsembleMethods(), listFilterMethods(), makeFilterEnsemble(), makeFilterWrapper(), makeFilter(), plotFilterValues()
getFunctionalFeatures
Get only functional features from a task or a data.frame.

Description

The parameters “subset”, “features”, and “recode.target” are ignored for the data.frame method.

Usage

```r
getFunctionalFeatures(object, subset = NULL, features, recode.target = "no")
```

```r
## S3 method for class 'Task'
getFunctionalFeatures(object, subset = NULL, features, recode.target = "no")
```

```r
## S3 method for class 'data.frame'
getFunctionalFeatures(object, subset = NULL, features, recode.target = "no")
```

Arguments

- **object**
 - Type: (Task/data.frame)
 - Description: Object to check on.

- **subset**
 - Type: (integer | logical | NULL)
 - Description: Selected cases. Either a logical or an index vector. By default NULL if all observations are used.

- **features**
 - Type: (character | integer | logical)
 - Description: Vector of selected inputs. You can either pass a character vector with the feature names, a vector of indices, or a logical vector. In case of an index vector each element denotes the position of the feature name returned by `getTaskFeatureNames`. Note that the target feature is always included in the resulting task, you should not pass it here. Default is to use all features.

- **recode.target**
 - Type: (character(1))
 - Description: Should target classes be recoded? Supported are binary and multilabel classification and survival. Possible values for binary classification are “01”, “-1+1” and “drop.levels”. In the two latter cases the target vector is converted into a numeric vector. The positive class is coded as “+1” and the negative class either as “0” or “-1”. “drop.levels” will remove empty factor levels in the target column. In the multilabel case the logical targets can be converted to factors with “multilabel.factor”. For survival, you may choose to recode the survival times to “left”, “right” or “interval2” censored times using “lcens”, “rcens” or “icens”, respectively. See `survival::Surv` for the format specification. Default for both binary classification and survival is “no” (do nothing).

Value

Returns a `data.frame` containing only the functional features.
getHomogeneousEnsembleModels

 Deprecated, use getLearnerModel instead.

Description

Deprecated, use getLearnerModel instead.

Usage

getHomogeneousEnsembleModels(model, learner.models = FALSE)

Arguments

model Deprecated.
learner.models Deprecated.

getHyperPars

Get current parameter settings for a learner.

Description

Retrieves the current hyperparameter settings of a learner.

Usage

getHyperPars(learner, for.fun = c("train", "predict", "both"))

Arguments

learner (Learner) The learner.
for.fun (character(1)) Restrict the returned settings to hyperparameters corresponding to when the are used (see ParamHelpers::LearnerParam). Must be a subset of: “train”, “predict” or “both”. Default is c("train","predict","both").

Details

This function only shows hyperparameters that differ from the learner default (because mlr changed the default) or if the user set hyperparameters manually during learner creation. If you want to have an overview of all available hyperparameters use getParamSet().

Value

(list). A named list of values.
getLearnerId

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setPredictThreshold(), setPredictType()

Examples

getHyperPars(makeLearner("classif.ranger"))

set learner hyperparameter `mtry` manually
getHyperPars(makeLearner("classif.ranger", mtry = 100))

getLearnerId

Get the ID of the learner.

Description

Get the ID of the learner.

Usage

getLearnerId(learner)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

Value

(character(1)).

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setPredictThreshold(), setPredictType()
getLearnerModel

Get underlying R model of learner integrated into mlr.

Description

Get underlying R model of learner integrated into mlr.

Usage

getLearnerModel(model, more.unwrap = FALSE)

Arguments

- model (WrappedModel)
 The model, returned by e.g., train.
- more.unwrap (logical(1))
 Some learners are not basic learners from R, but implemented in mlr as meta-techniques. Examples are everything that inherits from HomogeneousEnsemble. In these cases, the learner.model is often a list of mlr WrappedModels. This option allows to strip them further to basic R models. The option is simply ignored for basic learner models. Default is FALSE.

Value

(any). A fitted model, depending the learner / wrapped package. E.g., a model of class rpart::rpart for learner “classif.rpart”.

getLearnerNote

Get the note for the learner.

Description

Get the note for the learner.

Usage

getLearnerNote(learner)

Arguments

- learner (Learner | character(1))
 The learner. If you pass a string the learner will be created via makeLearner.

Value

(character).
getLearnerParamSet

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(),
getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(), helpLearner(),
makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

getLearnerPackages
Get the required R packages of the learner.

Description

Get the R packages the learner requires.

Usage

getLearnerPackages(learner)

Arguments

learner
(Learner | character(1))

The learner. If you pass a string the learner will be created via makeLearner.

Value

(character).

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(),
getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(), helpLearner(),
makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

getLearnerParamSet
Get the parameter set of the learner.

Description

Alias for getParamSet.

Usage

getLearnerParamSet(learner)
getLearnerParVals

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

Value

ParamSet.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(),getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setPredictThreshold(), setPredictType()

getLearnerParVals

Get the parameter values of the learner.

Description

Alias for getHyperPars.

Usage

getLearnerParVals(learner, for.fun = c("train", "predict", "both"))

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

for.fun (character(1))
Restrict the returned settings to hyperparameters corresponding to when they are used (see ParamHelpers::LearnerParam). Must be a subset of: "train", "predict" or "both". Default is c("train", "predict", "both").

Value

(list). A named list of values.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(),getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setPredictThreshold(), setPredictType()
getLearnerPredictType Get the predict type of the learner.

Description
Get the predict type of the learner.

Usage
getLearnerPredictType(learner)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

Value
(character(1)).

See Also
Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(), helpLearner(),
makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

getLearnerShortName Get the short name of the learner.

Description
For an ordinary learner simply its short name is returned. For wrapped learners, the wrapper id is
successively attached to the short name of the base learner. E.g: “rf.bagged.imputed”

Usage
getLearnerShortName(learner)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
getLearnerType

Value

(character(1)).

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(), getLearnerType(),getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setLearnerPredictThreshold(), setLearnerPredictType()

getLearnerType Get the type of the learner.

Description

Get the type of the learner.

Usage

getLearnerType(learner)

Arguments

learner (Learner | character(1))

The learner. If you pass a string the learner will be created via makeLearner.

Value

(character(1)).

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(), getLearnerType(),getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setLearnerPredictThreshold(), setLearnerPredictType()
getMlrOptions

Returns a list of mlr’s options.

Description

Gets the options for mlr.

Usage

getMlrOptions()

Value

(list).

See Also

Other configure: configureMlr()

getMultilabelBinaryPerformances

Retrieve binary classification measures for multilabel classification predictions.

Description

Measures the quality of each binary label prediction w.r.t. some binary classification performance measure.

Usage

getMultilabelBinaryPerformances(pred, measures)

Arguments

- **pred** *(Prediction)*
 Multilabel Prediction object.
- **measures** *(Measure | list of Measure)*
 Performance measure(s) to evaluate, must be applicable to binary classification performance. Default is mmce.

Value

(named matrix). Performance value(s), column names are measure(s), row names are labels.
getNestedTuneResultsOptPathDf

See Also

Other multilabel: makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper()

Examples

see makeMultilabelBinaryRelevanceWrapper

getNestedTuneResultsOptPathDf

Get the opt.path.s from each tuning step from the outer resampling.

Description

After you resampled a tuning wrapper (see makeTuneWrapper) with resample(..., extract = getTuneResult) this helper returns a data.frame with all opt.path.s combined by rbind. An additional column iter indicates to what resampling iteration the row belongs.

Usage

get NestedTuneResultsOptPathDf(r, trafo = FALSE)

Arguments

 r (ResampleResult)
 The result of resampling of a tuning wrapper.

 trafo (logical(1))
 Should the units of the hyperparameter path be converted to the transformed scale? This is only necessary when trafo was used to create the opt.path.s. Note that opt.path.s are always stored on the untransformed scale. Default is FALSE.

Value

 (data.frame). See above.

See Also

Other tune: TuneControl, getNestedTuneResultsX(), getResamplingIndices(), getTuneResult(), makeModelMultiplexerParamSet(), makeModelMultiplexer(), makeTuneControlCMAES(), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControlIrace(), makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper(), tuneParams(), tuneThreshold()

Examples

 # see example of makeTuneWrapper
getNestedTuneResultsX Get the tuned hyperparameter settings from a nested tuning.

Description

After you resampled a tuning wrapper (see makeTuneWrapper) with resample(..., extract = getTuneResult) this helper returns a data.frame with the best found hyperparameter settings for each resampling iteration.

Usage

getNestedTuneResultsX(r)

Arguments

r (ResampleResult)
The result of resampling of a tuning wrapper.

Value

(data.frame). One column for each tuned hyperparameter and one row for each outer resampling iteration.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf(), getResamplingIndices(), getTuneResult(), makeModelMultiplexerParamSet(), makeModelMultiplexer(), makeTuneControlCMAES(), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControlIrace(), makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper(), tuneParams(), tuneThreshold()

Examples

see example of makeTuneWrapper

getOOBPreds Extracts out-of-bag predictions from trained models.

Description

Learners like randomForest produce out-of-bag predictions. getOOBPreds extracts this information from trained models and builds a prediction object as provided by predict (with prediction time set to NA). In the classification case: What is stored exactly in the (Prediction) object depends on the predict.type setting of the Learner.

You can call listLearners(properties = "oobpreds") to get a list of learners which provide this.
getParamSet

Usage

getOOBPreds(model, task)

Arguments

model (WrappedModel)
The model.

task (Task)
The task.

Value

(Prediction).

Examples

training.set = sample(1:150, 50)
lrn = makeLearner("classif.ranger", predict.type = "prob", predict.threshold = 0.6)
mod = train(lrn, sonar.task, subset = training.set)
oob = getOOBPreds(mod, sonar.task)
oob
performance(oob, measures = list(auc, mmce))

getParamSet

Get a description of all possible parameter settings for a learner.

Description

Returns the ParamHelpers::ParamSet from a Learner.

Value

ParamSet.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), helpLearnerParam(),
helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(),
setLearnerId(), setPredictThreshold(), setPredictType()
getPredictionDump

Return the error dump of a failed Prediction.

Description

Returns the error dump that can be used with debugger() to evaluate errors. If configureMlr configuration on.error.dump is FALSE or if the prediction did not fail, this returns NULL.

Usage

getPredictionDump(pred)

Arguments

pred (Prediction)
Prediction object.

Value

(last.dump).

See Also

Other debug: FailureModel, ResampleResult, getRRDump()

getPredictionProbabilities

Get probabilities for some classes.

Description

Get probabilities for some classes.

Usage

generatePredictionProbabilities(pred, cl)

Arguments

pred (Prediction)
Prediction object.

cl (character)
Names of classes. Default is either all classes for multi-class / multilabel problems or the positive class for binary classification.
getPredictionResponse

Value

(data.frame) with numerical columns or a numerical vector if length of cl is 1. Order of columns is defined by cl.

See Also

Other predict: asROCRPrediction(). getPredictionResponse(). getPredictionTaskDesc(). predict.WrappedModel(). setPredictThreshold(). setPredictType()

Examples

```r
task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda", predict.type = "prob")
mod = train(lrn, task)
# predict probabilities
pred = predict(mod, newdata = iris)

# Get probabilities for all classes
head(getPredictionProbabilities(pred))

# Get probabilities for a subset of classes
head(getPredictionProbabilities(pred, c("setosa", "virginica")))
```

getPredictionResponse *Get response / truth from prediction object.*

Description

The following types are returned, depending on task type:

- **classif** factor
- **regr** numeric
- **se** numeric
- **cluster** integer
- **surv** numeric
- **multilabel** logical matrix, columns named with labels

Usage

```r
genericResponse(pred)
genericSE(pred)
genericTruth(pred)
```
getPredictionTaskDesc

Arguments

pred (Prediction)
Prediction object.

Value

See above.

See Also

Other predict: asROCRPrediction(), getPredictionProbabilities(), getPredictionTaskDesc(), predict.WrappedModel(), setPredictThreshold(), setPredictType()
getProbabilities

Deprecated, use getPredictionProbabilities instead.

Description

Deprecated, use getPredictionProbabilities instead.

Usage

getProbabilities(pred, cl)

Arguments

pred Deprecated.
cl Deprecated.

getResamplingIndices

Get the resampling indices from a tuning or feature selection wrapper.

Description

After you resampled a tuning or feature selection wrapper (see makeTuneWrapper) with resample(...,extract = getTuneResult) or resample(...,extract = getFeatSelResult) this helper returns a list with the resampling indices used for the respective method.

Usage

getResamplingIndices(object, inner = FALSE)

Arguments

object (ResampleResult)
The result of resampling of a tuning or feature selection wrapper.
inner (logical)
If TRUE, returns the inner indices of a nested resampling setting.

Value

(list). One list for each outer resampling fold.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf(), getNestedTuneResultsX(), getTuneResult(), makeModelMultiplexerParamSet(), makeModelMultiplexer(), makeTuneControlCMAES(), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControlIrace(), makeTuneControlMBO(), makeTuneControlRandom(), makeWrapper(), tuneParams(), tuneThreshold()
getRRDump

Return the error dump of ResampleResult.

Description

Returns the error dumps generated during resampling, which can be used with debugger() to debug errors. These dumps are saved if configureMlr configuration on.error.dump, or the corresponding learner config, is TRUE.

The returned object is a list with as many entries as the resampling being used has folds. Each of these entries can have a subset of the following slots, depending on which step in the resampling iteration failed: “train” (error during training step), “predict.train” (prediction on training subset), “predict.test” (prediction on test subset).

Usage

getRRDump(res)

Arguments

res (ResampleResult)

The result of resample.

Value

list.

See Also

Other debug: FailureModel, ResampleResult, getPredictionDump()
getRRPredictionList

Get list of predictions for train and test set of each single resample iteration.

Description

This function creates a list with two slots train and test where each slot is again a list of Prediction objects for each single resample iteration. In case that predict = "train" was used for the resample description (see makeResampleDesc), the slot test will be NULL and in case that predict = "test" was used, the slot train will be NULL.

Usage

getRRPredictionList(res, ...)

Arguments

res

(ResampleResult)
The result of resample run with keep.pred = TRUE.

...
(any)
Further options passed to makePrediction.

Value

list.

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictions(), getRRTaskDescription(), getRRTaskDesc(), makeResampleDesc(), makeResampleInstance(), resample()

generateRRTask

Get predictions from resample results.

Description

Very simple getter.

Usage

generateRRTask(res)

Arguments

res

(ResampleResult)
The result of resample run with keep.pred = TRUE.
Value

(ResamplePrediction).

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(), getRRTaskDescription(), getRRTaskDesc(), makeResampleDesc(), makeResampleInstance(), resample()
getRRTaskDescription

Get task description from resample results (DEPRECATED).

Description
Get a summarizing task description.

Usage
getRRTaskDescription(res)

Arguments
res (ResampleResult)
The result of resample.

Value
(TaskDesc).

See Also
Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(), getRRPredictions(), getRRTaskDesc(), makeResampleDesc(), makeResampleInstance(), resample()

getStackedBaseLearnerPredictions
Returns the predictions for each base learner.

Description
Returns the predictions for each base learner.

Usage
getStackedBaseLearnerPredictions(model, newdata = NULL)

Arguments
model (WrappedModel)
Wrapped model, result of train.

newdata (data.frame)
New observations, for which the predictions using the specified base learners should be returned. Default is NULL and extracts the base learner predictions that were made during the training.
getTaskClassLevels

Get the class levels for classification and multilabel tasks.

Description

NB: For multilabel, `getTaskTargetNames` and `getTaskClassLevels` actually return the same thing.

Usage

```r
getTaskClassLevels(x)
```

Arguments

- `x` *(Task | TaskDesc)*
 Task or its description object.

Value

(character).

See Also

Other task: `getTaskCosts()`, `getTaskData()`, `getTaskDesc()`, `getTaskFeatureNames()`, `getTaskFormula()`, `getTaskId()`, `getTaskNFeats()`, `getTaskSize()`, `getTaskTargetNames()`, `getTaskTargets()`, `getTaskType()`, `subsetTask()`

getTaskCosts

Extract costs in task.

Description

Returns “NULL” if the task is not of type “costsens”.

Usage

```r
getTaskCosts(task, subset = NULL)
```

Arguments

- `task` *(CostSensTask)*
 The task.
- `subset` *(integer | logical | NULL)*
 Selected cases. Either a logical or an index vector. By default NULL if all observations are used.
getTaskData

Value

(matrix | NULL).

See Also

Other task: getTaskClassLevels(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(),
getTaskTargets(), getTaskType(), subsetTask()

getTaskData Extract data in task.

Description

Useful in trainLearner when you add a learning machine to the package.

Usage

getTaskData(
 task,
 subset = NULL,
 features,
 target.extra = FALSE,
 recode.target = "no",
 functionals.as = "dfcols"
)

Arguments

task (Task)
The task.

subset (integer | logical | NULL)
Selected cases. Either a logical or an index vector. By default NULL if all obser-
vations are used.

features (character | integer | logical)
Vector of selected inputs. You can either pass a character vector with the feature
names, a vector of indices, or a logical vector.
In case of an index vector each element denotes the position of the feature name
returned by getTaskFeatureNames.
Note that the target feature is always included in the resulting task, you should
not pass it here. Default is to use all features.

target.extra (logical(1))
Should target vector be returned separately? If not, a single data.frame including
the target columns is returned, otherwise a list with the input data.frame and an
extra vector or data.frame for the targets. Default is FALSE.
getTaskDesc

recode.target (character(1))

Should target classes be recoded? Supported are binary and multilabel classification and survival. Possible values for binary classification are “01”, “-1+1” and “drop.levels”. In the two latter cases the target vector is converted into a numeric vector. The positive class is coded as “+1” and the negative class either as “0” or “-1”. “drop.levels” will remove empty factor levels in the target column. In the multilabel case the logical targets can be converted to factors with “multilabel.factor”. For survival, you may choose to recode the survival times to “left”, “right” or “interval2” censored times using “lcens”, “rcens” or “icens”, respectively. See survival::Surv for the format specification. Default for both binary classification and survival is “no” (do nothing).

functionals.as (character(1))

How to represents functional features? Option “matrix”: Keep them as matrix columns in the data.frame. Option “dfcols”: Convert them to individual numeric data.frame columns. Default is “dfcols”.

Value

Either a data.frame or a list with data.frame data and vector target.

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskDesc(), getTaskFeatureNames(), getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(), getTaskTargets(), getTaskType(), subsetTask()

Examples

library("mlbench")
data(BreastCancer)

df = BreastCancer
df$Id = NULL
task = makeClassifTask(id = "BreastCancer", data = df, target = "Class", positive = "malignant")
head(getTaskData)
head(getTaskData(task, features = c("Cell.size", "Cell.shape"), recode.target = "-1+1"))
head(getTaskData(task, subset = 1:100, recode.target = "01"))
getTaskDescription

Arguments

x (Task | TaskDesc)
Task or its description object.

Value

ret_taskdesc

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(),
getTaskTargets(), getTaskType(), subsetTask()

getTaskDescription Deprecated, use getTaskDesc instead.

Description

Deprecated, use getTaskDesc instead.

Usage

getTaskDescription(x)

Arguments

x (Task | TaskDesc)
Task or its description object.

getTaskFeatureNames Get feature names of task.

Description

Target column name is not included.

Usage

getTaskFeatureNames(task)

Arguments

task (Task)
The task.
getTaskFormula

Get formula of a task.

Description

This is usually simply \(<\text{target}> ~ . For multilabel it is \(<\text{target}_1> + ... + \text{target}_k> ~ .

Usage

```r
getTaskFormula(
  x,
  target = getTaskTargetNames(x),
  explicit.features = FALSE,
  env = parent.frame()
)
```

Arguments

- `x` *(Task | TaskDesc)*
 Task or its description object.
- `target` *(character(1))*
 Left hand side of the formula. Default is defined by task `x`.
- `explicit.features` *(logical(1))*
 Should the features (right hand side of the formula) be explicitly listed? Default is FALSE, i.e., they will be represented as "\~ ."
- `env` *(environment)*
 Environment of the formula. Default is `parent.frame()`.

Value

(formula).

See Also

Other task: `getTaskClassLevels()`, `getTaskCosts()`, `getTaskData()`, `getTaskDesc()`, `getTaskFormula()`, `getTaskId()`, `getTaskNFeats()`, `getTaskSize()`, `getTaskTargetNames()`, `getTaskTargets()`, `getTaskType()`, `subsetTask()`
getTaskId

Get the id of the task.

Description
See title.

Usage
getTaskId(x)

Arguments
x (Task | TaskDesc)
Task or its description object.

Value
(character(1)).

See Also
Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(), getTaskTargets(),
getTaskType(), subsetTask()

getTaskNFeats

Get number of features in task.

Description
See title.

Usage
getTaskNFeats(x)

Arguments
x (Task | TaskDesc)
Task or its description object.

Value
(integer(1)).
getTaskSize

Description

Get number of observations in task.

Usage

getTaskSize(x)

Arguments

x
(Task | TaskDesc)

Task or its description object.

Value

(integer(1)).

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(), getTaskFormula(), getTaskId(), getTaskSize(), getTaskTargetNames(), getTaskTargets(), getTaskType(), subsetTask()

getTaskTargetNames

Description

Get the name(s) of the target column(s).

Usage

getTaskTargetNames(x)

Arguments

x
(Task | TaskDesc)

Task or its description object.

NB: For multilabel, getTaskTargetNames and getTaskClassLevels actually return the same thing.
getTaskTargets

Value

(character).

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(), getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargets(), getTaskType(), subsetTask()

getTaskTargets Get target data of task.

Description

Get target data of task.

Usage

getTaskTargets(task, recode.target = "no")

Arguments

 task (Task)
 The task.

 recode.target (character(1))
 Should target classes be recoded? Supported are binary and multilabel classifica-
 tion and survival. Possible values for binary classification are “01”, “-1+1”
 and “drop.levels”. In the two latter cases the target vector is converted into a
 numeric vector. The positive class is coded as “+1” and the negative class either
 as “0” or “-1”. “drop.levels” will remove empty factor levels in the target col-
 umn. In the multilabel case the logical targets can be converted to factors with
 “multilabel.factor”. For survival, you may choose to recode the survival times to
 “left”, “right” or “interval2” censored times using “lcens”, “rcens” or “icens”,
 respectively. See survival::Surv for the format specification. Default for both
 binary classification and survival is “no” (do nothing).

Value

A factor for classification or a numeric for regression, a data.frame of logical columns for multil-
abel.

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(),
getTaskType(), subsetTask()
getTuneResult

Examples

```r
  task = makeClassifTask(data = iris, target = "Species")
  getTaskTargets(task)
```

getTaskType

Get the type of the task.

Description

See title.

Usage

```r
  getTaskType(x)
```

Arguments

- `x` *(Task | TaskDesc)*
 Task or its description object.

Value

(character(1)).

See Also

Other task: `getTaskClassLevels()`, `getTaskCosts()`, `getTaskData()`, `getTaskDesc()`, `getTaskFeatureNames()`,
`getTaskFormula()`, `getTaskId()`, `getTaskNFeats()`, `getTaskSize()`, `getTaskTargetNames()`,
`getTaskTargets()`, `subsetTask()`

getTuneResult

Returns the optimal hyperparameters and optimization path after training.

Description

Returns the optimal hyperparameters and optimization path after training.

Usage

```r
  getTuneResult(object)
```

Arguments

- `object` *(WrappedModel)*
 Trained Model created with `makeTuneWrapper`.
getTuneResultOptPath

Value

(TuneResult).

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf(), getNestedTuneResultsX(), getResamplingIndices(), makeModelMultiplexerParamSet(), makeModelMultiplexer(), makeTuneControlCMAES(), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControlIrace(), makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper(), tuneParams(), tuneThreshold()

Description

Returns the opt.path from a (TuneResult) object.

Usage

getTuneResultOptPath(tune.result, as.df = TRUE)

Arguments

tune.result (TuneResult)
A tuning result of the (tuneParams) function.

as.df (logical(1))
Should the optimization path be returned as a data frame? Default is TRUE.

Value

(ParamHelpers::OptPath) or (data.frame).

gunpoint.task Gunpoint functional data classification task.

Description

Contains the task (gunpoint.task). You have to classify whether a person raises up a gun or just an empty hand.

References

hasFunctionalFeatures

Check whether the object contains functional features.

Description

See title.

Usage

```r
hasFunctionalFeatures(obj)
```

Arguments

- `obj`: (Task | TaskDesc | data.frame)
 Object to check.

Value

`(logical(1))`

hasProperties

Deprecated, use hasLearnerProperties instead.

Description

Deprecated, use hasLearnerProperties instead.

Usage

```r
hasProperties(learner, props)
```

Arguments

- `learner`: Deprecated.
- `props`: Deprecated.
helpLearner
Access help page of learner functions.

Description
Interactive function that gives the user quick access to the help pages associated with various functions involved in the given learner.

Usage
helpLearner(learner)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

See Also
Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(),getParamSet(), helpLearnerParam(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setPredictThreshold(), setPredictType()
Other help: helpLearnerParam()

helpLearnerParam Get specific help for a learner’s parameters.

Description
Print the description of parameters of a given learner. The description is automatically extracted from the help pages of the learner, so it may be incomplete.

Usage
helpLearnerParam(learner, param = NULL)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

param (character | NULL)
Parameter(s) to describe. Defaults to NULL, which prints information on the documentation status of all parameters.
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(),getParamSet(), helpLearner(),
makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

Other help: helpLearner()

imputations

Built-in imputation methods.

Description

The built-ins are:

- `imputeConstant(const)` for imputation using a constant value,
- `imputeMedian()` for imputation using the median,
- `imputeMode()` for imputation using the mode,
- `imputeMin(multiplier)` for imputing constant values shifted below the minimum using
 \(\min(x) - \text{multiplier} \times \text{diff(range(x))} \),
- `imputeMax(multiplier)` for imputing constant values shifted above the maximum using
 \(\max(x) + \text{multiplier} \times \text{diff(range(x))} \),
- `imputeNormal(mean, sd)` for imputation using normally distributed random values. Mean
 and standard deviation will be calculated from the data if not provided.
- `imputeHist(breaks, use.mids)` for imputation using random values with probabilities cal-
 culated using table or hist.
- `imputeLearner(learner, features = NULL)` for imputations using the response of a classi-
 fication or regression learner.

Usage

`imputeConstant(const)`

`imputeMedian()`

`imputeMean()`

`imputeMode()`

`imputeMin(multiplier = 1)`

`imputeMax(multiplier = 1)`

`imputeUniform(min = NA_real_, max = NA_real_)`
imputeNormal(mu = NA_real_, sd = NA_real_)
imputeHist(breaks, use.mids = TRUE)
imputeLearner(learner, features = NULL)

Arguments

const (any)
Constant valued use for imputation.

multiplier (numeric(1))
Value that stored minimum or maximum is multiplied with when imputation is done.

min (numeric(1))
Lower bound for uniform distribution. If NA (default), it will be estimated from the data.

max (numeric(1))
Upper bound for uniform distribution. If NA (default), it will be estimated from the data.

mu (numeric(1))
Mean of normal distribution. If missing it will be estimated from the data.

sd (numeric(1))
Standard deviation of normal distribution. If missing it will be estimated from the data.

breaks (numeric(1))
Number of breaks to use in graphics::hist. If missing, defaults to auto-detection via “Sturges”.

use.mids (logical(1))
If x is numeric and a histogram is used, impute with bin mids (default) or instead draw uniformly distributed samples within bin range.

learner (Learner | character(1))
Supervised learner. Its predictions will be used for imputations. If you pass a string the learner will be created via makeLearner. Note that the target column is not available for this operation.

features (character)
Features to use in learner for prediction. Default is NULL which uses all available features except the target column of the original task.

See Also

Other impute: impute(), makeImputeMethod(), makeImputeWrapper(), reimpute()
Impute and re-impute data

Description

Allows imputation of missing feature values through various techniques. Note that you have the possibility to re-impute a data set in the same way as the imputation was performed during training. This especially comes in handy during resampling when one wants to perform the same imputation on the test set as on the training set.

The function `impute` performs the imputation on a data set and returns, alongside with the imputed data set, an “ImputationDesc” object which can contain “learned” coefficients and helpful data. It can then be passed together with a new data set to `reimpute`.

The imputation techniques can be specified for certain features or for feature classes, see function arguments.

You can either provide an arbitrary object, use a built-in imputation method listed under `imputations` or create one yourself using `makeImputeMethod`.

Usage

```r
impute(
  obj,
  target = character(0L),
  classes = list(),
  cols = list(),
  dummy.classes = character(0L),
  dummy.cols = character(0L),
  dummy.type = "factor",
  force.dummies = FALSE,
  impute.new.levels = TRUE,
  recode.factor.levels = TRUE
)
```

Arguments

- `obj` *(data.frame | Task)*
 Input data.
- `target` *(character)*
 Name of the column(s) specifying the response. Default is `character(0)`.
- `classes` *(named list)*
 Named list containing imputation techniques for classes of columns. E.g. `list(numeric = imputeMedian())`.
- `cols` *(named list)*
 Named list containing names of imputation methods to impute missing values in the data column referenced by the list element’s name. Overrules imputation set via `classes`.
dummy.classes (character)
Classes of columns to create dummy columns for. Default is character(0).

dummy.cols (character)
Column names to create dummy columns (containing binary missing indicator) for. Default is character(0).

dummy.type (character(1))
How dummy columns are encoded. Either as 0/1 with type “numeric” or as “factor”. Default is “factor”.

force.dummies (logical(1))
Force dummy creation even if the respective data column does not contain any NAs. Note that (a) most learners will complain about constant columns created this way but (b) your feature set might be stochastic if you turn this off. Default is FALSE.

impute.new.levels (logical(1))
If new, unencountered factor level occur during reimputation, should these be handled as NAs and then be imputed the same way? Default is TRUE.

recode.factor.levels (logical(1))
Recode factor levels after reimputation, so they match the respective element of lvls (in the description object) and therefore match the levels of the feature factor in the training data after imputation?. Default is TRUE.

Details

The description object contains these slots

target (character) See argument.
features (character) Feature names (column names of data).
classes (character) Feature classes (storage type of data).
lvls (named list) Mapping of column names of factor features to their levels, including newly created ones during imputation.
impute (named list) Mapping of column names to imputation functions.
dummies (named list) Mapping of column names to imputation functions.
impute.new.levels (logical(1)) See argument.
recode.factor.levels (logical(1)) See argument.

Value

(list)
data (data.frame) Imputed data.
desc (ImputationDesc) Description object.
isFailureModel

See Also

Other impute: imputations, makeImputeMethod(), makeImputeWrapper(), reimpute()

Examples

df = data.frame(x = c(1, 1, NA), y = factor(c("a", "a", "b")), z = 1:3)
imputed = impute(df, target = character(0), cols = list(x = 99, y = imputeMode()))
print(imputed$data)
reimpute(data.frame(x = NA_real_, imputed$desc)

iris.task

Iris classification task.

Description

Contains the task (iris.task).

References

See datasets::iris.

isFailureModel

Is the model a FailureModel?

Description

Such a model is created when one sets the corresponding option in configureMlr.
For complex wrappers this getter returns TRUE if ANY model contained in it failed.

Usage

isFailureModel(model)

Arguments

model (WrappedModel)
The model.

Value

(logical(1)).
joinClassLevels

Description

Join some class existing levels to new, larger class levels for classification problems.

Usage

joinClassLevels(task, new.levels)

Arguments

 task (Task)
 The task.
 new.levels (list of character)
 Element names specify the new class levels to create, while the corresponding element character vector specifies the existing class levels which will be joined to the new one.

Value

 Task.

Examples

 joinClassLevels(iris.task, new.levels = list(foo = c("setosa", "virginica")))

learnerArgsToControl

Convert arguments to control structure.

Description

Find all elements in ... which are not missing and call control on them.

Usage

learnerArgsToControl(control, ...)

Arguments

 control (function)
 Function that creates control structure.
 ... (any)
 Arguments for control structure function.
LearnerProperties

Value

Control structure for learner.

Description

Properties can be accessed with `getLearnerProperties(learner)`, which returns a character vector.

The learner properties are defined as follows:

- **numerics, factors, ordered** Can numeric, factor or ordered factor features be handled?
- **functionals** Can an arbitrary number of functional features be handled?
- **single.functional** Can exactly one functional feature be handled?
- **missings** Can missing values in features be handled?
- **weights** Can observations be weighted during fitting?
- **oneclas, twoclass, multiclass** Only for classif: Can one-class, two-class or multi-class classification problems be handled?
- **class.weights** Only for classif: Can class weights be handled?
- **rcens, lcens, icens** Only for surv: Can right, left, or interval censored data be handled?
- **prob** For classif, cluster, multilabel, surv: Can probaililies be predicted?
- **se** Only for regr: Can standard errors be predicted?
- **oobpreds** Only for classif, regr and surv: Can out of bag predictions be extracted from the trained model?
- **featimp** For classif, regr, surv: Does the model support extracting information on feature importance?

Usage

```r
getLearnerProperties(learner)
hasLearnerProperties(learner, props)
```

Arguments

- **learner** *(Learner | character(1))*
 The learner. If you pass a string the learner will be created via `makeLearner`.
- **props** *(character)*
 Vector of properties to query.
Value

getLearnerProperties returns a character vector with learner properties. hasLearnerProperties returns a logical vector of the same length as props.

See Also

Other learner: getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setPredictThreshold(), setPredictType()

learners

| List of supported learning algorithms. |

Description

All supported learners can be found by listLearners or as a table in the tutorial appendix: https://mlr.mlr-org.com/articles/tutorial/integrated_learners.html.

listFilterEnsembleMethods

| List ensemble filter methods. |

Description

Returns a subset-able dataframe with filter information.

Usage

listFilterEnsembleMethods(desc = TRUE)

Arguments

desc (logical(1))

Provide more detailed information about filters. Default is TRUE.

Value

(data.frame).

See Also

Other filter: filterFeatures(), generateFilterValuesData(), getFilteredFeatures(), listFilterMethods(), makeFilterEnsemble(), makeFilterWrapper(), makeFilter(), plotFilterValues()
listFilterMethods

List filter methods.

Description

Returns a subset-able dataframe with filter information.

Usage

```r
listFilterMethods(
    desc = TRUE,
    tasks = FALSE,
    features = FALSE,
    include.deprecated = FALSE
)
```

Arguments

- `desc` (logical(1))
 Provide more detailed information about filters. Default is TRUE.
- `tasks` (logical(1))
 Provide information on supported tasks. Default is FALSE.
- `features` (logical(1))
 Provide information on supported features. Default is FALSE.
- `include.deprecated` (logical(1))
 Should deprecated filter methods be included in the list. Default is FALSE.

Value

(data.frame).

See Also

Other filter: `filterFeatures()`, `generateFilterValuesData()`, `getFilteredFeatures()`, `listFilterEnsembleMethods()`, `makeFilterEnsemble()`, `makeFilterWrapper()`, `makeFilter()`, `plotFilterValues()`
listLearnerProperties

List the supported learner properties

Description
This is useful for determining which learner properties are available.

Usage
listLearnerProperties(type = "any")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>(character(1)) Only return properties for a specified task type. Default is “any”.</td>
</tr>
</tbody>
</table>

Value
(character).

listLearners

Find matching learning algorithms.

Description
Returns learning algorithms which have specific characteristics, e.g. whether they support missing values, case weights, etc.

Note that the packages of all learners are loaded during the search if you create them. This can be a lot. If you do not create them we only inspect properties of the S3 classes. This will be a lot faster.

Note that for general cost-sensitive learning, mlr currently supports mainly “wrapper” approaches like CostSensWeightedPairsWrapper, which are not listed, as they are not basic R learning algorithms. The same applies for many multilabel methods, see, e.g., makeMultilabelBinaryRelevanceWrapper.

Usage
listLearners(
 obj = NA_character_,
 properties = character(0L),
 quiet = TRUE,
 warn.missing.packages = TRUE,
 check.packages = FALSE,
 create = FALSE
)

Default S3 method:
listLearners(
 obj = NA_character_,
 properties = character(0L),
 quiet = TRUE,
 warn.missing.packages = TRUE,
 check.packages = FALSE,
 create = FALSE
)

S3 method for class 'character'
listLearners(
 obj = NA_character_,
 properties = character(0L),
 quiet = TRUE,
 warn.missing.packages = TRUE,
 check.packages = FALSE,
 create = FALSE
)

S3 method for class 'Task'
listLearners(
 obj = NA_character_,
 properties = character(0L),
 quiet = TRUE,
 warn.missing.packages = TRUE,
 check.packages = TRUE,
 create = FALSE
)

Arguments

obj (character(1) | Task)
Either character(1) task or the type of the task, in the latter case one of: "classif" "regr" "surv" "costsens" "cluster" "multilabel". Default is NA matching all types.

properties (character)
Set of required properties to filter for. Default is character(0).

quiet (logical(1))
Construct learners quietly to check their properties, shows no package startup messages. Turn off if you suspect errors. Default is TRUE.

warn.missing.packages (logical(1))
If some learner cannot be constructed because its package is missing, should a warning be shown? Default is TRUE.

check.packages (logical(1))
Check if required packages are installed. Calls find.package(). If create is TRUE, this is done implicitly and the value of this parameter is ignored. If
create is FALSE and check.packages is TRUE the returned table only contains
learners whose dependencies are installed. If check.packages set to FALSE,
learners that cannot actually be constructed because of missing packages may
be returned. Default is FALSE.

create (logical(1))
Instantiate objects (or return info table)? Packages are loaded if and only if this
option is TRUE. Default is FALSE.

Value

([data.frame | list' of Learner). Either a descriptive data.frame that allows access to all properties of
the learners or a list of created learner objects (named by ids of listed learners).

Examples

Not run:
listLearners("classif", properties = c("multiclass", "prob"))
data = iris
task = makeClassifTask(data = data, target = "Species")
listLearners(task)
End(Not run)
listMeasures

Find matching measures.

Description

Returns the matching measures which have specific characteristics, e.g. whether they supports classification or regression.

Usage

listMeasures(obj, properties = character(0L), create = FALSE)

Default S3 method:
listMeasures(obj, properties = character(0L), create = FALSE)

S3 method for class 'character'
listMeasures(obj, properties = character(0L), create = FALSE)

S3 method for class 'Task'
listMeasures(obj, properties = character(0L), create = FALSE)

Arguments

obj
(character(1) | Task)
Either character(1) task or the type of the task, in the latter case one of: "classif" "regr" "surv" "costsens" "cluster" "multilabel". Default is NA matching all types.

properties
(character)
Set of required properties to filter for. See Measure for some standardized properties. Default is character(0).

create
(logical(1))
Instantiate objects (or return strings)? Default is FALSE.

Value

([character]list of Measure). Class names of matching measures or instantiated objects.

listTaskTypes

List the supported task types in mlr

Description

Returns a character vector with each of the supported task types in mlr.
Usage

listTaskTypes()

Value

(character).

Description

Contains the task (lung.task).

References

See survival::lung. Incomplete cases have been removed from the task.

makeAggregation

Specify your own aggregation of measures.

Description

This is an advanced feature of mlr. It gives access to some inner workings so the result might not be compatible with everything!

Usage

makeAggregation(id, name = id, properties, fun)

Arguments

id (character(1))
Name of the aggregation method (preferably the same name as the generated function).
	name (character(1))
Long name of the aggregation method. Default is id.
	properties (character)
Set of aggregation properties.

req.train Are prediction or train sets required to calculate the aggregation?

req.test Are prediction or test sets required to calculate the aggregation?

fun (function(task, perf.test, perf.train, measure, group, pred))
Calculates the aggregated performance. In most cases you will only need the performances perf.test and optionally perf.train on the test and training data sets.
makeBaggingWrapper

Fuses a learner with the bagging technique (i.e., similar to what a randomForest does). Creates a learner object, which can be used like any other learner object. Models can easily be accessed via getLearnerModel.

Bagging is implemented as follows: For each iteration a random data subset is sampled (with or without replacement) and potentially the number of features is also restricted to a random subset. Note that this is usually handled in a slightly different way in the random forest where features are sampled at each tree split.

Prediction works as follows: For classification we do majority voting to create a discrete label and probabilities are predicted by considering the proportions of all predicted labels. For regression the mean value and the standard deviations across predictions is computed.

Note that the passed base learner must always have predict.type = 'response', while the BaggingWrapper can estimate probabilities and standard errors, so it can be set, e.g., to predict.type = 'prob'. For this reason, when you call setPredictType, the type is only set for the BaggingWrapper, not passed down to the inner learner.
Usage

makeBaggingWrapper(
 learner,
 bw.iters = 10L,
 bw.replace = TRUE,
 bw.size,
 bw.feats = 1
)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via `makeLearner`.

bw.iters (integer(1))
Iterations = number of fitted models in bagging. Default is 10.

bw.replace (logical(1))
Sample bags with replacement (bootstrapping)? Default is TRUE.

bw.size (numeric(1))
Percentage size of sampled bags. Default is 1 for bootstrapping and 0.632 for subsampling.

bw.feats (numeric(1))
Percentage size of randomly selected features in bags. Default is 1. At least one feature will always be selected.

Value

Learner.

See Also

Other wrapper: `makeClassificationViaRegressionWrapper()`, `makeConstantClassWrapper()`, `makeCostSensClassifWrapper()`, `makeCostSensRegrWrapper()`, `makeDownsampleWrapper()`, `makeDummyFeaturesWrapper()`, `makeExtractFDAFeatsWrapper()`, `makeFeatSelWrapper()`, `makeFilterWrapper()`, `makeImputeWrapper()`, `makeMulticlassWrapper()`, `makeMultilabelBinaryRelevanceWrapper()`, `makeMultilabelClassifierChainsWrapper()`, `makeMultilabelDBRWrapper()`, `makeMultilabelNestedStackingWrapper()`, `makeMultilabelStackingWrapper()`, `makeOverBaggingWrapper()`, `makePreprocWrapperCaret()`, `makePreprocWrapper()`, `makeRemoveConstantFeaturesWrapper()`, `makeSMOTEWrapper()`, `makeTuneWrapper()`, `makeUndersampleWrapper()`, `makeWeightedClassesWrapper()`
Description

Builds regression models that predict for the positive class whether a particular example belongs to it (1) or not (-1).

Probabilities are generated by transforming the predictions with a softmax.

Inspired by WEKA's ClassificationViaRegression (http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/ClassificationViaRegression.html).

Usage

makeClassificationViaRegressionWrapper(learner, predict.type = "response")

Arguments

learner (Learner | character(1))
 The learner. If you pass a string the learner will be created via makeLearner.

predict.type (character(1))
 "response" (= labels) or "prob" (= probabilities and labels by selecting the one with maximal probability).

Value

Learner.

See Also

Other wrapper: makeBaggingWrapper(), makeConstantClassWrapper(), makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDRBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeSMOTEWrapper(), makeTuneWrapper(), makeUndersampleWrapper(), makeWeightedClassesWrapper()

Examples

lrn = makeLearner("regr.rpart")
lrn = makeClassificationViaRegressionWrapper(lrn)
mod = train(lrn, sonar.task, subset = 1:140)
predictions = predict(mod, newdata = getTaskData(sonar.task)[141:208, 1:60])
Usage

```r
makeClassifTask(
  id = deparse(substitute(data)),
  data,
  target,
  weights = NULL,
  blocking = NULL,
  coordinates = NULL,
  positive = NA_character_,
  fixup.data = "warn",
  check.data = TRUE
)
```

Arguments

- **id** *(character(1))*
 Id string for object. Default is the name of the R variable passed to data.

- **data** *(data.frame)*
 A data frame containing the features and target variable(s).

- **target** *(character(1) | character(2) | character(n.classes))*
 Name(s) of the target variable(s). For survival analysis these are the names of the survival time and event columns, so it has length 2. For multilabel classification it contains the names of the logical columns that encode whether a label is present or not and its length corresponds to the number of classes.

- **weights** *(numeric)*
 Optional, non-negative case weight vector to be used during fitting. Cannot be set for cost-sensitive learning. Default is NULL which means no (= equal) weights.

- **blocking** *(factor)*
 An optional factor of the same length as the number of observations. Observations with the same blocking level “belong together”. Specifically, they are either put all in the training or the test set during a resampling iteration. Default is NULL which means no blocking.

- **coordinates** *(data.frame)*
 Coordinates of a spatial data set that will be used for spatial partitioning of the data in a spatial cross-validation resampling setting. Coordinates have to be numeric values. Provided data.frame needs to have the same number of rows as data and consist of at least two dimensions.

- **positive** *(character(1))*
 Positive class for binary classification (otherwise ignored and set to NA). Default is the first factor level of the target attribute.

- **fixup.data** *(character(1))*
 Should some basic cleaning up of data be performed? Currently this means removing empty factor levels for the columns. Possible choices are: “no” = Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent. Default is “warn”.

- **check.data** *(logical)*
 Should some basic checking of the data be performed? Possible choices are: “no” = Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent. Default is “warn”.
check.data (logical(1))
Should sanity of data be checked initially at task creation? You should have
good reasons to turn this off (one might be speed). Default is TRUE.

See Also
Task CostSensTask ClusterTask MultilabelTask RegrTask SurvTask

makeClusterTask Create a cluster task.

Description
Create a cluster task.

Usage
makeClusterTask(
 id = deparse(substitute(data)),
 data,
 weights = NULL,
 blocking = NULL,
 coordinates = NULL,
 fixup.data = "warn",
 check.data = TRUE
)

Arguments
id (character(1))
Id string for object. Default is the name of the R variable passed to data.
data (data.frame)
A data frame containing the features and target variable(s).
weights (numeric)
Optional, non-negative case weight vector to be used during fitting. Cannot
be set for cost-sensitive learning. Default is NULL which means no (= equal)
weights.
blocking (factor)
An optional factor of the same length as the number of observations. Observ-
ations with the same blocking level "belong together". Specifically, they are
either put all in the training or the test set during a resampling iteration. Default
is NULL which means no blocking.
coordinates (data.frame)
Coordinates of a spatial data set that will be used for spatial partitioning of the
data in a spatial cross-validation resampling setting. Coordinates have to be
numeric values. Provided data.frame needs to have the same number of rows as
data and consist of at least two dimensions.
makeConstantClassWrapper

Wraps a classification learner to support problems where the class label is (almost) constant.

Description

If the training data contains only a single class (or almost only a single class), this wrapper creates a model that always predicts the constant class in the training data. In all other cases, the underlying learner is trained and the resulting model used for predictions.

Probabilities can be predicted and will be 1 or 0 depending on whether the label matches the majority class or not.

Usage

makeConstantClassWrapper(learner, frac = 0)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

frac numeric(1)
The fraction of labels in [0, 1) that can be different from the majority label. Default is 0, which means that constant labels are only predicted if there is exactly one label in the data.

Value

Learner.
makeCostMeasure

Creates a measure for non-standard misclassification costs.

Description

Creates a cost measure for non-standard classification error costs.

Usage

```r
makeCostMeasure(
  id = "costs",
  minimize = TRUE,
  costs,
  combine = mean,
  best = NULL,
  worst = NULL,
  name = id,
  note = ""
)
```

Arguments

- **id** (character(1))
 Name of measure. Default is “costs”.

- **minimize** (logical(1))
 Should the measure be minimized? Otherwise you are effectively specifying a benefits matrix. Default is TRUE.

- **costs** (matrix)
 Matrix of misclassification costs. Rows and columns have to be named with class labels, order does not matter. Rows indicate true classes, columns predicted classes.

- **combine** (function)
 How to combine costs over all cases for a SINGLE test set? Note this is not the same as the aggregate argument in makeMeasure You can set this as well via setAggregation, as for any measure. Default is mean.

- **best** (numeric(1))
 Best obtainable value for measure. Default is -Inf or Inf, depending on minimize.

See Also

Other wrapper: makeBaggingWrapper(), makeClassificationViaRegresionWrapper(), makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeSMOTEWrapper(), makeTuneWrapper(), makeUndersampleWrapper(), makeWeightedClassesWrapper()
makeCostSensClassifWrapper

Wraps a classification learner for use in cost-sensitive learning.

Description

Creates a wrapper, which can be used like any other learner object. The classification model can easily be accessed via `getLearnerModel`.

This is a very naive learner, where the costs are transformed into classification labels - the label for each case is the name of class with minimal costs. (If ties occur, the label which is better on average w.r.t. costs over all training data is preferred.) Then the classifier is fitted to that data and subsequently used for prediction.

Usage

`makeCostSensClassifWrapper(learner)`

Arguments

* learner (Learner | character(1))
 The classification learner. If you pass a string the learner will be created via `makeLearner`.

Value

Learner.

<table>
<thead>
<tr>
<th>worst</th>
<th>(numeric(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst obtainable value for measure. Default is <code>Inf</code> or <code>-Inf</code>, depending on <code>minimize</code>.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>name</th>
<th>(character)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the measure. Default is <code>id</code>.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>note</th>
<th>(character)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description and additional notes for the measure. Default is <code>""</code>.</td>
<td></td>
</tr>
</tbody>
</table>
makeCostSensRegrWrapper

Wraps a regression learner for use in cost-sensitive learning.

Description

Creates a wrapper, which can be used like any other learner object. Models can easily be accessed via getLearnerModel.

For each class in the task, an individual regression model is fitted for the costs of that class. During prediction, the class with the lowest predicted costs is selected.

Usage

makeCostSensRegrWrapper(learner)

Arguments

learner (Learner | character(1))

The regression learner. If you pass a string the learner will be created via makeLearner.

Value

Learner.

See Also

Other costsens: makeCostSensClassifWrapper(), makeCostSensTask(), makeCostSensWeightedPairsWrapper()
Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper(), makeCostSensClassifWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeSMOTEWrapper(), makeTuneWrapper(), makeUndersampleWrapper(), makeWeightedClassesWrapper()
makeCostSensTask
Create a cost-sensitive classification task.

Description

Create a cost-sensitive classification task.

Usage

```r
makeCostSensTask(
  id = deparse(substitute(data)),
  data,
  costs,
  blocking = NULL,
  coordinates = NULL,
  fixup.data = "warn",
  check.data = TRUE
)
```

Arguments

- **id** (character(1))
 Id string for object. Default is the name of the R variable passed to data.

- **data** (data.frame)
 A data frame containing the features and target variable(s).

- **costs** (data.frame)
 A numeric matrix or data frame containing the costs of misclassification. We assume the general case of observation specific costs. This means we have \(n \) rows, corresponding to the observations, in the same order as data. The columns correspond to classes and their names are the class labels (if unnamed we use \(y_1 \) to \(y_k \) as labels). Each entry \((i,j)\) of the matrix specifies the cost of predicting class \(j \) for observation \(i \).

- **blocking** (factor)
 An optional factor of the same length as the number of observations. Observations with the same blocking level “belong together”. Specifically, they are either put all in the training or the test set during a resampling iteration. Default is NULL which means no blocking.

- **coordinates** (data.frame)
 Coordinates of a spatial data set that will be used for spatial partitioning of the data in a spatial cross-validation resampling setting. Coordinates have to be numeric values. Provided data.frame needs to have the same number of rows as data and consist of at least two dimensions.

- **fixup.data** (character(1))
 Should some basic cleaning up of data be performed? Currently this means removing empty factor levels for the columns. Possible choices are: “no” =
Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent. Default is “warn”.

check.data (logical(1))
Should sanity of data be checked initially at task creation? You should have good reasons to turn this off (one might be speed). Default is TRUE.

See Also
Task ClassifTask ClusterTask MultilabelTask RegrTask SurvTask
Other costsens: makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeCostSensWeightedPairsWrapper()

makeCostSensWeightedPairsWrapper
Wraps a classifier for cost-sensitive learning to produce a weighted pairs model.

Description
Creates a wrapper, which can be used like any other learner object. Models can easily be accessed via getLearnerModel.

For each pair of labels, we fit a binary classifier. For each observation we define the label to be the element of the pair with minimal costs. During fitting, we also weight the observation with the absolute difference in costs. Prediction is performed by simple voting.

This approach is sometimes called cost-sensitive one-vs-one (CS-OVO), because it is obviously very similar to the one-vs-one approach where one reduces a normal multi-class problem to multiple binary ones and aggregates by voting.

Usage
makeCostSensWeightedPairsWrapper(learner)

Arguments
learner (Learner | character(1))
The classification learner. If you pass a string the learner will be created via makeLearner.

Value
(Learner).

References
makeCustomResampledMeasure

Construct your own resampled performance measure.

Description

Construct your own performance measure, used after resampling. Note that individual training / test set performance values will be set to NA, you only calculate an aggregated value. If you can define a function that makes sense for every single training / test set, implement your own Measure.

Usage

makeCustomResampledMeasure(
 measure.id,
 aggregation.id,
 minimize = TRUE,
 properties = character(0L),
 fun,
 extra.args = list(),
 best = NULL,
 worst = NULL,
 measure.name = measure.id,
 aggregation.name = aggregation.id,
 note = ""
)

Arguments

measure.id (character(1))
 Short name of measure.
aggregation.id (character(1))
 Short name of aggregation.
minimize (logical(1))
 Should the measure be minimized? Default is TRUE.
properties (character)
 Set of measure properties. For a list of values see Measure. Default is character(0).
fun (function(task, group, pred, extra.args))
 Calculates performance value from ResamplePrediction object. For rare cases you can also use the task, the grouping or the extra arguments extra.args.
 - task (Task)
 The task.
 - group (factor)
 Grouping of resampling iterations. This encodes whether specific iterations 'belong together' (e.g. repeated CV).
 - pred (Prediction)

See Also

Other costsens: makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeCostSensTask()
makeDownsampleWrapper

Fuse learner with simple downsampling (subsampling).

Description

Creates a learner object, which can be used like any other learner object. It will only be trained on a subset of the original data to save computational time.

Usage

```r
makeDownsampleWrapper(learner, dw.perc = 1, dw.stratify = FALSE)
```

Arguments

- **learner**
 (Learner | character(1))
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **dw.perc**
 (numeric(1))
 See `downsample`. Default is 1.

- **dw.stratify**
 (logical(1))
 See `downsample`. Default is FALSE.

extra.args
(list)

List of extra arguments which will always be passed to `fun`. Default is empty list.

best
(numeric(1))

Best obtainable value for measure. Default is -Inf or Inf, depending on `minimize`.

worst
(numeric(1))

Worst obtainable value for measure. Default is Inf or -Inf, depending on `minimize`.

measure.name
(character(1))

Long name of measure. Default is `measure.id`.

aggregation.name
(character(1))

Long name of the aggregation. Default is `aggregation.id`.

note
(character)

Description and additional notes for the measure. Default is "".

Value

Measure.

See Also

Other performance: `ConfusionMatrix`, `calculateConfusionMatrix()`, `calculateROCMeasures()`, `estimateRelativeOverfitting()`, `makeCostMeasure()`, `makeMeasure()`, `measures`, `performance()`, `setAggregation()`, `setMeasurePars()`
Description

Fuses a base learner with the dummy feature creator (see `createDummyFeatures`). Returns a learner which can be used like any other learner.

Usage

```r
makeDummyFeaturesWrapper(learner, method = "1-of-n", cols = NULL)
```

Arguments

- **learner**
 (Learner | character(1))
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **method**
 (character(1))
 Available are:
 "1-of-n": For n factor levels there will be n dummy variables.
 "reference": There will be n-1 dummy variables leaving out the first factor level of each variable.
 Default is “1-of-n”.

- **cols**
 (character)
 Columns to create dummy features for. Default is to use all columns.

Value

Learner.
makeExtractFDAFeatMethod

Constructor for FDA feature extraction methods.

Description

This can be used to implement custom FDA feature extraction. Takes a learn and a reextract function along with some optional parameters to those as argument.

Usage

makeExtractFDAFeatMethod(learn, reextract, args = list(), par.set = NULL)

Arguments

learn (function(data, target, col, ...))
Function to learn and extract information on functional column col. Arguments are:

• data data.frame
 Data.frame containing matricies with one row per observation of a single functional or time series and one column per measurement at time point. All entries need to be numeric.

• target (character(1))
 Name of the target variable. Default: “NULL”. The variable is only set to be consistent with the API.

• col (character(1) | numeric(1))
 column names or indices, the extraction should be performed on. The function has to return a named list of values.

reextract (function(data, target, col, ...))
Function used for reextracting data in predict phase. Can be equal to learn.

args (list)
Named list of arguments to pass to learn via

par.set (ParamSet)
Paramset added to the learner if used in conjunction with a makeExtractFDAFeatsWrapper. Can be NULL.

See Also

Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper(), makeCostSensClassifierWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeSMOTEWrapper(), makeTuneWrapper(), makeUndersampleWrapper(), makeWeightedClassesWrapper()
makeExtractFDAFeatsWrapper

Fuse learner with an extractFDAFeatures method.

Description

Fuses a base learner with an extractFDAFeatures method. Creates a learner object, which can be used like any other learner object. Internally uses extractFDAFeatures before training the learner and reextractFDAFeatures before predicting.

Usage

```r
makeExtractFDAFeatsWrapper(learner, feat.methods = list())
```

Arguments

- **learner** (Learner | character(1))
 The learner. If you pass a string the learner will be created via makeLearner.
- **feat.methods** (named list)
 List of functional features along with the desired methods for each functional feature. “all” applies the extractFDAFeatures method to each functional feature. Names of feat.methods must match column names of functional features. Available feature extraction methods are available under family fda_featextractor. Specifying a functional feature multiple times with different extraction methods allows for the extraction of different features from the same functional. Default is list() which does nothing.

Value

Learner.

See Also

- Other fda: extractFDAFeatures(), makeExtractFDAFeatsWrapper()
makeFeatSelWrapper

Fuse learner with feature selection.

Description

Fuses a base learner with a search strategy to select variables. Creates a learner object, which can be used like any other learner object, but which internally uses `selectFeatures`. If the train function is called on it, the search strategy and resampling are invoked to select an optimal set of variables. Finally, a model is fitted on the complete training data with these variables and returned. See `selectFeatures` for more details.

After training, the optimal features (and other related information) can be retrieved with `getFeatSelResult`.

Usage

```r
makeFeatSelWrapper(
  learner,
  resampling,
  measures,
  bit.names,
  bits.to.features,
  control,
  show.info = getMlrOption("show.info")
)
```

Arguments

- **learner** *(Learner | character(1))*
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **resampling** *(ResampleInstance | ResampleDesc)*
 Resampling strategy for feature selection. If you pass a description, it is instantiated once at the beginning by default, so all points are evaluated on the same training/test sets. If you want to change that behavior, look at `FeatSelControl`.

- **measures** *(list of Measure | Measure)*
 Performance measures to evaluate. The first measure, aggregated by the first aggregation function is optimized, others are simply evaluated. Default is the default measure for the task, see here `getDefaultMeasure`.

- **bit.names** *(character)*
 Names of bits encoding the solutions. Also defines the total number of bits in the encoding. Per default these are the feature names of the task. Has to be used together with `bits.to.features`.

- **bits.to.features** *(function(x, task))*
 Function which transforms an integer-0-1 vector into a character vector of selected features. Per default a value of 1 in the ith bit selects the ith feature to be
makeFilter

Create a feature filter.

Description

Creates and registers custom feature filters. Implemented filters can be listed with `listFilterMethods`. Additional documentation for the `fun` parameter specific to each filter can be found in the description.

Usage

```r
makeFilter(name, desc, pkg, supported.tasks, supported.features, fun)
```
Arguments

- **name** (character(1))
 Identifier for the filter.
- **desc** (character(1))
 Short description of the filter.
- **pkg** (character(1))
 Source package where the filter is implemented.
- **supported.tasks**
 (character)
 Task types supported.
- **supported.features**
 (character)
 Feature types supported.
- **fun**
 (function(task, nselect, ...)
 Function which takes a task and returns a named numeric vector of scores, one score for each feature of task. Higher scores mean higher importance of the feature. At least nselect features must be calculated, the remaining may be set to NA or omitted, and thus will not be selected. the original order will be restored if necessary.

Value

Object of class “Filter”.

References

See Also

Other filter: `filterFeatures()`, `generateFilterValuesData()`, `getFilteredFeatures()`, `listFilterEnsembleMethods()`, `listFilterMethods()`, `makeFilterEnsemble()`, `makeFilterWrapper()`, `plotFilterValues()`

makeFilterEnsemble

Create an ensemble feature filter.

Description

Creates and registers custom ensemble feature filters. Implemented ensemble filters can be listed with `listFilterEnsembleMethods`. Additional documentation for the `fun` parameter specific to each filter can be found in the description.
makeFilterWrapper

Usage

```r
makeFilterEnsemble(name, base.methods, desc, fun)
```

Arguments

- `name` (character(1))

 Identifier for the filter.

- `base.methods` the base filter methods which the ensemble method will use.

- `desc` (character(1))

 Short description of the filter.

- `fun` (function(task, nselect, ...))

 Function which takes a task and returns a named numeric vector of scores, one score for each feature of task. Higher scores mean higher importance of the feature. At least nselect features must be calculated, the remaining may be set to NA or omitted, and thus will not be selected. the original order will be restored if necessary.

Value

Object of class “FilterEnsemble”.

See Also

Other filter: `filterFeatures()`, `generateFilterValuesData()`, `getFilteredFeatures()`, `listFilterEnsembleMethods()`, `listFilterMethods()`, `makeFilterWrapper()`, `makeFilter()`, `plotFilterValues()`

Description

Fuses a base learner with a filter method. Creates a learner object, which can be used like any other learner object. Internally uses `filterFeatures` before every model fit.

Usage

```r
makeFilterWrapper(
  learner,
  fw.method = "randomForestSRC_importance",
  fw.base.methods = NULL,
  fw.perc = NULL,
  fw.abs = NULL,
  fw.threshold = NULL,
  fw.fun = NULL,
  fw.fun.args = NULL,
  fw.mandatory.feat = NULL,
)```
makeFilterWrapper

    cache = FALSE,
    ...
  )

Arguments

learner          (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

fw.method        (character(1))
Filter method. See listFilterMethods. Default is “randomForestSRC_importance”.

fw.base.methods  (character(1))
Simple Filter methods for ensemble filters. See listFilterMethods. Can only be used in combination
with ensemble filters. See listFilterEnsembleMethods.

fw.perc          (numeric(1))
 If set, select fw.perc*100 top scoring features. Mutually exclusive with arguments fw.abs, fw.threshold
and ’fw.fun.

fw.abs           (numeric(1))
 If set, select fw.abs top scoring features. Mutually exclusive with arguments fw.perc, fw.threshold and fw.fun.

fw.threshold     (numeric(1))
 If set, select features whose score exceeds fw.threshold. Mutually exclusive with arguments
fw.perc, fw.abs and fw.fun.

fw.fun           (function)
 If set, select features via a custom thresholding function, which must return the number of top
scoring features to select. Mutually exclusive with arguments fw.perc, fw.abs and fw.threshold.

fw.fun.args      (any)
Arguments passed to the custom thresholding function

fw.mandatory.feat (character)
Mandatory features which are always included regardless of their scores

cache            (character(1) | logical)
Whether to use caching during filter value creation. See details.

...              (any)
Additional parameters passed down to the filter. If you are using more than one filter method, you need
to pass the arguments in a named list via more.args. For example more.args = list("FSelectorRcpp_information.gain" = list(equal = TRUE)).

Details

If ensemble = TRUE, ensemble feature selection using all methods specified in fw.method is
performed. At least two methods need to be selected.

After training, the selected features can be retrieved with getFilteredFeatures.

Note that observation weights do not influence the filtering and are simply passed down to the next learner.
Value

Learner.

Caching

If `cache = TRUE`, the default mlr cache directory is used to cache filter values. The directory is operating system dependent and can be checked with `getCacheDir()`. Alternatively a custom directory can be passed to store the cache. The cache can be cleared with `deleteCacheDir()`. Caching is disabled by default. Care should be taken when operating on large clusters due to possible write conflicts to disk if multiple workers try to write the same cache at the same time.

See Also

Other filter: `filterFeatures()`, `generateFilterValuesData()`, `getFilteredFeatures()`, `listFilterEnsembleMethods()`, `listFilterMethods()`, `makeFilterEnsemble()`, `makeFilter()`, `plotFilterValues()`

Other wrapper: `makeBaggingWrapper()`, `makeClassificationViaRegressionWrapper()`, `makeConstantClassWrapper()`, `makeCostSensClassifWrapper()`, `makeCostSensRegrWrapper()`, `makeDownsampleWrapper()`, `makeDummyFeaturesWrapper()`, `makeExtractFDAFeatsWrapper()`, `makeFeatSelWrapper()`, `makeImputeWrapper()`, `makeMulticlassWrapper()`, `makeMultilabelBinaryRelevanceWrapper()`, `makeMultilabelClassifChainsWrapper()`, `makeMultilabelDBRWrapper()`, `makeMultilabelNestedStackingWrapper()`, `makeMultilabelStackingWrapper()`, `makeOverBaggingWrapper()`, `makePreprocWrapperCaret()`, `makePreprocWrapper()`, `makeRemoveConstantFeaturesWrapper()`, `makeSMOTEWrapper()`, `makeTuneWrapper()`, `makeUndersampleWrapper()`, `makeWeightedClassesWrapper()`

Examples

task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda")
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeFilterWrapper(lrn, fw.perc = 0.5)
mod = train(lrn, task)
print(getFilteredFeatures(mod))
# now nested resampling, where we extract the features that the filter method selected
r = resample(lrn, task, outer, extract = function(model) {
  getFilteredFeatures(model)
})
print(r$extract)

# usage of an ensemble filter
lrn = makeLearner("classif.lda")
lrn = makeFilterWrapper(lrn, fw.method = "E-Borda",
  fw.base.methods = c("FSelectorRcpp_gain.ratio", "FSelectorRcpp_information.gain"),
  fw.perc = 0.5)
r = resample(lrn, task, outer, extract = function(model) {
  getFilteredFeatures(model)
})
print(r$extract)

# usage of a custom thresholding function
biggest_gap = function(values, diff) {
    gap_size = 0
    gap_location = 0
    for (i in (diff + 1):length(values)) {
        gap = values[[i - diff]] - values[[i]]
        if (gap > gap_size) {
            gap_size = gap
            gap_location = i - 1
        }
    }
    return(gap_location)
}

lrn = makeLearner("classif.lda")
lrn = makeFilterWrapper(lrn, fw.method = "randomForestSRC_importance",
    fw.fun = biggest_gap, fw.fun.args = list("diff" = 1))
r = resample(lrn, task, outer, extract = function(model) {
    getFilteredFeatures(model)
})
print(r$extract)

makeFixedHoldoutInstance

*Generate a fixed holdout instance for resampling.*

**Description**

Generate a fixed holdout instance for resampling.

**Usage**

`makeFixedHoldoutInstance(train.inds, test.inds, size)`

**Arguments**

- `train.inds` : (integer) Indices for training set.
- `test.inds` : (integer) Indices for test set.
- `size` : (integer(1)) Size of the data set to resample. The function needs to know the largest possible index of the whole data set.

**Value**

(ResampleInstance).
makeFunctionalData

Create a data.frame containing functional features from a normal
data.frame.

Description
To work with functional features, those features need to be stored as a matrix column in the
data.frame, so mlr can automatically recognize them as functional features. This function allows
for an easy conversion from a data.frame with numeric columns to the required format. If the data
already contains matrix columns, they are left as-is if not specified otherwise in fd.features. See
Examples for the structure of the generated output.

Usage
makeFunctionalData(data, fd.features = NULL, exclude.cols = NULL)

Arguments
data (data.frame)
A data.frame that contains the functional features as numeric columns.

fd.features (list)
Named list containing integer column indices or character column names.
Each element defines a functional feature, in the given order of the indices or
column names. The name of the list element defines the name of the functional
feature. All selected columns have to correspond to numeric data.frame entries.
The default is NULL, which means all numeric features are considered to be a
single functional “fd1”.

exclude.cols (character | integer)
Column names or indices to exclude from conversion to functionals, even if they
are in included in fd.features. Default is not to exclude anything.

Value
(data.frame).

Examples
# data.frame where columns 1:6 and 8:10 belong to a functional feature
d1 = data.frame(matrix(rnorm(100), nrow = 10), "target" = seq_len(10))
# Transform to functional data
d2 = makeFunctionalData(d1, fd.features = list("fd1" = 1:6, "fd2" = 8:10))
# Create a regression task
makeRegrTask(data = d2, target = "target")
makeImputeMethod  Create a custom imputation method.

Description

This is a constructor to create your own imputation methods.

Usage

makeImputeMethod(learn, impute, args = list())

Arguments

learn  (function(data, target, col, ...))
Function to learn and extract information on column col out of data frame data. Argument target specifies the target column of the learning task. The function has to return a named list of values.

impute  (function(data, target, col, ...))
Function to impute missing values in col using information returned by learn on the same column. All list elements of the return values of learn are passed to this function into ....

args  (list)
Named list of arguments to pass to learn via ....

See Also

Other impute: imputations, impute(), makeImputeWrapper(), reimpute()

makeImputeWrapper  Fuse learner with an imputation method.

Description

Fuses a base learner with an imputation method. Creates a learner object, which can be used like any other learner object. Internally uses impute before training the learner and reimpute before predicting.

Usage

makeImputeWrapper(
  learner,
  classes = list(),
  cols = list(),
  dummy.classes = character(0L),
  dummy.cols = character(0L),
)
makeImputeWrapper

dummy.type = "factor",
force.dummies = FALSE,
impute.new.levels = TRUE,
recode.factor.levels = TRUE
)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

classes (named list)
Named list containing imputation techniques for classes of columns. E.g. list(numeric = imputeMedian()).

cols (named list)
Named list containing names of imputation methods to impute missing values in the data column referenced by the list element’s name. Overrules imputation set via classes.

dummy.classes (character)
Classes of columns to create dummy columns for. Default is character(0).

dummy.cols (character)
Column names to create dummy columns (containing binary missing indicator) for. Default is character(0).

dummy.type (character(1))
How dummy columns are encoded. Either as 0/1 with type “numeric” or as “factor”. Default is “factor”.

force.dummies (logical(1))
Force dummy creation even if the respective data column does not contain any NAs. Note that (a) most learners will complain about constant columns created this way but (b) your feature set might be stochastic if you turn this off. Default is FALSE.

impute.new.levels (logical(1))
If new, unencountered factor level occur during reimputation, should these be handled as NAs and then be imputed the same way? Default is TRUE.

recode.factor.levels (logical(1))
Recode factor levels after reimputation, so they match the respective element of lvls (in the description object) and therefore match the levels of the feature factor in the training data after imputation?. Default is TRUE.

Value

Learner.

See Also

Other impute: imputations, impute(), makeImputeMethod(), reimpute()
makeLearner

Create learner object.

Description

For a classification learner the predict.type can be set to "prob" to predict probabilities and the maximum value selects the label. The threshold used to assign the label can later be changed using the setThreshold function.

To see all possible properties of a learner, go to: LearnerProperties.

Usage

makeLearner(
  cl,
  id = cl,
  predict.type = "response",
  predict.threshold = NULL,
  fix.factors.prediction = FALSE,
  ...
  par.vals = list(),
  config = list()
)

Arguments

cl (character(1))
Class of learner. By convention, all classification learners start with "classif," all regression learners with "regr," all survival learners start with "surv," all clustering learners with "cluster," and all multilabel classification learners start with "multilabel." A list of all integrated learners is available on the learners help page.

id (character(1))
Id string for object. Used to display object. Default is cl.

predict.type (character(1))
Classification: "response" (= labels) or "prob" (= probabilities and labels by selecting the ones with maximal probability). Regression: "response" (= mean response) or "se" (= standard errors and mean response). Survival: "response"
makeLearner

(= some sort of orderable risk) or “prob” (= time dependent probabilities). Clus-
tering: “response” (= cluster IDS) or “prob” (= fuzzy cluster membership prob-
abilities), Multilabel: “response” (= logical matrix indicating the predicted class labels) or “prob” (= probabilities and corresponding logical matrix indicating class labels). Default is “response”.

predict.threshold

(numeric)
Threshold to produce class labels. Has to be a named vector, where names corre-
spond to class labels. Only for binary classification it can be a single numerical
threshold for the positive class. See setThreshold for details on how it is applied.
Default is NULL which means 0.5 / an equal threshold for each class.

fix.factors.prediction

(logical(1))
In some cases, problems occur in underlying learners for factor features during
prediction. If the new features have LESS factor levels than during training
(a strict subset), the learner might produce an error like “type of predictors in
new data do not match that of the training data”. In this case one can repair
this problem by setting this option to TRUE. We will simply add the missing
factor levels missing from the test feature (but present in training) to that feature.
Default is FALSE.

... (any)
Optional named (hyper)parameters. If you want to set specific hyperparam-
ters for a learner during model creation, these should go here. You can get a
list of available hyperparameters using getParamSet(<learner>). Alternatively
hyperparameters can be given using the par.vals argument but ... should be
preferred!

par.vals

(list)
Optional list of named (hyper)parameters. The arguments in ... take prece-
dence over values in this list. We strongly encourage you to use ... for passing
hyperparameters.

config

(named list)
Named list of config option to overwrite global settings set via configureMlr for
this specific learner.

Value

(Learner).

par.vals vs. ...

The former aims at specifying default hyperparameter settings from mlr which differ from the
actual defaults in the underlying learner. For example, respect.unordered.factors is set to
order in mlr while the default in ranger::ranger depends on the argument splitrule. getHy-
perPars(<learner>) can be used to query hyperparameter defaults that differ from the underlying
learner. This function also shows all hyperparameters set by the user during learner creation (if
these differ from the learner defaults).
**regr.randomForest**

For this learner we added additional uncertainty estimation functionality (`predict.type = "se"`) for the randomForest, which is not provided by the underlying package.

Currently implemented methods are:

- If `se.method = "jackknife"` the standard error of a prediction is estimated by computing the jackknife-after-bootstrap, the mean-squared difference between the prediction made by only using trees which did not contain said observation and the ensemble prediction.
- If `se.method = "bootstrap"` the standard error of a prediction is estimated by bootstrapping the random forest, where the number of bootstrap replicates and the number of trees in the ensemble are controlled by `se.boot` and `se.ntree` respectively, and then taking the standard deviation of the bootstrap predictions. The "brute force" bootstrap is executed when `ntree = se.ntree`, the latter of which controls the number of trees in the individual random forests which are bootstrapped. The "noisy bootstrap" is executed when `se.ntree < ntree` which is less computationally expensive. A Monte-Carlo bias correction may make the latter option preferable in many cases. Defaults are `se.boot = 50` and `se.ntree = 100`.
- If `se.method = "sd"`, the default, the standard deviation of the predictions across trees is returned as the variance estimate. This can be computed quickly but is also a very naive estimator.

For both “jackknife” and “bootstrap”, a Monte-Carlo bias correction is applied and, in the case that this results in a negative variance estimate, the values are truncated at 0.

Note that when using the “jackknife” procedure for se estimation, using a small number of trees can lead to training data observations that are never out-of-bag. The current implementation ignores these observations, but in the original definition, the resulting se estimation would be undefined.

Please note that all of the mentioned `se.method` variants do not affect the computation of the posterior mean “response” value. This is always the same as from the underlying randomForest.

**regr.featureless**

A very basic baseline method which is useful for model comparisons (if you don’t beat this, you very likely have a problem). Does not consider any features of the task and only uses the target feature of the training data to make predictions. Using observation weights is currently not supported.

Methods “mean” and “median” always predict a constant value for each new observation which corresponds to the observed mean or median of the target feature in training data, respectively. The default method is “mean” which corresponds to the ZeroR algorithm from WEKA.

**classif.featureless**

Method “majority” predicts always the majority class for each new observation. In the case of ties, one randomly sampled, constant class is predicted for all observations in the test set. This method is used as the default. It is very similar to the ZeroR classifier from WEKA. The only difference is that ZeroR always predicts the first class of the tied class values instead of sampling them randomly. Method “sample-prior” always samples a random class for each individual test observation according to the prior probabilities observed in the training data.

If you opt to predict probabilities, the class probabilities always correspond to the prior probabilities observed in the training data.
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(),
helpLearner(), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

Examples

makeLearner("classif.rpart")
makLeaerner("classif.lda", predict.type = "prob")
lrn = makeLearner("classif.lda", method = "t", nu = 10)
getHyperPars(lrn)

makeLearners cls, ids = NULL, type = NULL, 
...

Description

Small helper function that can save some typing when creating multiple learner objects. Calls makeLearner multiple times internally.

Usage

makeLearners(cls, ids = NULL, type = NULL, ...)

Arguments

cls (character)
Classes of learners.

ids (character)
Id strings. Must be unique. Default is cls.

type (character(1))
Shortcut to prepend type string to cls so one can set cls = "rpart". Default is NULL, i.e., this is not used.

... 
Optional named (hyper)parameters. If you want to set specific hyperparameters for a learner during model creation, these should go here. You can get a list of available hyperparameters using getParamSet(<learner>). Alternatively hyperparameters can be given using the par.vals argument but ... should be preferred!

Value

(named list of Learner). Named by ids.
makeMeasure

Construct performance measure.

Description

A measure object encapsulates a function to evaluate the performance of a prediction. Information about already implemented measures can be obtained here: measures.

A learner is trained on a training set d1, results in a model m and predicts another set d2 (which may be a different one or the training set) resulting in the prediction. The performance measure can now be defined using all of the information of the original task, the fitted model and the prediction.

Usage

makeMeasure(
  id,
  minimize,
  properties = character(0L),
  fun,
  extra.args = list(),
  aggr = test.mean,
  best = NULL,
  worst = NULL,
  name = id,
  note = ""
)

Arguments

id (character(1))
Name of measure.

minimize (logical(1))
Should the measure be minimized? Default is TRUE.
properties


Default is character(0).

fun

Calculates the performance value. Usually you will only need the prediction object pred. - task (Task)
The task. - model (WrappedModel)
The fitted model. - pred (Prediction)
Prediction object. - feats (data.frame)
The features. - extra.args (list)
See below.

extra.args

List of extra arguments which will always be passed to fun. Can be changed after construction via setMeasurePars(). Default is empty list.

aggr

Aggregation function, which is used to aggregate the values measured on test / training sets of the measure to a single value. Default is test.mean.

best

Best obtainable value for measure. Default is -Inf or Inf, depending on minimize.

worst

Worst obtainable value for measure. Default is Inf or -Inf, depending on minimize.

name

Name of the measure. Default is id.

note

Description and additional notes for the measure. Default is "".

Value

Measure.

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(), estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), measures, performance(), setAggregation(), setMeasurePars()
Examples

```r
f = function(task, model, pred, extra.args) {
 sum((pred$data$response - pred$data$truth)^2)
}
makeMeasure(id = "my.sse", minimize = TRUE,
 properties = c("regr", "response"), fun = f)
```

### Description

Combines multiple base learners by dispatching on the hyperparameter “selected.learner” to a specific model class. This allows to tune not only the model class (SVM, random forest, etc) but also their hyperparameters in one go. Combine this with `tuneParams` and `makeTuneControlIrace` for a very powerful approach, see example below.

The parameter set is the union of all (unique) base learners. In order to avoid name clashes all parameter names are prefixed with the base learner id, i.e. `learnerId.parameterName`.

The predict.type of the Multiplexer is inherited from the predict.type of the base learners.

The getter `getLearnerProperties` returns the properties of the selected base learner.

### Usage

```r
makeModelMultiplexer(base.learners)
```

### Arguments

- **base.learners** (list of Learner)
  
  List of Learners with unique IDs.

### Value

(ModelMultiplexer). A Learner specialized as ModelMultiplexer.

### Note

Note that logging output during tuning is somewhat shortened to make it more readable. I.e., the artificial prefix before parameter names is suppressed.

### See Also

Other multiplexer: `makeModelMultiplexerParamSet()`

Other tune: `TuneControl`, `getNestedTuneResultsOptPathDf()`, `getNestedTuneResultsX()`, `getResamplingIndices()`, `getResult()`, `makeModelMultiplexerParamSet()`, `makeTuneControlCMAES()`, `makeTuneControlDesign()`, `makeTuneControlGenSA()`, `makeTuneControlGrid()`, `makeTuneControlIrace()`, `makeTuneControlMBO()`, `makeTuneControlRandom()`, `makeWrapper()`, `tuneParams()`, `tuneThreshold()`
Examples

```r
set.seed(123)

library(BBmisc)
bls = list(
 makeLearner("classif.ksvm"),
 makeLearner("classif.randomForest")
)

lrn = makeModelMultiplexer(bls)
simple way to construct param set for tuning
parameter names are prefixed automatically and the 'requires'
element is set, too, to make all parameters subordinate to 'selected.learner'
ps = makeModelMultiplexerParamSet(lrn,
 makeNumericParam("sigma", lower = -10, upper = 10, trafo = function(x) 2^x),
 makeIntegerParam("ntree", lower = 1L, upper = 500L)
)

print(ps)

rdesc = makeResampleDesc("CV", iters = 2L)
to save some time we use random search. but you probably want something like this:
ctrl = makeTuneControlIrace(maxExperiments = 500L)
ctrl = makeTuneControlRandom(maxit = 10L)
res = tuneParams(lrn, iris.task, rdesc, par.set = ps, control = ctrl)
print(res)

df = as.data.frame(res$opt.path)
print(head(df[, -ncol(df)]))

more unique and reliable way to construct the param set
ps = makeModelMultiplexerParamSet(lrn,
 classif.ksvm = makeParamSet(
 makeNumericParam("sigma", lower = -10, upper = 10, trafo = function(x) 2^x)
),
 classif.randomForest = makeParamSet(
 makeIntegerParam("ntree", lower = 1L, upper = 500L)
)
)

this is how you would construct the param set manually, works too
ps = makeParamSet(
 makeDiscreteParam("selected.learner", values = extractSubList(bls, "id")),
 makeNumericParam("classif.ksvm.sigma", lower = -10, upper = 10, trafo = function(x) 2^x,
 requires = quote(selected.learner == "classif.ksvm")),
 makeIntegerParam("classif.randomForest.ntree", lower = 1L, upper = 500L,
 requires = quote(selected.learner == "classif.randomForest"))
)

all three ps-objects are exactly the same internally.
```
Create a parameter set for model multiplexer tuning.

Description

Handy way to create the param set with less typing.

The following is done automatically:

- The selected.learner param is created
- Parameter names are prefixed.
- The requires field of each param is set. This makes all parameters subordinate to selected.learner

Usage

`makeModelMultiplexerParamSet(multiplexer, ..., .check = TRUE)`

Arguments

- `multiplexer` (ModelMultiplexer): The multiplexer learner.
- `...` (ParamHelpers::ParamSet | ParamHelpers::Param): (a) First option: Named param sets. Names must correspond to base learners. You only need to enter the parameters you want to tune without reference to the selected.learner field in any way.
  - (b) Second option. Just the params you would enter in the param sets. Even shorter to create. Only works when it can be uniquely identified to which learner each of your passed parameters belongs.
- `.check` (logical): Check that for each param in `...` one param in found in the base learners. Default is TRUE

Value

ParamSet.

See Also

Other multiplexer: `makeModelMultiplexer()`

Other tune: `TuneControl`, `getNestedTuneResultsOptPathDf()`, `getNestedTuneResultsX()`, `getResamplingIndices()`, `getTuneResult()`, `makeModelMultiplexer()`, `makeTuneControlCMAES()`, `makeTuneControlDesign()`, `makeTuneControlGenSA()`, `makeTuneControlGrid()`, `makeTuneControlIrace()`, `makeTuneControlMBO()`, `makeTuneControlRandom()`, `makeWrapper()`, `tuneParams()`, `tuneThreshold()`

Examples

# See `makeModelMultiplexer`
makeMulticlassWrapper

**Description**

Fuses a base learner with a multi-class method. Creates a learner object, which can be used like any other learner object. This way learners which can only handle binary classification will be able to handle multi-class problems, too.

We use a multiclass-to-binary reduction principle, where multiple binary problems are created from the multiclass task. How these binary problems are generated is defined by an error-correcting-output-code (ECOC) code book. This also allows the simple and well-known one-vs-one and one-vs-rest approaches. Decoding is currently done via Hamming decoding, see e.g. here [https://jmlr.org/papers/volume11/escalera10a/escalera10a.pdf](https://jmlr.org/papers/volume11/escalera10a/escalera10a.pdf).

Currently, the approach always operates on the discrete predicted labels of the binary base models (instead of their probabilities) and the created wrapper cannot predict posterior probabilities.

**Usage**

```r
makeMulticlassWrapper(learner, mcw.method = "onevsrest")
```

**Arguments**

- `learner`: (Learner | character(1))
  The learner. If you pass a string the learner will be created via `makeLearner`.

- `mcw.method`: (character(1) | function)
  “onevsone” or “onevsrest”. You can also pass a function, with signature `function(task)` and which returns a ECOC codematrix with entries +1,-1,0. Columns define new binary problems, rows correspond to classes (rows must be named). 0 means class is not included in binary problem. Default is “onevsrest”.

**Value**

Learner.

**See Also**

Other wrapper: `makeBaggingWrapper()`, `makeClassificationViaRegressionWrapper()`, `makeConstantClassWrapper()`, `makeCostSensClassifWrapper()`, `makeCostSensRegrWrapper()`, `makeDownsampleWrapper()`, `makeDummyFeaturesWrapper()`, `makeExtractFDAFeatsWrapper()`, `makeFeatSelWrapper()`, `makeFilterWrapper()`, `makeImputeWrapper()`, `makeMultilabelBinaryRelevanceWrapper()`, `makeMultilabelClassifierChainsWrapper()`, `makeMultilabelDBRWrapper()`, `makeMultilabelNestedStackingWrapper()`, `makeMultilabelStackingWrapper()`, `makeOverBaggingWrapper()`, `makePreprocWrapperCaret()`, `makePreprocWrapper()`, `makeRemoveConstantFeaturesWrapper()`, `makeSMOTEWrapper()`, `makeTuneWrapper()`, `makeUndersampleWrapper()`, `makeWeightedClassesWrapper()`
makeMultilabelBinaryRelevanceWrapper

Use binary relevance method to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped binary relevance multilabel learner. The multilabel classification problem is converted into simple binary classifications for each label/target on which the binary learner is applied.

Models can easily be accessed via getLearnerModel.

Note that it does not make sense to set a threshold in the used base learner when you predict probabilities. On the other hand, it can make a lot of sense, to call setThreshold on the MultilabelBinaryRelevanceWrapper for each label individually; Or to tune these thresholds with tuneThreshold; especially when you face very unbalanced class distributions for each binary label.

Usage

makeMultilabelBinaryRelevanceWrapper(learner)

Arguments

learner (Learner | character(1))

The learner. If you pass a string the learner will be created via makeLearner.

Value

Learner.

References


See Also

Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper(), makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeSMOTEWrapper(), makeTuneWrapper(), makeUndersampleWrapper(), makeWeightedClassesWrapper()

Other multilabel: getMultilabelBinaryPerformances(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper()
Examples

d = getTaskData(yeast.task)
# drop some labels so example runs faster
d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]
task = makeMultilabelTask(data = d, target = c("label1", "label2"))
lnr = makeLearner("classif.rpart")
lnr = makeMultilabelBinaryRelevanceWrapper(lnr)
lnr = setPredictType(lnr, "prob")
# train, predict and evaluate
mod = train(lnr, task)
pred = predict(mod, task)
performance(pred, measure = list(multilabel.hamloss, multilabel.subset01, multilabel.f1))
# the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))
# above works also with predictions from resample!

makeMultilabelClassifierChainsWrapper

Use classifier chains method (CC) to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped classifier chains multilabel learner. CC trains a binary classifier for each label following a given order. In training phase, the feature space of each classifier is extended with true label information of all previous labels in the chain. During the prediction phase, when true labels are not available, they are replaced by predicted labels.

Models can easily be accessed via getLearnerModel.

Usage

makeMultilabelClassifierChainsWrapper(learner, order = NULL)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

order (character)
Specifies the chain order using the names of the target labels. E.g. for m target labels, this must be a character vector of length m that contains a permutation of the target label names. Default is NULL which uses a random ordering of the target label names.

Value

Learner.
makeMultilabelDBRWrapper

Use dependent binary relevance method (DBR) to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped DBR multilabel learner. The multilabel classification problem is converted into simple binary classifications for each label/target on which the binary learner is applied. For each target, actual information of all binary labels (except the target variable) is used as additional features. During prediction these labels need are obtained by the binary relevance method using the same binary learner.

Models can easily be accessed via `getLearnerModel`.

References

Montanes, E. et al. (2013) Dependent binary relevance models for multi-label classification Artificial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: `makeBaggingWrapper()`, `makeClassificationViaRegressionWrapper()`, `makeCostSensClassifWrapper()`, `makeCostSensRegrWrapper()`, `makeDownsampleWrapper()`, `makeDummyFeaturesWrapper()`, `makeExtractFDAFeatsWrapper()`, `makeFeatSelWrapper()`, `makeImputeWrapper()`, `makeMulticlassWrapper()`, `makeMultilabelBinaryRelevanceWrapper()`, `makeMultilabelDBRWrapper()`, `makeMultilabelNestedStackingWrapper()`, `makeMultilabelStackingWrapper()`, `makeOverBaggingWrapper()`, `makePreprocWrapperCaret()`, `makePreprocWrapper()`, `makeRemoveConstantFeaturesWrapper()`, `makeSMOTEWrapper()`, `makeTuneWrapper()`, `makeUndersampleWrapper()`, `makeWeightedClassesWrapper()

Other multilabel: `getMultilabelBinaryPerformances()`, `makeMultilabelBinaryRelevanceWrapper()`, `makeMultilabelDBRWrapper()`, `makeMultilabelNestedStackingWrapper()`, `makeMultilabelStackingWrapper()`

Examples

d = getTaskData(yeast.task)
# drop some labels so example runs faster
d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]
task = makeMultilabelTask(data = d, target = c("label1", "label2"))
lrn = makeLearner("classif.rpart")
lrn = makeMultilabelBinaryRelevanceWrapper(lrn)
lrn = setPredictType(lrn, "prob")
# train, predict and evaluate
mod = train(lrn, task)
pred = predict(mod, task)
performance(pred, measure = list(multilabel.hamloss, multilabel.subset01, multilabel.f1))
# the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))
# above works also with predictions from resample!
makeMultilabelDBRWrapper

Usage

makeMultilabelDBRWrapper(learner)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

Value

Learner.

References

Montanes, E. et al. (2013) Dependent binary relevance models for multi-label classification Artificial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper(), makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeSMOTEWrapper(), makeTuneWrapper(), makeUndersampleWrapper(), makeWeightedClassesWrapper()

Other multilabel: getMultilabelBinaryPerformances(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper()

Examples

d = getTaskData(yeast.task)
# drop some labels so example runs faster
d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]
task = makeMultilabelTask(data = d, target = c("label1", "label2"))

lrn = makeLearner("classif.rpart")

lrn = makeMultilabelBinaryRelevanceWrapper(lrn)

lrn = setPredictType(lrn, "prob")
# train, predict and evaluate
mod = train(lrn, task)
pred = predict(mod, task)
performance(pred, measure = list(multilabel.hamloss, multilabel.subset01, multilabel.f1))
# the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))
# above works also with predictions from resample!
Use nested stacking method to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped nested stacking multilabel learner. Nested stacking trains a binary classifier for each label following a given order. In training phase, the feature space of each classifier is extended with predicted label information (by cross validation) of all previous labels in the chain. During the prediction phase, predicted labels are obtained by the classifiers, which have been learned on all training data.

Models can easily be accessed via getLearnerModel.

Usage

makeMultilabelNestedStackingWrapper(learner, order = NULL, cv.folds = 2)

Arguments

- **learner** *(Learner | character(1))*
  The learner. If you pass a string the learner will be created via makeLearner.

- **order** *(character)*
  Specifies the chain order using the names of the target labels. E.g. for m target labels, this must be a character vector of length m that contains a permutation of the target label names. Default is NULL which uses a random ordering of the target label names.

- **cv.folds** *(integer(1))*
  The number of folds for the inner cross validation method to predict labels for the augmented feature space. Default is 2.

Value

Learner.

References

Montanes, E. et al. (2013), Dependent binary relevance models for multi-label classification Artificial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper(), makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelStackingWrapper

Use stacking method (stacked generalization) to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped stacking multilabel learner. Stacking trains a binary classifier for each label using predicted label information of all labels (including the target label) as additional features (by cross validation). During prediction these labels need are obtained by the binary relevance method using the same binary learner.

Models can easily be accessed via getLearnerModel.

Usage

makeMultilabelStackingWrapper(learner, cv.folds = 2)

Arguments

learner (Learner | character(1))
  The learner. If you pass a string the learner will be created via makeLearner.

cv.folds (integer(1))
  The number of folds for the inner cross validation method to predict labels for the augmented feature space. Default is 2.

Examples

d = getTaskData(yeast.task)
# drop some labels so example runs faster
d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]
task = makeMultilabelTask(data = d, target = c("label1", "label2"))

lrn = makeLearner("classif.rpart")

lrn = makeMultilabelBinaryRelevanceWrapper(lrn)

lrn = setPredictType(lrn, "prob")
# train, predict and evaluate

mod = train(lrn, task)
pred = predict(mod, task)

performance(pred, measure = list(multilabel.hamloss, multilabel.subset01, multilabel.f1))
# the next call basically has the same structure for any multilabel meta wrapper

getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))
# above works also with predictions from resample!
makeMultilabelTask

Create a multilabel task.

Description

Create a multilabel task.
**Usage**

```r
makeMultilabelTask(
 id = deparse(substitute(data)),
 data,
 target,
 weights = NULL,
 blocking = NULL,
 coordinates = NULL,
 fixup.data = "warn",
 check.data = TRUE
)
```

**Arguments**

- **id** (character(1))
  
  Id string for object. Default is the name of the R variable passed to data.

- **data** (data.frame)
  
  A data frame containing the features and target variable(s).

- **target** (character(1) | character(2) | character(n.classes))
  
  Name(s) of the target variable(s). For survival analysis these are the names of the survival time and event columns, so it has length 2. For multilabel classification it contains the names of the logical columns that encode whether a label is present or not and its length corresponds to the number of classes.

- **weights** (numeric)
  
  Optional, non-negative case weight vector to be used during fitting. Cannot be set for cost-sensitive learning. Default is `NULL` which means no (= equal) weights.

- **blocking** (factor)
  
  An optional factor of the same length as the number of observations. Observations with the same blocking level “belong together”. Specifically, they are either put all in the training or the test set during a resampling iteration. Default is `NULL` which means no blocking.

- **coordinates** (data.frame)
  
  Coordinates of a spatial data set that will be used for spatial partitioning of the data in a spatial cross-validation resampling setting. Coordinates have to be numeric values. Provided `data.frame` needs to have the same number of rows as data and consist of at least two dimensions.

- **fixup.data** (character(1))
  
  Should some basic cleaning up of data be performed? Currently this means removing empty factor levels for the columns. Possible choices are: “no” = Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent. Default is “warn”.

- **check.data** (logical(1))
  
  Should sanity of data be checked initially at task creation? You should have good reasons to turn this off (one might be speed). Default is `TRUE`.  

Details

For multilabel classification we assume that the presence of labels is encoded via logical columns in data. The name of the column specifies the name of the label. target is then a char vector that points to these columns.

Note

For multilabel classification we assume that the presence of labels is encoded via logical columns in data. The name of the column specifies the name of the label. target is then a char vector that points to these columns.

See Also

Task ClassifTask ClusterTask CostSensTask RegrTask SurvTask

makeOverBaggingWrapper

Fuse learner with the bagging technique and oversampling for imbal-ancy correction.

Description

Fuses a classification learner for binary classification with an over-bagging method for imbalancy correction when we have strongly unequal class sizes. Creates a learner object, which can be used like any other learner object. Models can easily be accessed via getLearnerModel.

OverBagging is implemented as follows: For each iteration a random data subset is sampled. Class examples are oversampled with replacement with a given rate. Members of the other class are either simply copied into each bag, or bootstrapped with replacement until we have as many majority class examples as in the original training data. Features are currently not changed or sampled.

Prediction works as follows: For classification we do majority voting to create a discrete label and probabilities are predicted by considering the proportions of all predicted labels.

Usage

makeOverBaggingWrapper(
  learner,
  obw.iters = 10L,
  obw.rate = 1,
  obw.maxcl = "boot",
  obw.cl = NULL
)
**makePreprocWrapper**

### Description

Fuses a base learner with a preprocessing method. Creates a learner object, which can be used like any other learner object, but which internally preprocesses the data as requested. If the train or predict function is called on data / a task, the preprocessing is always performed automatically.

### Arguments

- **learner** *(Learner | character(1))*
  The learner. If you pass a string the learner will be created via `makeLearner`.

- **obw.iters** *(integer(1))*
  Number of fitted models in bagging. Default is 10.

- **obw.rate** *(numeric(1))*
  Factor to upsample a class in each bag. Must be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size. Default is 1.

- **obw.maxcl** *(character(1))*
  How should other class (usually larger class) be handled? “all” means every instance of the class gets in each bag, “boot” means the class instances are bootstrapped in each iteration. Default is “boot”.

- **obw.cl** *(character(1))*
  Which class should be over- or undersampled. If NULL, `makeOverBaggingWrapper` will take the smaller class.

### Value

Learner.

### See Also

Other imbalancy: `makeUndersampleWrapper()`, `oversample()`, `smote()`

Other wrapper: `makeBaggingWrapper()`, `makeClassificationViaRegressionWrapper()`, `makeConstantClassWrapper()`, `makeCostSensClassifWrapper()`, `makeCostSensRegrWrapper()`, `makeDownsampleWrapper()`, `makeDummyFeaturesWrapper()`, `makeExtractFDAFeatsWrapper()`, `makeFeatSelWrapper()`, `makeFilterWrapper()`, `makeImputeWrapper()`, `makeMulticlassWrapper()`, `makeMultilabelBinaryRelevanceWrapper()`, `makeMultilabelClassifierChainsWrapper()`, `makeMultilabelDBRWrapper()`, `makeMultilabelNestedStackingWrapper()`, `makeMultilabelStackingWrapper()`, `makePreprocWrapperCaret()`, `makePreprocWrapper()`,
Usage

```r
makePreprocWrapper(
 learner,
 train,
 predict,
 par.set = makeParamSet(),
 par.vals = list()
)
```

Arguments

- **learner** *(Learner | character(1))*
  The learner. If you pass a string the learner will be created via `makeLearner`.

- **train** *(function(data, target, args))*
  Function to preprocess the data before training. `target` is a string and denotes the target variable in `data`. `args` is a list of further arguments and parameters to influence the preprocessing. Must return a list(`data`, `control`), where `data` is the preprocessed data and `control` stores all information necessary to do the preprocessing before predictions.

- **predict** *(function(data, target, args, control))*
  Function to preprocess the data before prediction. `target` is a string and denotes the target variable in `data`. `args` are the args that were passed to `train`. `control` is the object you returned in `train`. Must return the processed data.

- **par.set** *(ParamHelpers::ParamSet)*
  Parameter set of ParamHelpers::LearnerParam objects to describe parameters in `args`. Default is empty set.

- **par.vals** *(list)*
  Named list of default values for params in `args` respectively `par.set`. Default is empty list.

Value

*(Learner)*.

See Also

Other wrapper: `makeBaggingWrapper()`, `makeClassificationViaRegressionWrapper()`, `makeConstantClassWrapper()`, `makeCostSensClassifWrapper()`, `makeCostSensRegrWrapper()`, `makeDownsampleWrapper()`, `makeDummyFeaturesWrapper()`, `makeExtractFDAFeatsWrapper()`, `makeFeatSelWrapper()`, `makeFilterWrapper()`, `makeImputeWrapper()`, `makeMulticlassWrapper()`, `makeMultilabelBinaryRelevanceWrapper()`, `makeMultilabelClassifierChainsWrapper()`, `makeMultilabelDBRWrapper()`, `makeMultilabelNestedStackingWrapper()`, `makeMultilabelStackingWrapper()`, `makeOverBaggingWrapper()`, `makePreprocWrapperCaret()`, `makeRemoveConstantFeaturesWrapper()`, `makeSMOTEWrapper()`, `makeTuneWrapper()`, `makeUndersampleWrapper()`, `makeWeightedClassesWrapper()`
**makePreprocWrapperCaret**

Fuse learner with preprocessing.

**Description**

Fuses a learner with preprocessing methods provided by `caret::preProcess`. Before training the preprocessing will be performed and the preprocessing model will be stored. Before prediction the preprocessing model will transform the test data according to the trained model.

After being wrapped the learner will support missing values although this will only be the case if `ppc.knnImpute`, `ppc.bagImpute` or `ppc.medianImpute` is set to `TRUE`.

**Usage**

```r
makePreprocWrapperCaret(learner, ...)
```

**Arguments**

- `learner` *(Learner | character(1))*
  The learner. If you pass a string the learner will be created via `makeLearner`.

- `...` *(any)*
  See `caret::preProcess` for parameters not listed above. If you use them you might want to define them in the `add.par.set` so that they can be tuned.

**Value**

Learner.

**See Also**

Other wrapper: `makeBaggingWrapper()`, `makeClassificationViaRegressionWrapper()`, `makeConstantClassWrapper()`, `makeCostSensClassifWrapper()`, `makeCostSensRegrWrapper()`, `makeDownsampleWrapper()`, `makeDummyFeaturesWrapper()`, `makeExtractFDAFeatsWrapper()`, `makeFeatSelWrapper()`, `makeFilterWrapper()`, `makeImputeWrapper()`, `makeMulticlassWrapper()`, `makeMultilabelBinaryRelevanceWrapper()`, `makeMultilabelClassifierChainsWrapper()`, `makeMultilabelDBRWrapper()`, `makeMultilabelNestedStackingWrapper()`, `makeMultilabelStackingWrapper()`, `makeOverBaggingWrapper()`, `makePreprocWrapper()`, `makeRemoveConstantFeatureWrapper()`, `makeSMOTEWrapper()`, `makeTuneWrapper()`, `makeUndersampleWrapper()`, `makeWeightedClassesWrapper()`
makeRegrTask

Create a regression task.

Description
Create a regression task.

Usage

makeRegrTask(
  id = deparse(substitute(data)),
  data,
  target,
  weights = NULL,
  blocking = NULL,
  coordinates = NULL,
  fixup.data = "warn",
  check.data = TRUE
)

Arguments

id
(character(1))
Id string for object. Default is the name of the R variable passed to data.

data
(data.frame)
A data frame containing the features and target variable(s).

target
(character(1) | character(2) | character(n.classes))
Name(s) of the target variable(s). For survival analysis these are the names of the survival time and event columns, so it has length 2. For multilabel classification it contains the names of the logical columns that encode whether a label is present or not and its length corresponds to the number of classes.

weights (numeric)
Optional, non-negative case weight vector to be used during fitting. Cannot be set for cost-sensitive learning. Default is NULL which means no (= equal) weights.

blocking
(factor)
An optional factor of the same length as the number of observations. Observations with the same blocking level “belong together”. Specifically, they are either put all in the training or the test set during a resampling iteration. Default is NULL which means no blocking.

coordinates
(data.frame)
Coordinates of a spatial data set that will be used for spatial partitioning of the data in a spatial cross-validation resampling setting. Coordinates have to be numeric values. Provided data.frame needs to have the same number of rows as data and consist of at least two dimensions.
Should some basic cleaning up of data be performed? Currently this means removing empty factor levels for the columns. Possible choices are: “no” = Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent. Default is “warn”.

Should sanity of data be checked initially at task creation? You should have good reasons to turn this off (one might be speed). Default is TRUE.

---

**Description**

Fuses a base learner with the preprocessing implemented in `removeConstantFeatures`.

**Usage**

```r
makeRemoveConstantFeaturesWrapper(
 learner,
 perc = 0,
 dont.rm = character(0L),
 na.ignore = FALSE,
 wrap.tol = .Machine$double.eps^0.5
)
```

**Arguments**

- `learner` (**Learner | character(1)**)
  The learner. If you pass a string the learner will be created via `makeLearner`.

- `perc` (**numeric(1)**)
  The percentage of a feature values in [0, 1) that must differ from the mode value. Default is 0, which means only constant features with exactly one observed level are removed.

- `dont.rm` (**character**)
  Names of the columns which must not be deleted. Default is no columns.

- `na.ignore` (**logical(1)**)
  Should NAs be ignored in the percentage calculation? (Or should they be treated as a single, extra level in the percentage calculation?) Note that if the feature has only missing values, it is always removed. Default is FALSE.

- `wrap.tol` (**numeric(1)**)
  Numerical tolerance to treat two numbers as equal. Variables stored as double will get rounded accordingly before computing the mode. Default is `sqrt(.Machine$double.eps)`.
makeResampleDesc

Create a description object for a resampling strategy.

Description

A description of a resampling algorithm contains all necessary information to create a ResampleInstance, when given the size of the data set.

Usage

```r
makeResampleDesc(
 method,
 predict = "test",
 \ldots,
 stratify = FALSE,
 stratify.cols = NULL,
 fixed = FALSE,
 blocking.cv = FALSE
)
```

Arguments

- **method** (character(1))
- **predict** (character(1))
  What to predict during resampling: "train", "test" or "both" sets. Default is "test".
- **\ldots** (any)
  Further parameters for strategies.

Value

Learner.

See Also

Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper(), makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeSMOTEWrapper(), makeTuneWrapper(), makeUndersampleWrapper(), makeWeightedClassesWrapper()
**makeResampleDesc**

**iters (integer(1))** Number of iterations, for “CV”, “Subsample” and “Bootstrap”.

**split (numeric(1))** Proportion of training cases for “Holdout” and “Subsample” between 0 and 1. Default is 2/3.

**reps (integer(1))** Repeats for “RepCV”. Here iters = folds * reps. Default is 10.

**folds (integer(1))** Folds in the repeated CV for RepCV. Here iters = folds * reps. Default is 10.

**horizon (numeric(1))** Number of observations in the forecast test set for “GrowingWindowCV” and “FixedWindowCV”. When horizon > 1 this will be treated as the number of observations to forecast, else it will be a fraction of the initial window. IE, for 100 observations, initial window of .5, and horizon of .2, the test set will have 10 observations. Default is 1.

**initial.window (numeric(1))** Fraction of observations to start with in the training set for “GrowingWindowCV” and “FixedWindowCV”. When initial.window > 1 this will be treated as the number of observations in the initial window, else it will be treated as the fraction of observations to have in the initial window. Default is 0.5.

**skip (numeric(1))** How many resamples to skip to thin the total amount for “GrowingWindowCV” and “FixedWindowCV”. This is passed through as the “by” argument in seq(). When skip > 1 this will be treated as the increment of the sequence of resampling indices, else it will be a fraction of the total training indices. IE for 100 training sets and a value of .2, the increment of the resampling indices will be 20. Default is “horizon” which gives mutually exclusive chunks of test indices.

**stratify (logical(1))**
Should stratification be done for the target variable? For classification tasks, this means that the resampling strategy is applied to all classes individually and the resulting index sets are joined to make sure that the proportion of observations in each training set is as in the original data set. Useful for imbalanced class sizes. For survival tasks stratification is done on the events, resulting in training sets with comparable censoring rates.

**stratify.cols (character)**
Stratify on specific columns referenced by name. All columns have to be factor or integer. Note that you have to ensure yourself that stratification is possible, i.e. that each strata contains enough observations. This argument and stratify are mutually exclusive.

**fixed (logical(1))**
Whether indices supplied via argument ‘blocking’ in the task should be used as fully pre-defined indices. Default is FALSE which means they will be used following the ‘blocking’ approach. fixed only works with ResampleDesc CV and the supplied indices must match the number of observations. When fixed = TRUE, the iters argument will be ignored and is interally set to the number of supplied factor levels in blocking.

**blocking.cv (logical(1))**
Should ‘blocking’ be used in CV? Default to FALSE. This is different to fixed
Details

Some notes on some special strategies:

**Repeated cross-validation** Use “RepCV”. Then you have to set the aggregation function for your preferred performance measure to “testgroup.mean” via setAggregation.

**B632 bootstrap** Use “Bootstrap” for bootstrap and set predict to “both”. Then you have to set the aggregation function for your preferred performance measure to “b632” via setAggregation.

**B632+ bootstrap** Use “Bootstrap” for bootstrap and set predict to “both”. Then you have to set the aggregation function for your preferred performance measure to “b632plus” via setAggregation.

**Fixed Holdout set** Use makeFixedHoldoutInstance.

Object slots:

**id** (character(1)) Name of resampling strategy.

**iters** (integer(1)) Number of iterations. Note that this is always the complete number of generated train/test sets, so for a 10-times repeated 5-fold cross-validation it would be 50.

**predict** (character(1)) See argument.

**stratify** (logical(1)) See argument.

All parameters passed in ... under the respective argument name See arguments.

Value

(ResampleDesc).

Standard ResampleDesc objects

For common resampling strategies you can save some typing by using the following description objects:

**hout** holdout a.k.a. test sample estimation (two-thirds training set, one-third testing set)

**cv2** 2-fold cross-validation

**cv3** 3-fold cross-validation

**cv5** 5-fold cross-validation

**cv10** 10-fold cross-validation

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(), getRRPredictions(), getRRTaskDescription(), getRRTaskDesc(), makeResampleInstance(), resample()
Examples

# Bootstraping
makeResampleDesc("Bootstrap", iters = 10)
makeResampleDesc("Bootstrap", iters = 10, predict = "both")

# Subsampling
makeResampleDesc("Subsample", iters = 10, split = 3 / 4)
makeResampleDesc("Subsample", iters = 10)

# Holdout a.k.a. test sample estimation
makeResampleDesc("Holdout")

makeResampleInstance Instantiates a resampling strategy object.

Description

This class encapsulates training and test sets generated from the data set for a number of iterations. It mainly stores a set of integer vectors indicating the training and test examples for each iteration.

Usage

makeResampleInstance(desc, task, size, ...)

Arguments

desc (ResampleDesc | character(1))
Resampling description object or name of resampling strategy. In the latter case makeResampleDesc will be called internally on the string.

task (Task)
Data of task to resample from. Prefer to pass this instead of size.

size (integer)
Size of the data set to resample. Can be used instead of task.

...
Passed down to makeResampleDesc in case you passed a string in desc. Otherwise ignored.

Details

Object slots:

desc (ResampleDesc) See argument.
size (integer(1)) See argument.
train.indxs (list of integer) List of of training indices for all iterations.
test.indxs (list of integer) List of of test indices for all iterations.
group (factor) Optional grouping of resampling iterations. This encodes whether specific iterations 'belong together' (e.g. repeated CV), and it can later be used to aggregate performance values accordingly. Default is 'factor()'.
Value

(ResampleInstance).

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(), getRRPredictions(), getRRTaskDescription(), getRRTaskDesc(), makeResampleDesc(), resample()

Examples

rdesc = makeResampleDesc("Bootstrap", iters = 10)
rin = makeResampleInstance(rdesc, task = iris.task)

rdesc = makeResampleDesc("CV", iters = 50)
rin = makeResampleInstance(rdesc, size = nrow(iris))

rin = makeResampleInstance("CV", iters = 10, task = iris.task)
makeRLearner.classif.fdausc.np

Learner for nonparametric classification for functional data.

Description

Learner for Nonparametric Supervised Classification.

Usage

## S3 method for class 'classif.fdausc.np'
makeRLearner()

makeSMOTEWrapper

Fuse learner with SMOTE oversampling for imbalancy correction in binary classification.

Description

Creates a learner object, which can be used like any other learner object. Internally uses smote before every model fit.

Note that observation weights do not influence the sampling and are simply passed down to the next learner.

Usage

makeSMOTEWrapper(
  learner,
  sw.rate = 1,
  sw.nn = 5L,
  sw.standardize = TRUE,
  sw.alt.logic = FALSE
)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

sw.rate (numeric(1))
Factor to oversample the smaller class. Must be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size. Default is 1.

sw.nn (integer(1))
Number of nearest neighbors to consider. Default is 5.
sw.standardize (logical(1))
Standardize input variables before calculating the nearest neighbors for data sets with numeric input variables only. For mixed variables (numeric and factor) the gower distance is used and variables are standardized anyway. Default is TRUE.

sw.alt.logic (logical(1))
Use an alternative logic for selection of minority class observations. Instead of sampling a minority class element AND one of its nearest neighbors, each minority class element is taken multiple times (depending on rate) for the interpolation and only the corresponding nearest neighbor is sampled. Default is FALSE.

Value
Learner.

See Also
Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper(), makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeTuneWrapper(), makeUndersampleWrapper(), makeWeightedClassesWrapper()

makeStackedLearner
Create a stacked learner object.

Description
A stacked learner uses predictions of several base learners and fits a super learner using these predictions as features in order to predict the outcome. The following stacking methods are available:

- **average**
  Averaging of base learner predictions without weights.

- **stack.nocv**
  Fits the super learner, where in-sample predictions of the base learners are used.

- **stack.cv**
  Fits the super learner, where the base learner predictions are computed by cross-validated predictions (the resampling strategy can be set via the resampling argument).

- **hill.climb**
  Select a subset of base learner predictions by hill climbing algorithm.

- **compress**
  Train a neural network to compress the model from a collection of base learners.
Usage

makeStackedLearner(
    base.learners,
    super.learner = NULL,
    predict.type = NULL,
    method = "stack.nocv",
    use.feat = FALSE,
    resampling = NULL,
    parset = list()
)

Arguments

base.learners (list of Learner)
A list of learners created with makeLearner.

super.learner (Learner | character(1))
The super learner that makes the final prediction based on the base learners. If you pass a string, the super learner will be created via makeLearner. Not used for method = 'average'. Default is NULL.

predict.type (character(1))
Sets the type of the final prediction for method = 'average'. For other methods, the predict type should be set within super.learner. If the type of the base learner prediction, which is set up within base.learners, is

• "prob" then predict.type = 'prob' will use the average of all base learner predictions and predict.type = 'response' will use the class with highest probability as final prediction.

• "response" then, for classification tasks with predict.type = 'prob', the final prediction will be the relative frequency based on the predicted base learner classes and classification tasks with predict.type = 'response' will use majority vote of the base learner predictions to determine the final prediction. For regression tasks, the final prediction will be the average of the base learner predictions.

method (character(1))
"average" for averaging the predictions of the base learners, "stack.nocv" for building a super learner using the predictions of the base learners, "stack.cv" for building a super learner using cross-validated predictions of the base learners. "hill.climb" for averaging the predictions of the base learners, with the weights learned from hill climbing algorithm and "compress" for compressing the model to mimic the predictions of a collection of base learners while speeding up the predictions and reducing the size of the model. Default is "stack.nocv".

use.feat (logical(1))
Whether the original features should also be passed to the super learner. Not used for method = 'average'. Default is FALSE.
**makeStackedLearner**

**resampling**

*(ResampleDesc)*

Resampling strategy for method = 'stack.cv'. Currently only CV is allowed for resampling. The default NULL uses 5-fold CV.

**parsel**

the parameters for hill.climb method, including

- **replace**
  Whether a base learner can be selected more than once.

- **init**
  Number of best models being included before the selection algorithm.

- **bagprob**
  The proportion of models being considered in one round of selection.

- **bagtime**
  The number of rounds of the bagging selection.

- **metric**
  The result evaluation metric function taking two parameters `pred` and `true`, the smaller the score the better.

the parameters for compress method, including

- **k**
  the size multiplier of the generated data

- **prob**
  the probability to exchange values

- **s**
  the standard deviation of each numerical feature

**Examples**

```r
Classification
data(iris)
tsk = makeClassifTask(data = iris, target = "Species")
base = c("classif.rpart", "classif.lda", "classif.svm")
lrns = lapply(base, makeLearner)
lrns = lapply(lrns, setPredictType, "prob")
m = makeStackedLearner(base.learners = lrns,
 predict.type = "prob", method = "hill.climb")
tmp = train(m, tsk)
res = predict(tmp, tsk)

Regression
data(BostonHousing, package = "mlbench")
tsk = makeRegrTask(data = BostonHousing, target = "medv")
base = c("regr.rpart", "regr.svm")
lrns = lapply(base, makeLearner)
m = makeStackedLearner(base.learners = lrns,
 predict.type = "response", method = "compress")
tmp = train(m, tsk)
res = predict(tmp, tsk)
```
Create a survival task.

Usage

```r
makeSurvTask(
 id = deparse(substitute(data)),
 data,
 target,
 weights = NULL,
 blocking = NULL,
 coordinates = NULL,
 fixup.data = "warn",
 check.data = TRUE
)
```

Arguments

- **id** *(character(1))*
  Id string for object. Default is the name of the R variable passed to `data`.

- **data** *(data.frame)*
  A data frame containing the features and target variable(s).

- **target** *(character(1) | character(2) | character(n.classes))*
  Name(s) of the target variable(s). For survival analysis these are the names of the survival time and event columns, so it has length 2. For multilabel classification it contains the names of the logical columns that encode whether a label is present or not and its length corresponds to the number of classes.

- **weights** *(numeric)*
  Optional, non-negative case weight vector to be used during fitting. Cannot be set for cost-sensitive learning. Default is `NULL` which means no (= equal) weights.

- **blocking** *(factor)*
  An optional factor of the same length as the number of observations. Observations with the same blocking level “belong together”. Specifically, they are either put all in the training or the test set during a resampling iteration. Default is `NULL` which means no blocking.

- **coordinates** *(data.frame)*
  Coordinates of a spatial data set that will be used for spatial partitioning of the data in a spatial cross-validation resampling setting. Coordinates have to be numeric values. Provided `data.frame` needs to have the same number of rows as `data` and consist of at least two dimensions.
Should some basic cleaning up of data be performed? Currently this means removing empty factor levels for the columns. Possible choices are: "no" = Don’t do it. "warn" = Do it but warn about it. "quiet" = Do it but keep silent. Default is "warn".

Should sanity of data be checked initially at task creation? You should have good reasons to turn this off (one might be speed). Default is TRUE.

See Also

Task ClassifTask ClusterTask CostSensTask MultilabelTask RegrTask

Description

CMA Evolution Strategy with method cmaes::cma_es. Can handle numeric(vector) and integer(vector) hyperparameters, but no dependencies. For integers the internally proposed numeric values are automatically rounded. The sigma variance parameter is initialized to 1/4 of the span of box-constraints per parameter dimension.

Usage

makeTuneControlCMAES(
  same.resampling.instance = TRUE,
  impute.val = NULL,
  start = NULL,
  tune.threshold = FALSE,
  tune.threshold.args = list(),
  log.fun = "default",
  final.dw.perc = NULL,
  budget = NULL,
  ...
)

Arguments

same.resampling.instance
  (logical(1))
  Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

impute.val
  (numeric)
  If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. Imputation is only active if on.learner.error is configured not to stop in configureMlr. It
makeTuneControlCMAES

is not stored in the optimization path, an NA and a corresponding error message
are logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or \texttt{Inf} instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

**start**  
(list)
Named list of initial parameter values.

**tune.threshold**  
(logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via \texttt{tuneThreshold}? Only works for classification if the predict
type is “\texttt{prob}”. Default is \texttt{FALSE}.

**tune.threshold.args**  
(list)
Further arguments for threshold tuning that are passed down to \texttt{tuneThreshold}.
Default is none.

**log.fun**  
(function | character(1))
Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character(1) small increase in run time. Otherwise character(1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from \texttt{go}). See the implementation for details.

**final.dw.perc**  
(boolean)
If a Learner wrapped by a \texttt{makeDownsampleWrapper} is used, you can define
the value of \texttt{dw.perc} which is used to train the Learner with the final parameter
setting found by the tuning. Default is \texttt{NULL} which will not change anything.

**budget**  
(integer(1))
Maximum budget for tuning. This value restricts the number of function eval-
uations. The budget corresponds to the product of the number of generations
(maxit) and the number of offsprings per generation (lambda).

**...**  
(any)
Further control parameters passed to the control arguments of \texttt{cmaes::cma_es}
or \texttt{GenSA::GenSA}, as well as towards the tunerConfig argument of \texttt{irace::irace}.

**Value**

(TuneControlCMAES)

**See Also**

Other tune: \texttt{TuneControl}, \texttt{getNestedTuneResultsOptPathDf()}, \texttt{getNestedTuneResultsX()},
\texttt{getResamplingIndices()}, \texttt{getTuneResult()}, \texttt{makeModelMultiplexerParamSet()}, \texttt{makeModelMultiplexer()}. 
makeTuneControlDesign

Create control object for hyperparameter tuning with predefined design.

Description

Completely pre-specify a data.frame of design points to be evaluated during tuning. All kinds of parameter types can be handled.

Usage

```r
makeTuneControlDesign(
 same.resampling.instance = TRUE,
 impute.val = NULL,
 design = NULL,
 tune.threshold = FALSE,
 tune.threshold.args = list(),
 log.fun = "default"
)
```

Arguments

- `same.resampling.instance` (logical(1))
  Should the same resampling instance be used for all evaluations to reduce variance? Default is `TRUE`.

- `impute.val` (numeric)
  If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. Imputation is only active if `on.learner.error` is configured not to stop in `configureMlr`. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or `Inf` instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

- `design` (data.frame)
  data.frame containing the different parameter settings to be evaluated. The columns have to be named according to the ParamSet which will be used in `tune()`. Proper designs can be created with `ParamHelpers::generateDesign` for instance.
### Description

Generalized simulated annealing with method `GenSA::GenSA`. Can handle numeric(vector) and integer(vector) hyperparameters, but no dependencies. For integers the internally proposed numeric values are automatically rounded.

### Usage

```r
makeTuneControlGenSA(
 same.resampling.instance = TRUE,
 impute.val = NULL,
 start = NULL,
 tune.threshold = FALSE,
 tune.threshold.args = list(),
)```

Value

(TuneControlDesign)
Arguments

\texttt{same.resampling.instance}

\begin{verbatim}
(logical(1))
Should the same resampling instance be used for all evaluations to reduce variance? Default is \texttt{TRUE}.
\end{verbatim}

\texttt{impute.val}

\begin{verbatim}
(numeric)
If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. Imputation is only active if \texttt{on.learner.error} is configured not to stop in \texttt{configureMlr}. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or \texttt{Inf} instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.
\end{verbatim}

\texttt{start}

\begin{verbatim}
(list)
Named list of initial parameter values.
\end{verbatim}

\texttt{tune.threshold}

\begin{verbatim}
(logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via \texttt{tuneThreshold}? Only works for classification if the predict type is "prob". Default is \texttt{FALSE}.
\end{verbatim}

\texttt{tune.threshold.args}

\begin{verbatim}
(list)
Further arguments for threshold tuning that are passed down to \texttt{tuneThreshold}. Default is none.
\end{verbatim}

\texttt{log.fun}

\begin{verbatim}
(function | character(1))
Function used for logging. If set to "default" (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to "memory" the memory usage for each evaluation will also be displayed, with character(1) small increase in run time. Otherwise character(1) function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from \texttt{gc}). See the implementation for details.
\end{verbatim}

\texttt{final.dw.perc}

\begin{verbatim}
(boolean)
If a Learner wrapped by a \texttt{makeDownsampleWrapper} is used, you can define the value of \texttt{dw.perc} which is used to train the Learner with the final parameter setting found by the tuning. Default is \texttt{NULL} which will not change anything.
\end{verbatim}
makeTuneControlGrid

Create control object for hyperparameter tuning with grid search.

Value

(TuneControlGenSA).

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf(), getNestedTuneResultsX(), getResamplingIndices(), getTuneResult(), makeModelMultiplexerParamSet(), makeModelMultiplexer(), makeTuneControlCMAES(), makeTuneControlDesign(), makeTuneControlGrid(), makeTuneControlIrace(), makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper(), tuneParams(), tuneThreshold()

Description

A basic grid search can handle all kinds of parameter types. You can either use their correct param type and resolution, or discretize them yourself by always using `ParamHelpers::makeDiscreteParam` in the `par.set` passed to `tuneParams`.

Usage

```r
makeTuneControlGrid(  
  same.resampling.instance = TRUE,  
  impute.val = NULL,  
  resolution = 10L,  
  tune.threshold = FALSE,  
  tune.threshold.args = list(),  
  log.fun = "default",  
  final.dw.perc = NULL,  
  budget = NULL
)
```
Arguments

same.resampling.instance
(logical(1))
Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

impute.val
(numeric)
If something goes wrong during optimization (e.g., the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. Imputation is only active if on.learner.error is configured not to stop in configureMlr. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

resolution
(integer)
Resolution of the grid for each numeric/integer parameter in par.set. For vector parameters, it is the resolution per dimension. Either pass one resolution for all parameters, or a named vector. See ParamHelpers::generateGridDesign. Default is 10.

tune.threshold
(logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via tuneThreshold? Only works for classification if the predict type is “prob”. Default is FALSE.

tune.threshold.args
(list)
Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.

log.fun
(function | character(1))
Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory” the memory usage for each evaluation will also be displayed, with character(1) small increase in run time. Otherwise character(1) function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

final.dw.perc
(boolean)
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget
(integer(1))
Maximum budget for tuning. This value restricts the number of function evaluations. If set, must equal the size of the grid.
Value

(TuneControlGrid)

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf(), getNestedTuneResultsX(),
getResamplingIndices().getTuneResult().makeModelMultiplexerParamSet().makeModelMultiplexer().
makeTuneControlCMAES().makeTuneControlDesign().makeTuneControlGenSA().makeTuneControlIrace().
makeTuneControlMBO().makeTuneControlRandom().makeTuneWrapper().tuneParams().tuneThreshold()
are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

n.instances (integer(1))
Number of random resampling instances for irace, see details. Default is 100.

show.irace.output
(logical(1))
Show console output of irace while tuning? Default is FALSE.

tune.threshold
(logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via tuneThreshold? Only works for classification if the predict type is "prob". Default is FALSE.

tune.threshold.args
(list)
Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.

log.fun
(function | character(1))
Function used for logging. If set to "default" (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to "memory" the memory usage for each evaluation will also be displayed, with character(1) small increase in run time. Otherwise character(1) function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

final.dw.perc
(boolean)
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget
(integer(1))
Maximum budget for tuning. This value restricts the number of function evaluations. It is passed to maxExperiments.

...
(any)
Further control parameters passed to the control arguments of cmaes::cma_es or GenSA::GenSA, as well as towards the tunerConfig argument of irace::irace.

Value

(TuneControlIrace)

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf(), getNestedTuneResultsX(), getResamplingIndices(), getTuneResult(), makeModelMultiplexerParamSet(), makeModelMultiplexer(),
makeTuneControlMBO

Create control object for hyperparameter tuning with MBO.

Description

Model-based / Bayesian optimization with the function mlrMBO::mbo from the mlrMBO package. Please refer to https://github.com/mlr-org/mlrMBO for further info.

Usage

makeTuneControlMBO(
 same.resampling.instance = TRUE,
 impute.val = NULL,
 learner = NULL,
 mbo.control = NULL,
 tune.threshold = FALSE,
 tune.threshold.args = list(),
 continue = FALSE,
 log.fun = "default",
 final.dw.perc = NULL,
 budget = NULL,
 mbo.design = NULL
)

Arguments

same.resampling.instance

(logical(1))
Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

impute.val

(numeric)
If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. Imputation is only active if on.learner.error is configured not to stop in configureMlr. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

learner

(Learner | NULL)
The surrogate learner: A regression learner to model performance landscape. For the default, NULL, mlrMBO will automatically create a suitable learner based on the rules described in mlrMBO::makeMBOLearner.
mbo.control (mlrMBO::MBOControl | NULL)
Control object for model-based optimization tuning. For the default, NULL, the control object will be created with all the defaults as described in mlrMBO::makeMBOControl.

tune.threshold (logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via tuneThreshold? Only works for classification if the predict type is “prob”. Default is FALSE.

tune.threshold.args (list)
Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.

continue (logical(1))
Resume calculation from previous run using mlrMBO::mboContinue? Requires “save.file.path” to be set. Note that the ParamHelpers::OptPath in the mlrMBO::OptResult will only include the evaluations after the continuation. The complete OptPath will be found in the slot $mbo.result$opt.path.

log.fun (function | character(1))
Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory” the memory usage for each evaluation will also be displayed, with character(1) small increase in run time. Otherwise character(1) function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

final.dw.perc (boolean)
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget (integer(1))
Maximum budget for tuning. This value restricts the number of function evaluations.

mbo.design (data.frame | NULL)
Initial design as data frame. If the parameters have corresponding trafo functions, the design must not be transformed before it is passed! For the default, NULL, a default design is created like described in mlrMBO::mbo.

Value
(TuneControlMBO)

References
makeTuneControlRandom
Create control object for hyperparameter tuning with random search.

Description
Random search. All kinds of parameter types can be handled.

Usage

```r
makeTuneControlRandom(
  same.resampling.instance = TRUE,
  maxit = NULL,
  tune.threshold = FALSE,
  tune.threshold.args = list(),
  log.fun = "default",
  final.dw.perc = NULL,
  budget = NULL
)
```

Arguments

- `same.resampling.instance`
 (logical(1))
 Should the same resampling instance be used for all evaluations to reduce variance? Default is `TRUE`.

- `maxit`
 (integer(1)|NULL)
 Number of iterations for random search. Default is 100.

- `tune.threshold`
 (logical(1))
 Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via `tuneThreshold`? Only works for classification if the predict type is “prob”. Default is `FALSE`.

- `tune.threshold.args`
 (list)
 Further arguments for threshold tuning that are passed down to `tuneThreshold`. Default is `None`.

- `log.fun`
 (function | character(1))
 Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory” the memory usage for each evaluation will also be displayed, with character(1) small increase in run time. Otherwise character(1) function

See Also
Other tune: `TuneControl`, `getNestedTuneResultsOptPathDf()`, `getNestedTuneResultsX()`, `getResamplingIndices()`, `getTuneResult()`, `makeModelMultiplexerParamSet()`, `makeModelMultiplexer()`, `makeTuneControlCMAES()`, `makeTuneControlDesign()`, `makeTuneControlGenSA()`, `makeTuneControlGrid()`, `makeTuneControlIrace()`, `makeTuneControlRandom()`, `makeTuneWrapper()`, `tuneParams()`, `tuneThreshold()`
Fuses a base learner with a search strategy to select its hyperparameters. Creates a learner object, which can be used like any other learner object, but which internally uses `tuneParams`. If the train function is called on it, the search strategy and resampling are invoked to select an optimal set of hyperparameter values. Finally, a model is fitted on the complete training data with these optimal hyperparameters and returned. See `tuneParams` for more details.

After training, the optimal hyperparameters (and other related information) can be retrieved with `getTuneResult`.

Usage

```r
makeTuneWrapper(
  learner,
  resampling,
  measures,
  par.set,
  control,
  show.info = getMlrOption("show.info")
)
```
makeTuneWrapper

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

resampling (ResampleInstance | ResampleDesc)
Resampling strategy to evaluate points in hyperparameter space. If you pass a
description, it is instantiated once at the beginning by default, so all points are
evaluated on the same training/test sets. If you want to change that behavior,
look at TuneControl.

measures (list of Measure | Measure)
Performance measures to evaluate. The first measure, aggregated by the first
aggregation function is optimized, others are simply evaluated. Default is the
default measure for the task, see here getDefaultMeasure.

par.set (ParamHelpers::ParamSet)
Collection of parameters and their constraints for optimization. Dependent pa-
rameters with a requires field must use quote and not expression to define it.

ccontrol (TuneControl)
Control object for search method. Also selects the optimization algorithm for
tuning.

show.info (logical(1))
Print verbose output on console? Default is set via configureMlr.

Value

Learner.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf(), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexerParamSet(), makeModelMultiplexer(),
makeTuneControlCMAES(), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(),
makeTuneControlIrace(), makeTuneControlMBO(), makeTuneControlRandom(), tuneParams(),
tuneThreshold()

Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper() ,
makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(),
makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(),
makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(),
makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeSMOTEWrapper(), makeUndersampleWrapper(),
makeWeightedClassesWrapper()

Examples

task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.rpart")
makeUndersampleWrapper

Fuse learner with simple oversampling and undersampling for imbalancy correction in binary classification.

Description

Creates a learner object, which can be used like any other learner object. Internally uses oversample or undersample before every model fit.

Note that observation weights do not influence the sampling and are simply passed down to the next learner.

Usage

makeUndersampleWrapper(learner, usw.rate = 1, usw.cl = NULL)

makeOversampleWrapper(learner, osw.rate = 1, osw.cl = NULL)

Arguments

learner
(Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

usw.rate
(numeric(1))
Factor to downsample a class. Must be between 0 and 1, where 1 means no downsampling, 0.5 implies reduction to 50 percent and 0 would imply reduction to 0 observations. Default is 1.

usw.cl
(character(1))
Class that should be undersampled. Default is NULL, which means the larger one.
makeWeightedClassesWrapper

Wraps a classifier for weighted fitting where each class receives a weight.

Description

 Creates a wrapper, which can be used like any other learner object. Fitting is performed in a weighted fashion where each observation receives a weight, depending on the class it belongs to, see wcw.weight. This might help to mitigate problems caused by imbalanced class distributions.

This weighted fitting can be achieved in two ways:

a) The learner already has a parameter for class weighting, so one weight can directly be defined per class. Example: “classif.ksvm” and parameter class.weights. In this case we don’t really do anything fancy. We convert wcw.weight a bit, but basically simply bind its value to the class weighting param. The wrapper in this case simply offers a convenient, consistent fashion for class weighting - and tuning! See example below.

b) The learner does not have a direct parameter to support class weighting, but supports observation weights, so hasLearnerProperties(learner, 'weights') is TRUE. This means that an individual, arbitrary weight can be set per observation during training. We set this weight depending on the class internally in the wrapper. Basically we introduce something like a new “class.weights” parameter for the learner via observation weights.

osw.rate (numeric(1))
Factor to oversample a class. Must be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size. Default is 1.

osw.cl (character(1))
Class that should be oversampled. Default is NULL, which means the smaller one.

Value

Learner.

See Also

Other imbalancy: makeOverBaggingWrapper(), oversample(), smote() Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper(), makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeSMOTEWrapper(), makeTuneWrapper(), makeWeightedClassesWrapper()
makeWeightedClassesWrapper

Usage

makeWeightedClassesWrapper(learner, wcw.param = NULL, wcw.weight = 1)

Arguments

learner (Learner | character(1))
The classification learner. If you pass a string the learner will be created via makeLearner.

wcw.param (character(1))
Name of already existing learner parameter, which allows class weighting. The default (wcw.param = NULL) will use the parameter defined in the learner (class.weights.param). During training, the parameter must accept a named vector of class weights, where length equals the number of classes.

wcw.weight (numeric)
Weight for each class. Must be a vector of the same number of elements as classes are in task, and must also be in the same order as the class levels are in getTaskDesc(task)$class.levels. For convenience, one must pass a single number in case of binary classification, which is then taken as the weight of the positive class, while the negative class receives a weight of 1. Default is 1.

Value

Learner.

See Also

Other wrapper: makeBaggingWrapper(), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper(), makeCostSensClassifWrapper(), makeCostSensRegrWrapper(), makeDownsampleWrapper(), makeDummyFeaturesWrapper(), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(), makeImputeWrapper(), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(), makeOverBaggingWrapper(), makePreprocWrapperCaret(), makePreprocWrapper(), makeRemoveConstantFeaturesWrapper(), makeSMOTEWrapper(), makeTuneWrapper(), makeUndersampleWrapper()

Examples

set.seed(123)
using the direct parameter of the SVM (which is already defined in the learner)
lnr = makeWeightedClassesWrapper("classif.ksvm", wcw.weight = 0.01)
res = holdout(lnr, sonar.task)
print(calculateConfusionMatrix(res$pred))

using the observation weights of logreg
lnr = makeWeightedClassesWrapper("classif.logreg", wcw.weight = 0.01)
res = holdout(lnr, sonar.task)
print(calculateConfusionMatrix(res$pred))
tuning the imbalancy param and the SVM param in one go

```r
lrn = makeWeightedClassesWrapper("classif.ksvm", wcw.param = "class.weights")
ps = makeParamSet(
  makeNumericParam("wcw.weight", lower = 1, upper = 10),
  makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
  makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x)
)
ctrl = makeTuneControlRandom(maxit = 3L)
rdesc = makeResampleDesc("CV", iters = 2L, stratify = TRUE)
res = tuneParams(lrn, sonar.task, rdesc, par.set = ps, control = ctrl)
print(res)
# print(res$opt.path)
```

makeWrappedModel
Induced model of learner.

Description

Result from `train`.

It internally stores the underlying fitted model, the subset used for training, features used for training, levels of factors in the data set and computation time that was spent for training.

Object members: See arguments.

The constructor `makeWrappedModel` is mainly for internal use.

Usage

```r
makeWrappedModel(
  learner,
  learner.model,
  task.desc,
  subset,
  features,
  factor.levels,
  time
)
```

Arguments

- **learner** *(Learner | character(1))*
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **learner.model** *(any)*
 Underlying model.

- **task.desc** *(TaskDesc)*
 Task description object.
subset (integer | logical | NULL)
Selected cases. Either a logical or an index vector. By default NULL if all observations are used.

features (character)
Features used for training.

factor.levels (named list of character)
Levels of factor variables (features and potentially target) in training data. Named by variable name, non-factors do not occur in the list.

time (numeric(1))
Computation time for model fit in seconds.

Value

WrappedModel.

MeasureProperties

Query properties of measures.

Description

Properties can be accessed with getMeasureProperties(measure), which returns a character vector.

The measure properties are defined in Measure.

Usage

getMeasureProperties(measure)

hasMeasureProperties(measure, props)

Arguments

measure (Measure)
Performance measure. Default is the first measure used in the benchmark experiment.

props (character)
Vector of properties to query.

Value

getMeasureProperties returns a character vector with measure properties. hasMeasureProperties returns a logical vector of the same length as props.
Performance measures.

Description

A performance measure is evaluated after a single train/predict step and returns a single number to assess the quality of the prediction (or maybe only the model, think AIC). The measure itself knows whether it wants to be minimized or maximized and for what tasks it is applicable.

All supported measures can be found by listMeasures or as a table in the tutorial appendix: https://mlr.mlr-org.com/articles/tutorial/measures.html.

If you want a measure for a misclassification cost matrix, look at makeCostMeasure. If you want to implement your own measure, look at makeMeasure.

Most measures can directly be accessed via the function named after the scheme measureX (e.g. measureSSE).

For clustering measures, we compact the predicted cluster IDs such that they form a continuous series starting with 1. If this is not the case, some of the measures will generate warnings.

Some measure have parameters. Their defaults are set in the constructor makeMeasure and can be overwritten using setMeasurePars.

Usage

measureSSE(truth, response)
measureMSE(truth, response)
measureRMSE(truth, response)
measureMEDSE(truth, response)
measureSAE(truth, response)
measureMAE(truth, response)
measureMEDAE(truth, response)
measureRSQ(truth, response)
measureEXPVAR(truth, response)
measureRRSE(truth, response)
measureRAE(truth, response)
measureMAPE(truth, response)
measureMSLE(truth, response)
measureRMSLE(truth, response)
measureKendallTau(truth, response)
measureSpearmanRho(truth, response)
measureMMCE(truth, response)
measureACC(truth, response)
measureBER(truth, response)
measureAUNU(probabilities, truth)
measureAUNP(probabilities, truth)
measureAU1U(probabilities, truth)
measureAU1P(probabilities, truth)
measureMulticlassBrier(probabilities, truth)
measureLogloss(probabilities, truth)
measureSSR(probabilities, truth)
measureQSR(probabilities, truth)
measureLSR(probabilities, truth)
measureKAPPA(truth, response)
measureWKAPPA(truth, response)
measureAUC(probabilities, truth, negative, positive)
measureBrier(probabilities, truth, negative, positive)
measureBrierScaled(probabilities, truth, negative, positive)
measureBAC(truth, response)
measureTP(truth, response, positive)
measureTN(truth, response, negative)
measureFP(truth, response, positive)
measureFN(truth, response, negative)
measureTPR(truth, response, positive)
measureTNR(truth, response, negative)
measureFPR(truth, response, negative, positive)
measureFNR(truth, response, negative, positive)
measurePPV(truth, response, positive, probabilities = NULL)
measureNPV(truth, response, negative)
measureFDR(truth, response, positive)
measureMCC(truth, response, negative, positive)
measureF1(truth, response, positive)
measureGMEAN(truth, response, negative, positive)
measureGPR(truth, response, positive)
measureMultilabelHamloss(truth, response)
measureMultilabelSubset01(truth, response)
measureMultilabelF1(truth, response)
measureMultilabelACC(truth, response)
measureMultilabelPPV(truth, response)
measureMultilabelTPR(truth, response)

Arguments

truth (factor)
Vector of the true class.

response (factor)
Vector of the predicted class.

probabilities (numeric | matrix)
a) For purely binary classification measures: The predicted probabilities for the positive class as a numeric vector. b) For multiclass classification measures: The predicted probabilities for all classes, always as a numeric matrix, where
mergeBenchmarkResults

columns are named with class labels.

negative (character(1))
The name of the negative class.

positive (character(1))
The name of the positive class.

References

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(), estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(), performance(), setAggregation(), setMeasurePars()

mergeBenchmarkResults Merge different BenchmarkResult objects.

Description

The function automatically combines a list of BenchmarkResult objects into a single BenchmarkResult object as long as the full crossproduct of all task-learner combinations are available.

Usage

mergeBenchmarkResults(bmrs)

Arguments

bmrs (list of BenchmarkResult)
BenchmarkResult objects that should be merged.

Details

Note that if you want to merge several BenchmarkResult objects, you must ensure that all possible learner and task combinations will be contained in the returned object. Otherwise, the user will be notified which task-learner combinations are missing or duplicated.

When merging BenchmarkResult objects with different measures, all missing measures will automatically be recomputed.
mergeSmallFactorLevels

Merges small levels of factors into new level.

Description

Merges factor levels that occur only infrequently into combined levels with a higher frequency.

Usage

```r
mergeSmallFactorLevels(
  task,
  cols = NULL,
  min.perc = 0.01,
  new.level = "\texttt{.merged}"
)
```

Arguments

- **task** *(Task)*
 The task.
- **cols** *(character)* Which columns to convert. Default is all factor and character columns.
- **min.perc** *(numeric(1))*
 The smallest levels of a factor are merged until their combined proportion w.r.t. the length of the factor exceeds `min.perc`. Must be between 0 and 1. Default is 0.01.
- **new.level** *(character(1))*
 New name of merged level. Default is ".merged"

Value

Task, where merged levels are combined into a new level of name `new.level`.

See Also

Other eda_and_preprocess: `capLargeValues()`, `createDummyFeatures()`, `dropFeatures()`, `normalizeFeatures()`, `removeConstantFeatures()`, `summarizeColumns()`, `summarizeLevels()`
mlrFamilies

mlr documentation families

Description

List of all mlr documentation families with members.

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>benchmark</td>
<td>batchmark, reduceBatchmarkResults, benchmark, benchmarkParallel, getBMRTaskIds, getBMR Learners, getBMR LearnerIds, getBMR Learner Short Names, getBMR Measures, getBMR MeasureIds, getBMR Predictions, getBMR Performances, getBMR Aggr Performances, getBMRTune Results, getBMR Filtered Features, getBMR Models, getBMR Task Descs, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, plotBMROutliers, plotBMR Ranks As Bar Chart, generateCrit Differences Data, plotCrit Differences</td>
</tr>
<tr>
<td>calibration</td>
<td>generateCalibrationData, plotCalibration</td>
</tr>
<tr>
<td>configure</td>
<td>configureMlr, getMlrOptions</td>
</tr>
<tr>
<td>costsens</td>
<td>makeCostSensTask, makeCostSensWeightedPairsWrapper</td>
</tr>
<tr>
<td>debug</td>
<td>predictFailureModel, getPredictionDump, getRRDump, print.ResampleResult</td>
</tr>
<tr>
<td>downsample</td>
<td>downsample</td>
</tr>
<tr>
<td>eda_and_preprocess</td>
<td>capLargeValues, createDummyFeatures, dropFeatures, mergeSmallFactorLevels, normalizeFeatures, removeConstantFeatures, summarizeColumns, summarizeLevels</td>
</tr>
<tr>
<td>extractFDAFeatures</td>
<td>reextractFDAFeatures</td>
</tr>
<tr>
<td>fda_featextractor</td>
<td>extractFDAFourier, extractFDAWavelets, extractFDAFPCA, extractFDAMultiResFeatures</td>
</tr>
<tr>
<td>fda</td>
<td>makeExtractFDAFeatMethod, extractFDAFeatures</td>
</tr>
<tr>
<td>featsel</td>
<td>analyzeFeatSelResult, makeFeatSelControl, getFeatSelResult, selectFeatures</td>
</tr>
<tr>
<td>filter</td>
<td>filterFeatures, makeFilter, listFilterMethods, getFilteredFeatures, generateFilterValuesData, getFilterValues</td>
</tr>
<tr>
<td>generate_plot_data</td>
<td>generateFeatureImportanceData, plotFilterValues, generatePartialDependenceData</td>
</tr>
<tr>
<td>help</td>
<td>helpLearner, helpLearnerParam</td>
</tr>
<tr>
<td>imbalancy</td>
<td>oversample, smote</td>
</tr>
<tr>
<td>impute</td>
<td>makeImputeMethod, imputeConstant, impute, reimpute</td>
</tr>
</tbody>
</table>
mtcars.task

Motor Trend Car Road Tests clustering task.

Description

Contains the task (mtcars.task).
normalizeFeatures

Normalize features.

Description

Normalize features by different methods. Internally `BBmisc::normalize` is used for every feature column. Non numerical features will be left untouched and passed to the result. For constant features most methods fail, special behaviour for this case is implemented.

Usage

```r
normalizeFeatures(
  obj,
  target = character(0L),
  method = "standardize",
  cols = NULL,
  range = c(0, 1),
  on.constant = "quiet"
)
```

Arguments

- `obj` *(data.frame | Task)*
 Input data.

- `target` *(character(1) | character(2) | character(n.classes))*
 Name(s) of the target variable(s). Only used when `obj` is a data.frame, otherwise ignored. If survival analysis is applicable, these are the names of the survival time and event columns, so it has length 2. For multilabel classification these are the names of logical columns that indicate whether a class label is present and the number of target variables corresponds to the number of classes.

- `method` *(character(1))*
 Normalizing method. Available are:
 - "center": Subtract mean.
 - "scale": Divide by standard deviation.
 - "standardize": Center and scale.
 - "range": Scale to a given range.

- `cols` *(character)*
 Columns to normalize. Default is to use all numeric columns.

- `range` *(numeric(2))*
 Range for method "range". Default is c(0, 1).

References

See `datasets::mtcars`.
How should constant vectors be treated? Only used, of “method != center”, since this methods does not fail for constant vectors. Possible actions are:
“quiet”: Depending on the method, treat them quietly:
“scale”: No division by standard deviation is done, input values. will be returned untouched.
“standardize”: Only the mean is subtracted, no division is done.
“range”: All values are mapped to the mean of the given range.
“warn”: Same behaviour as “quiet”, but print a warning message.
“stop”: Stop with an error.

Value

data.frame | Task. Same type as obj.

See Also

BBmisc::normalize

Other eda_and_preprocess: capLargeValues(), createDummyFeatures(), dropFeatures(), mergeSmallFactorLevels(), removeConstantFeatures(), summarizeColumns(), summarizeLevels()

oversample

Over- or undersample binary classification task to handle class imbal-
ancy.

Description

Oversampling: For a given class (usually the smaller one) all existing observations are taken and copied and extra observations are added by randomly sampling with replacement from this class.
Undersampling: For a given class (usually the larger one) the number of observations is reduced (downsampled) by randomly sampling without replacement from this class.

Usage

oversample(task, rate, cl = NULL)
undersample(task, rate, cl = NULL)

Arguments

task (Task)
The task.
rate (numeric(1))
Factor to upsample or downsample a class. For undersampling: Must be be-
tween 0 and 1, where 1 means no downsampling, 0.5 implies reduction to 50 percent and 0 would imply reduction to 0 observations. For oversampling: Must
be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size.

c1 (character(1))
Which class should be over- or undersampled. If NULL, oversample will select the smaller and undersample the larger class.

Value
Task.

See Also
Other imbalancy: makeOverBaggingWrapper(), makeUndersampleWrapper(), smote()

parallelization

Description
mlr supports different methods to activate parallel computing capabilities through the integration of the parallelMap::parallelMap package, which supports all major parallelization backends for R. You can start parallelization with parallelStart*, where * should be replaced with the chosen backend. parallelMap::parallelStop is used to stop all parallelization backends.

Parallelization is divided into different levels and will automatically be carried out for the first level that occurs, e.g. if you call resample() after parallelMap::parallelStart, each resampling iteration is a parallel job and possible underlying calls like parameter tuning won’t be parallelized further.

The supported levels of parallelization are:

"mlr.resample" Each resampling iteration (a train/test step) is a parallel job.

"mlr.benchmark" Each experiment "run this learner on this data set" is a parallel job.

"mlr.tuneParams" Each evaluation in hyperparameter space "resample with these parameter settings" is a parallel job. How many of these can be run independently in parallel depends on the tuning algorithm. For grid search or random search there is no limit, but for other tuners it depends on how many points to evaluate are produced in each iteration of the optimization. If a tuner works in a purely sequential fashion, we cannot work magic and the hyperparameter evaluation will also run sequentially. But note that you can still parallelize the underlying resampling.

"mlr.selectFeatures" Each evaluation in feature space "resample with this feature subset" is a parallel job. The same comments as for "mlr.tuneParams" apply here.

"mlr.ensemble" For all ensemble methods, the training and prediction of each individual learner is a parallel job. Supported ensemble methods are the makeBaggingWrapper, makeCostSensitiveRegrWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper and the makeOverBaggingWrapper.
performance

Measure performance of prediction.

Description

Measures the quality of a prediction w.r.t. some performance measure.

Usage

```r
performance(
  pred,  # Prediction object.
  measures,  # Performance measure(s) to evaluate. Default is the default measure for the task, see here getDefaultMeasure.
  task = NULL,  # Learning task, might be requested by performance measure, usually not needed except for clustering or survival.
  model = NULL,  # Model built on training data, might be requested by performance measure, usually not needed except for survival.
  feats = NULL,  # Features of predicted data, usually not needed except for clustering. If the prediction was generated from a task, you can also pass this instead and the features are extracted from it.
  simpleaggr = FALSE  # If TRUE, aggregation of ResamplePrediction objects is skipped. This is used internally for threshold tuning. Default is FALSE.
)
```

Arguments

- **pred** *(Prediction)*
 - Prediction object.

- **measures** *(Measure | list of Measure)*
 - Performance measure(s) to evaluate. Default is the default measure for the task, see here `getDefaultMeasure`.

- **task** *(Task)*
 - Learning task, might be requested by performance measure, usually not needed except for clustering or survival.

- **model** *(WrappedModel)*
 - Model built on training data, might be requested by performance measure, usually not needed except for survival.

- **feats** *(data.frame)*
 - Features of predicted data, usually not needed except for clustering. If the prediction was generated from a task, you can also pass this instead and the features are extracted from it.

- **simpleaggr** *(logical)*
 - If TRUE, aggregation of ResamplePrediction objects is skipped. This is used internally for threshold tuning. Default is FALSE.

Value

(named numeric). Performance value(s), named by measure(s).
See Also

Other performance: `ConfusionMatrix`, `calculateConfusionMatrix()`, `calculateROCMeasures()`, `estimateRelativeOverfitting()`, `makeCostMeasure()`, `makeCustomResampledMeasure()`, `makeMeasure()`, `measures`, `setAggregation()`, `setMeasurePars()`

Examples

```r
training.set = seq(1, nrow(iris), by = 2)
test.set = seq(2, nrow(iris), by = 2)

task = makeClassifTask(data = iris, target = "Species")
lnr = makeLearner("classif.lda")
mod = train(lnr, task, subset = training.set)
pred = predict(mod, newdata = iris[test.set, ])
performance(pred, measures = mmce)

# Compute multiple performance measures at once
ms = list("mmce" = mmce, "acc" = acc, "timetrain" = timetrain)
performance(pred, measures = ms, task, mod)
```

phoneme.task

Phoneme functional data multilabel classification task.

Description

Contains the task (`phoneme.task`). The task contains a single functional covariate and 5 equally big classes (aa, ao, del, iy, sh). The aim is to predict the class of the phoneme in the functional. The dataset is contained in the package fda.usc.

References

pid.task

PimaIndiansDiabetes classification task.

Description

Contains the task (`pid.task`).

References

See `mlbench::PimaIndiansDiabetes`. Note that this is the uncorrected version from mlbench.
plotBMRBoxplots

Create box or violin plots for a BenchmarkResult.

Description

Plots box or violin plots for a selected measure across all iterations of the resampling strategy, faceted by the task.id.

Usage

```r
plotBMRBoxplots(
  bmr,
  measure = NULL,
  style = "box",
  order.lrns = NULL,
  order.tsks = NULL,
  pretty.names = TRUE,
  facet.wrap.nrow = NULL,
  facet.wrap.ncol = NULL
)
```

Arguments

- `bmr` *(BenchmarkResult)*
 Benchmark result.
- `measure` *(Measure)*
 Performance measure. Default is the first measure used in the benchmark experiment.
- `style` *(character(1))*
 Type of plot, can be “box” for a boxplot or “violin” for a violin plot. Default is “box”.
- `order.lrns` *(character(n.learners))*
 Character vector with learner.ids in new order.
- `order.tsks` *(character(n.tasks))*
 Character vector with task.ids in new order.
- `pretty.names` *(logical(1))*
 Whether to use the Measure name and the Learner short name instead of the id. Default is TRUE.
- `facet.wrap.nrow, facet.wrap.ncol` *(integer)*
 Number of rows and columns for facetting. Default for both is NULL. In this case ggplot’s facet_wrap will choose the layout itself.

Value

ggplot2 plot object.
plotBMRRanksAsBarChart

Create a bar chart for ranks in a BenchmarkResult.

Description

Plots a bar chart from the ranks of algorithms. Alternatively, tiles can be plotted for every rank-task combination, see `pos` for details. In all plot variants the ranks of the learning algorithms are displayed on the x-axis. Areas are always colored according to the `learner.id`.

Usage

```r
plotBMRRanksAsBarChart(
  bmr,  # Benchmark result.
  measure = NULL,  # Performance measure. Default is the first measure used in the benchmark experiment.
  ties.method = "average",  # Method for ranking tied learners.
  aggregation = "default",  # Aggregation method for task ranks.
  pos = "stack",  # Position of tiles.
  order.lrns = NULL,  # Order of learners.
  order.tsks = NULL,  # Order of tasks.
  pretty.names = TRUE  # Whether to pretty print names.
)
```

Arguments

- `bmr` : `(BenchmarkResult)`
 Benchmark result.
- `measure` : `(Measure)`
 Performance measure. Default is the first measure used in the benchmark experiment.
plotBMRSummary

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ties.method</td>
<td>(character(1)) See rank for details.</td>
</tr>
<tr>
<td>aggregation</td>
<td>(character(1)) “mean” or “default”. See getBMRAggrPerformances for details on “default”.</td>
</tr>
<tr>
<td>pos</td>
<td>(character(1)) Optionally set how the bars are positioned in ggplot2. Ranks are plotted on the x-axis. “tile” plots a heat map with task as the y-axis. Allows identification of the performance in a special task. “stack” plots a stacked bar plot. Allows for comparison of learners within and across ranks. “dodge” plots a bar plot with bars next to each other instead of stacked bars.</td>
</tr>
<tr>
<td>order.lrns</td>
<td>(character(n.learners)) Character vector with learner.ids in new order.</td>
</tr>
<tr>
<td>order.tsks</td>
<td>(character(n.tasks)) Character vector with task.ids in new order.</td>
</tr>
<tr>
<td>pretty.names</td>
<td>(logical(1)) Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE.</td>
</tr>
</tbody>
</table>

Value
ggplot2 plot object.

See Also
Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRSummary(), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(), plotROCCurves(), plotResiduals(), plotThreshVsPerf()

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMR LearnerIds(), getBMR Learner ShortNames(), getBMR Learners(), getBMR MeasureIds(), getBMR Measures(), getBMR Models(), getBMR Performances(), getBMR Predictions(), getBMR Task Descs(), getBMR Task Ids(), getBMR Tune Results(), plotBMRBoxplots(), plotBMR Summary(), plotCritDifferences(), reduceBatchmarkResults()

Examples

see benchmark

plotBMRSummary

Plot a benchmark summary.

Description
Creates a scatter plot, where each line refers to a task. On that line the aggregated scores for all learners are plotted, for that task. Optionally, you can apply a rank transformation or just use one of ggplot2’s transformations like ggplot2::scale_x_log10.
Usage

```r
plotBMRSummary(
  bmr,
  measure = NULL,
  trafo = "none",
  order.tsks = NULL,
  pointsize = 4L,
  jitter = 0.05,
  pretty.names = TRUE
)
```

Arguments

- `bmr` *(BenchmarkResult)*
 Benchmark result.
- `measure` *(Measure)*
 Performance measure. Default is the first measure used in the benchmark experiment.
- `trafo` *(character(1))*
 Currently either “none” or “rank”, the latter performing a rank transformation (with average handling of ties) of the scores per task. NB: You can add always add `ggplot2::scale_x_log10` to the result to put scores on a log scale. Default is “none”.
- `order.tsks` *(character(n.tasks))*
 Character vector with task.ids in new order.
- `pointsize` *(numeric(1))*
 Point size for ggplot2 `ggplot2::geom_point` for data points. Default is 4.
- `jitter` *(numeric(1))*
 Small vertical jitter to deal with overplotting in case of equal scores. Default is 0.05.
- `pretty.names` *(logical(1))*
 Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE.

Value

`ggplot2` plot object.

See Also

Other benchmark: `BenchmarkResult`, `benchmark()`, `convertBMRToRankMatrix()`, `friedmanPostHocTestBMR()`, `friedmanTestBMR()`, `generateCritDifferencesData()`, `getBMRAggrPerformances()`, `getBMRFeatSelResults()`, `getBMRFilteredFeatures()`, `getBMR LearnerIds()`, `getBMR LearnerShortNames()`, `getBMR Learners()`, `getBMR MeasureIds()`, `getBMR Measures()`, `getBMR Models()`, `getBMR Performances()`, `getBMRPredictions()`, `getBMR TaskDescs()`, `getBMR TaskIds()`, `getBMR TuneResults()`, `plotBMRRBoxplots()`, `plotBMRRanksAsBarChart()`, `plotCritDifferences()`, `reduceBatchmarkResults()`
plotCalibration

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(), plotROCCurves(), plotResiduals(), plotThreshVsPerf()

Examples

see benchmark

plotCalibration(obj, smooth = FALSE, reference = TRUE, rag = TRUE, facet.wrap.nrow = NULL, facet.wrap.ncol = NULL)

Description

Plots calibration data from generateCalibrationData.

Usage

plotCalibration(
 obj,
 smooth = FALSE,
 reference = TRUE,
 rag = TRUE,
 facet.wrap.nrow = NULL,
 facet.wrap.ncol = NULL
)

Arguments

obj (CalibrationData)
 Result of generateCalibrationData.

smooth (logical(1))
 Whether to use a loess smoother. Default is FALSE.

reference (logical(1))
 Whether to plot a reference line showing perfect calibration. Default is TRUE.

rag (logical(1))
 Whether to include a rag plot which shows a rug plot on the top which pertains to positive cases and on the bottom which pertains to negative cases. Default is TRUE.

facet.wrap.nrow, facet.wrap.ncol (integer)
 Number of rows and columns for facetting. Default for both is NULL. In this case ggplot's facet_wrap will choose the layout itself.

Value

ggplot2 plot object.
plotCritDifferences

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(), plotROCCurves(), plotResiduals(), plotThreshVsPerf()

Other calibration: generateCalibrationData()

Examples

```r
## Not run:
lrns = list(makeLearner("classif.rpart", predict.type = "prob"),
       makeLearner("classif.nnet", predict.type = "prob"))
fit = lapply(lrns, train, task = iris.task)
pred = lapply(fit, predict, task = iris.task)
names(pred) = c("rpart", "nnet")
out = generateCalibrationData(pred, groups = 3)
plotCalibration(out)

fit = lapply(lrns, train, task = sonar.task)
pred = lapply(fit, predict, task = sonar.task)
names(pred) = c("rpart", "lda")
out = generateCalibrationData(pred)
plotCalibration(out)

## End(Not run)
```

plotCritDifferences **Plot critical differences for a selected measure.**

Description

Plots a critical-differences diagram for all classifiers and a selected measure. If a baseline is selected for the Bonferroni-Dunn test, the critical difference interval will be positioned around the baseline. If not, the best performing algorithm will be chosen as baseline.

The positioning of some descriptive elements can be moved by modifying the generated data.

Usage

```
plotCritDifferences(obj, baseline = NULL, pretty.names = TRUE)
```

Arguments

- **obj** (critDifferencesData) Result of `generateCritDifferencesData()`.
- **baseline** (character(1)): (learner.id) Overwrites baseline from `generateCritDifferencesData()`!
 Select a learner.id as baseline for the critical difference diagram, the critical difference will be positioned around this learner. Defaults to best performing algorithm.
pretty.names (logical(1))
Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE.

Value
ggplot2 plot object.

References
Janez Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets, JMLR, 2006

See Also
Other plot: createSpatialResamplingPlots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCalibration(), plotLearningCurve(), plotPartialDependence(), plotROC(), plotResiduals(), plotThreshVsPerf()

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMRR(), friedmanTestBMRR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(), getBMRMeanIds(), getBMRMean(), getBMRModes(), getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMRPerfResults(), getBMRPerformances(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), reduceBatchmarkResults()

Examples

see benchmark
Arguments

fvvalues (FilterValues)
Filter values.

sort (character(1))
Available options are:
 • "dec" -> descending
 • "inc" -> increasing
 • "none" -> no sorting
Default is decreasing.

n.show (integer(1))
Number of features (maximal) to show. Default is to plot all features.

filter (character(1))
In case fvalues contains multiple filter methods, which method should be plotted?

feat.type.cols (logical(1))
Whether to color different feature types (e.g. numeric | factor). Default is to use no colors (feat.type.cols = FALSE).

Value

ggplot2 plot object.

See Also

Other filter: filterFeatures(), generateFilterValuesData(), getFilteredFeatures(), listFilterEnsembleMethods(),
listFilterMethods(), makeFilterEnsemble(), makeFilterWrapper(), makeFilter()

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFeatureImportanceData(),
generateFilterValuesData(), generateLearningCurveData(), generatePartialDependenceData(), generateThreshVsPerfData()

Examples

fv = generateFilterValuesData(iris.task, method = "variance")
plotFilterValues(fv)

plotHyperParsEffect Plot the hyperparameter effects data

Description

Plot hyperparameter validation path. Automated plotting method for HyperParsEffectData object. Useful for determining the importance or effect of a particular hyperparameter on some performance measure and/or optimizer.
Usage

```r
plotHyperParsEffect(
  hyperpars.effect.data, 
  x = NULL, 
  y = NULL, 
  z = NULL, 
  plot.type = "scatter", 
  loess.smooth = FALSE, 
  facet = NULL, 
  global.only = TRUE, 
  interpolate = NULL, 
  show.experiments = FALSE, 
  show.interpolated = FALSE, 
  nested.agg = mean, 
  partial.dep.learn = NULL
)
```

Arguments

- `hyperpars.effect.data` *(HyperParsEffectData)*
 - Result of `generateHyperParsEffectData`
- `x` *(character(1))*
 - Specify what should be plotted on the x axis. Must be a column from `HyperParsEffectData$data`. For partial dependence, this is assumed to be a hyperparameter.
- `y` *(character(1))*
 - Specify what should be plotted on the y axis. Must be a column from `HyperParsEffectData$data`
- `z` *(character(1))*
 - Specify what should be used as the extra axis for a particular geom. This could be for the fill on a heatmap or color aesthetic for a line. Must be a column from `HyperParsEffectData$data`. Default is NULL.
- `plot.type` *(character(1))*
 - Specify the type of plot: “scatter” for a scatterplot, “heatmap” for a heatmap, “line” for a scatterplot with a connecting line, or “contour” for a contour plot layered ontop of a heatmap. Default is “scatter”.
- `loess.smooth` *(logical(1))*
 - If TRUE, will add loess smoothing line to plots where possible. Note that this is probably only useful when `plot.type` is set to either “scatter” or “line”. Must be a column from `HyperParsEffectData$data`. Not used with partial dependence. Default is FALSE.
- `facet` *(character(1))*
 - Specify what should be used as the facet axis for a particular geom. When using nested cross validation, set this to “nested_cv_run” to obtain a facet for each outer loop. Must be a column from `HyperParsEffectData$data`. Please note that facetting is not supported with partial dependence plots! Default is NULL.
- `global.only` *(logical(1))*
 - If TRUE, will only plot the current global optima when setting `x = "iteration"` and
y as a performance measure from HyperParsEffectData$measures. Set this to FALSE to always plot the performance of every iteration, even if it is not an improvement. Not used with partial dependence. Default is TRUE.

interpolate (Learner | character(1))
If not NULL, will interpolate non-complete grids in order to visualize a more complete path. Only meaningful when attempting to plot a heatmap or contour. This will fill in “empty” cells in the heatmap or contour plot. Note that cases of irregular hyperparameter paths, you will most likely need to use this to have a meaningful visualization. Accepts either a regression Learner object or the learner as a string for interpolation. This cannot be used with partial dependence. Default is NULL.

show.experiments (logical(1))
If TRUE, will overlay the plot with points indicating where an experiment ran. This is only useful when creating a heatmap or contour plot with interpolation so that you can see which points were actually on the original path. Note: if any learner crashes occurred within the path, this will become TRUE. Not used with partial dependence. Default is FALSE.

show.interpolated (logical(1))
If TRUE, will overlay the plot with points indicating where interpolation ran. This is only useful when creating a heatmap or contour plot with interpolation so that you can see which points were interpolated. Not used with partial dependence. Default is FALSE.

nested.agg (function)
The function used to aggregate nested cross validation runs when plotting 2 hyperparameters. This is also used for nested aggregation in partial dependence. Default is mean.

partial.dep.learn (Learner | character(1))
The regression learner used to learn partial dependence. Must be specified if “partial.dep” is set to TRUE in generateHyperParsEffectData. Accepts either a Learner object or the learner as a string for learning partial dependence. Default is NULL.

Value

ggplot2 plot object.

Note

Any NAs incurred from learning algorithm crashes will be indicated in the plot (except in the case of partial dependence) and the NA values will be replaced with the column min/max depending on the optimal values for the respective measure. Execution time will be replaced with the max. Interpolation by its nature will result in predicted values for the performance measure. Use interpolation with caution. If “partial.dep” is set to TRUE in generateHyperParsEffectData, only partial dependence will be plotted.

Since a ggplot2 plot object is returned, the user can change the axis labels and other aspects of the plot using the appropriate ggplot2 syntax.
plotLearnerPrediction

Examples

 # see generateHyperParsEffectData

plotLearnerPrediction

Visualizes a learning algorithm on a 1D or 2D data set.

Description

Trains the model for 1 or 2 selected features, then displays it via ggplot2::ggplot. Good for teaching or exploring models.

For classification and clustering, only 2D plots are supported. The data points, the classification and potentially through color alpha blending the posterior probabilities are shown.

For regression, 1D and 2D plots are supported. 1D shows the data, the estimated mean and potentially the estimated standard error. 2D does not show estimated standard error, but only the estimated mean via background color.

The plot title displays the model id, its parameters, the training performance and the cross-validation performance.

Usage

plotLearnerPrediction(
 learner,
 task,
 features = NULL,
 measures,
 cv = 10L,
 ...,
 gridsize,
 pointsize = 2,
 prob.alpha = TRUE,
 se.band = TRUE,
 err.mark = "train",
 bg.cols = c("darkblue", "green", "darkred"),
 err.col = "white",
 err.size = pointsize,
 greyscale = FALSE,
 pretty.names = TRUE
)

Arguments

learner (Learner | character(1))
 The learner. If you pass a string the learner will be created via makeLearner.

task (Task)
 The task.
features (character)
Selected features for model. By default the first 2 features are used.

measures (Measure list of Measure)
Performance measure(s) to evaluate. Default is the default measure for the task, see here `get_default_measure`.

cv (integer(1))
Do cross-validation and display in plot title? Number of folds. 0 means no CV. Default is 10.

... (any)
Parameters for learner.

gridsize (integer(1))
Grid resolution per axis for background predictions. Default is 500 for 1D and 100 for 2D.

pointsize (numeric(1))
Pointsize for ggplot2 `ggplot2::geom_point` for data points. Default is 2.

prob.alpha (logical(1))
For classification: Set alpha value of background to probability for predicted class? Allows visualization of “confidence” for prediction. If not, only a constant color is displayed in the background for the predicted label. Default is TRUE.

se.band (logical(1))
For regression in 1D: Show band for standard error estimation? Default is TRUE.

err.mark (character(1)): For classification: Either mark error of the model on the training data (“train”) or during cross-validation (“cv”) or not at all with “none”. Default is “train”.

bg.cols (character(3))
Background colors for classification and regression. Sorted from low, medium to high. Default is TRUE.

err.col (character(1))
For classification: Color of misclassified data points. Default is “white”

err.size (integer(1))
For classification: Size of misclassified data points. Default is pointsize.

greyscale (logical(1))
Should the plot be greyscale completely? Default is FALSE.

pretty.names (logical(1))
Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE.

Value
The ggplot2 object.
plotLearningCurve

Plot learning curve data using ggplot2.

Description

Visualizes data size (percentage used for model) vs. performance measure(s).

Usage

plotLearningCurve(
 obj,
 facet = "measure",
 pretty.names = TRUE,
 facet.wrap.nrow = NULL,
 facet.wrap.ncol = NULL
)

Arguments

obj (LearningCurveData)
Result of generateLearningCurveData, with class LearningCurveData.

facet (character(1))
Selects “measure” or “learner” to be the facetting variable. The variable mapped
to facet must have more than one unique value, otherwise it will be ignored.
The variable not chosen is mapped to color if it has more than one unique value.
The default is “measure”.

pretty.names (logical(1))
Whether to use the Measure name instead of the id in the plot. Default is TRUE.

facet.wrap.nrow, facet.wrap.ncol (integer)
Number of rows and columns for facetting. Default for both is NULL. In this case
ggplot’s facet_wrap will choose the layout itself.

Value

ggplot2 plot object.

See Also

Other learning_curve: generateLearningCurveData()

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary(), plotCalibration(), plotCritDifferences(), plotPartialDependence(),
plotROCCurves(), plotResiduals(), plotThreshVsPerf()
plotPartialDependence Plot a partial dependence with ggplot2.

Description
Plot a partial dependence from generatePartialDependenceData using ggplot2.

Usage
plotPartialDependence(
 obj,
 geom = "line",
 facet = NULL,
 facet.wrap.nrow = NULL,
 facet.wrap.ncol = NULL,
 p = 1,
 data = NULL
)

Arguments
obj PartialDependenceData
 Generated by generatePartialDependenceData.
g geom (character(1))
The type of geom to use to display the data. Can be “line” or “tile”. For tiling at least two features must be used with interaction = TRUE in the call to generatePartialDependenceData. This may be used in conjunction with the facet argument if three features are specified in the call to generatePartialDependenceData. Default is “line”.
facet (character(1))
The name of a feature to be used for facetting. This feature must have been an element of the features argument to generatePartialDependenceData and is only applicable when said argument had length greater than 1. The feature must be a factor or an integer. If generatePartialDependenceData is called with the interaction argument FALSE (the default) with argument features of length greater than one, then facet is ignored and each feature is plotted in its own facet. Default is NULL.
facet.wrap.nrow, facet.wrap.ncol
 (integer)
 Number of rows and columns for facetting. Default for both is NULL. In this case ggplot’s facet_wrap will choose the layout itself.
p (numeric(1))
 If individual = TRUE then sample allows the user to sample without replacement from the output to make the display more readable. Each row is sampled with probability p. Default is 1.
plotResiduals

Create residual plots for prediction objects or benchmark results.

Description

Plots for model diagnostics. Provides scatterplots of true vs. predicted values and histograms of the model’s residuals.

Usage

```r
plotResiduals(
  obj,
  type = "scatterplot",
  loess.smooth = TRUE,
  rug = TRUE,
  pretty.names = TRUE
)
```

Arguments

- `obj` *(Prediction | BenchmarkResult)*
 - Input data.
- `type` *(character)*
 - Type of plot. Can be “scatterplot”, the default. Or “hist”, for a histogram, or in case of classification problems a barplot, displaying the residuals.
- `loess.smooth` *(logical(1))*
 - Should a loess smoother be added to the plot? Defaults to TRUE. Only applicable for regression tasks and if `type` is set to `scatterplot`.

Value

ggplot2 plot object.

See Also

Other partial dependence: `generatePartialDependenceData()`

Other plot: `createSpatialResamplingPlots()`, `plotBMRBoxplots()`, `plotBMRRanksAsBarChart()`, `plotBMRSummary()`, `plotCalibration()`, `plotCritDifferences()`, `plotLearningCurve()`, `plotROCCurves()`, `plotResiduals()`, `plotThreshVsPerf()`

data *(data.frame)*

Data points to plot. Usually the training data. For survival and binary classification tasks a rug plot wherein ticks represent failures or instances of the positive class are shown. For regression tasks points are shown. For multiclass classification tasks ticks are shown and colored according to their class. Both the features and the target must be included. Default is NULL.
plotROCCurves

Plots a ROC curve using ggplot2.

Description

Plots a ROC curve from predictions.

Usage

plotROCCurves(
 obj,
 measures,
 diagonal = TRUE,
 pretty.names = TRUE,
 facet.learner = FALSE
)

Arguments

obj (ThreshVsPerfData)
 Result of generateThreshVsPerfData.

measures ([list(2)] of Measure)
 Default is the first 2 measures passed to generateThreshVsPerfData.

diagonal (logical(1))
 Whether to plot a dashed diagonal line. Default is TRUE.

pretty.names (logical(1))
 Whether to use the Measure name instead of the id in the plot. Default is TRUE.
plotThreshVsPerf

```
facet.learner (logical(1))
Weather to use facetting or different colors to compare multiple learners. Default is FALSE.

Value

ggplot2 plot object.

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(), plotResiduals(), plotThreshVsPerf()

Other thresh_vs_perf: generateThreshVsPerfData(), plotThreshVsPerf()

Examples

```

lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, sonar.task)
pred = predict(fit, task = sonar.task)
roc = generateThreshVsPerfData(pred, list(fpr, tpr))
plotROCCurves(roc)

r = bootstrapB632plus(lrn, sonar.task, iters = 3)
roc_r = generateThreshVsPerfData(r, list(fpr, tpr), aggregate = FALSE)
plotROCCurves(roc_r)

r2 = crossval(lrn, sonar.task, iters = 3)
roc_l = generateThreshVsPerfData(list(boot = r, cv = r2), list(fpr, tpr), aggregate = FALSE)
plotROCCurves(roc_l)
```

```
plotThreshVsPerf Plot threshold vs. performance(s) for 2-class classification using ggplot2.

Description

Plots threshold vs. performance(s) data that has been generated with generateThreshVsPerfData.

Usage

```
plotThreshVsPerf(
  obj,
  measures = obj$measures,
  facet = "measure",
  mark.th = NA_real_,
)
plotThreshVsPerf

 Arguments

 obj (ThreshVsPerfData)
 Result of generateThreshVsPerfData.

 measures (Measure | list of Measure)
 Performance measure(s) to plot. Must be a subset of those used in generateThreshVsPerfData. Default is all the measures stored in obj generated by generateThreshVsPerfData.

 facet (character(1))
 Selects “measure” or “learner” to be the facetting variable. The variable mapped to facet must have more than one unique value, otherwise it will be ignored. The variable not chosen is mapped to color if it has more than one unique value. The default is “measure”.

 mark.th (numeric(1))
 Mark given threshold with vertical line? Default is NA which means not to do it.

 pretty.names (logical(1))
 Whether to use the Measure name instead of the id in the plot. Default is TRUE.

 facet.wrap.nrow, facet.wrap.ncol (integer)
 Number of rows and columns for facetting. Default for both is NULL. In this case ggplot’s facet_wrap will choose the layout itself.

 Value

 ggplot2 plot object.

 See Also

 Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(), plotROCCurves(), plotResiduals()

 Other thresh_vs_perf: generateThreshVsPerfData(), plotROCCurves()

 Examples

 lrn = makeLearner("classif.rpart", predict.type = "prob")
 mod = train(lrn, sonar.task)
 pred = predict(mod, sonar.task)
 pvs = generateThreshVsPerfData(pred, list(acc, setAggregation(acc, train.mean)))
 plotThreshVsPerf(pvs)
plotTuneMultiCritResult

Plots multi-criteria results after tuning using ggplot2.

Description

Visualizes the pareto front and possibly the dominated points.

Usage

plotTuneMultiCritResult(
  res,
  path = TRUE,
  col = NULL,
  shape = NULL,
  pointsize = 2,
  pretty.names = TRUE
)

Arguments

res (TuneMultiCritResult)
  Result of tuneParamsMultiCrit.

path (logical(1))
  Visualize all evaluated points (or only the non-dominated pareto front)? For the
  full path, the size of the points on the front is slightly increased. Default is TRUE.

col (character(1))
  Which column of res$opt.path should be mapped to ggplot2 color? Default
  is NULL, which means none.

shape (character(1))
  Which column of res$opt.path should be mapped to ggplot2 shape? Default
  is NULL, which means none.

pointsize (numeric(1))
  Point size for ggplot2 ggplot2::geom_point for data points. Default is 2.

pretty.names (logical(1))
  Whether to use the ID of the measures instead of their name in labels. Defaults
to TRUE.

Value

ggplot2 plot object.

See Also

Other tune_multicrit: TuneMultiCritControl, tuneParamsMultiCrit()
Examples

    # see tuneParamsMultiCrit

predict.WrappedModel  Predict new data.

Description

Predict the target variable of new data using a fitted model. What is stored exactly in the \( \text{Prediction} \) object depends on the predict.type setting of the Learner. If predict.type was set to “prob” probability thresholding can be done calling the setThreshold function on the prediction object.

The row names of the input task or newdata are preserved in the output.

Usage

    ## S3 method for class 'WrappedModel'
    predict(object, task, newdata, subset = NULL, ...)

Arguments

    object    (WrappedModel)
              Wrapped model, result of \text{train}.
    task      (Task)
              The task. If this is passed, data from this task is predicted.
    newdata   (data.frame)
              New observations which should be predicted. Pass this alternatively instead of task.
    subset    (integer | logical | NULL)
              Selected cases. Either a logical or an index vector. By default NULL if all observations are used.
    ...       (any)
              Currently ignored.

Value

    (Prediction).

See Also

Other predict: asROCRPrediction(), getPredictionProbabilities(), getPredictionResponse(), getPredictionTaskDesc(), setPredictThreshold(), setPredictType()
Examples

```r
train and predict
train.set = seq(1, 150, 2)
test.set = seq(2, 150, 2)
model = train("classif.lda", iris.task, subset = train.set)
p = predict(model, newdata = iris, subset = test.set)
print(p)
predict(model, task = iris.task, subset = test.set)

predict now probabilities instead of class labels
lrn = makeLearner("classif.lda", predict.type = "prob")
model = train(lrn, iris.task, subset = train.set)
p = predict(model, task = iris.task, subset = test.set)
predict(model, task = iris.task, subset = test.set)
print(p)
generatePredictionProbabilities(p)
```

---

**predictLearner**  
*Predict new data with an R learner.*

**Description**

Mainly for internal use. Predict new data with a fitted model. You have to implement this method if you want to add another learner to this package.

**Usage**

```r
predictLearner(.learner, .model, .newdata, ...)
```

**Arguments**

- `.learner` (*RLearner*)
  - Wrapped learner.
- `.model` (*WrappedModel*)
  - Model produced by training.
- `.newdata` (*data.frame*)
  - New data to predict. Does not include target column.
- `...` (*any*)
  - Additional parameters, which need to be passed to the underlying predict function.

**Details**

Your implementation must adhere to the following: Predictions for the observations in `.newdata` must be made based on the fitted model (.model$learner.model). All parameters in `...` must be passed to the underlying predict function.
reduceBatchmarkResults

Reduce results of a batch-distributed benchmark.

Description

This creates a BenchmarkResult from a batchtools::ExperimentRegistry. To setup the benchmark have a look at batchmark.

Usage

reduceBatchmarkResults(
  ids = NULL,
  keep.pred = TRUE,
  keep.extract = FALSE,
  show.info = getMlrOption("show.info"),
  reg = batchtools::getDefaultRegistry()
)

Arguments

ids (data.frame or integer)
  A base::data.frame (or data.table::data.table) with a column named “job.id”. Alternatively, you may also pass a vector of integerish job ids. If not set, defaults to all successfully terminated jobs (return value of batchtools::findDone).

keep.pred (logical(1))
  Keep the prediction data in the pred slot of the result object. If you do many experiments (on larger data sets) these objects might unnecessarily increase object size / mem usage, if you do not really need them. The default is set to TRUE.
Keep the extract slot of the result object. When creating a lot of benchmark results with extensive tuning, the resulting R objects can become very large in size. That is why the tuning results stored in the extract slot are removed by default (keep.extract = FALSE). Note that when keep.extract = FALSE you will not be able to conduct analysis in the tuning results.

Print verbose output on console? Default is set via configureMlr.

Registry, created by batchtools::makeExperimentRegistry. If not explicitly passed, uses the last created registry.

Value

(BenchmarkResult).

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(), getBMRMetricIds(), getBMRMetrics(), getBMRModels(), getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults().plotBMRRanksAsBarChart(), plotBMRSummary(), plotCritDifferences()
reimpute

Value
data.frame or Task containing the extracted Features

Description
This function accepts a data frame or a task and an imputation description as returned by impute to perform the following actions:

1. Restore dropped columns, setting them to NA
2. Add dummy variables for columns as specified in impute
3. Optionally check factors for new levels to treat them as NAs
4. Reorder factor levels to ensure identical integer representation as before
5. Impute missing values using previously collected data

Usage
reimpute(obj, desc)

Arguments
obj (data.frame | Task)
Input data.
desc (ImputationDesc)
Imputation description as returned by impute.

Value
Imputated data.frame or task with imputed data.

See Also
Other impute: imputations, impute(), makeImputeMethod(), makeImputeWrapper()
removeConstantFeatures

Remove constant features from a data set.

Description

Constant features can lead to errors in some models and obviously provide no information in the training set that can be learned from. With the argument “perc”, there is a possibility to also remove features for which less than “perc” percent of the observations differ from the mode value.

Usage

removeConstantFeatures(
  obj,
  perc = 0,
  dont.rm = character(0L),
  na.ignore = FALSE,
  wrap.tol = .Machine$double.eps^0.5,
  show.info = getMlrOption("show.info"),
  ...
)

Arguments

obj (data.frame | Task)
Input data.

perc (numeric(1))
The percentage of a feature values in [0, 1) that must differ from the mode value. Default is 0, which means only constant features with exactly one observed level are removed.

dontrm (character)
Names of the columns which must not be deleted. Default is no columns.

na.ignore (logical(1))
Should NAs be ignored in the percentage calculation? (Or should they be treated as a single, extra level in the percentage calculation?) Note that if the feature has only missing values, it is always removed. Default is FALSE.

wrap.tol (numeric(1))
Numerical tolerance to treat two numbers as equal. Variables stored as double will get rounded accordingly before computing the mode. Default is sqrt(.Machine$double.eps).

show.info (logical(1))
Print verbose output on console? Default is set via configureMlr.

Value

data.frame | Task. Same type as obj.
removeHyperPars

Remove hyperparameters settings of a learner.

Description

Remove settings (previously set through mlr) for some parameters. Which means that the default behavior for that param will now be used.

Usage

removeHyperPars(learner, ids = character(0L))

Arguments

learner (Learner | character(1))
   The learner. If you pass a string the learner will be created via makeLearner.

ids (character)
   Parameter names to remove settings for. Default is character(0L).

Value

Learner.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getId(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), setHyperPars(), setId(), setLearnerId(), setPredictThreshold(), setPredictType()
resample

Fit models according to a resampling strategy.

Description

The function `resample` fits a model specified by `Learner` on a `Task` and calculates predictions and performance `measures` for all training and all test sets specified by a either a resampling description (`ResampleDesc`) or resampling instance (`ResampleInstance`).

You are able to return all fitted models (parameter `models`) or extract specific parts of the models (parameter `extract`) as returning all of them completely might be memory intensive.

The remaining functions on this page are convenience wrappers for the various existing resampling strategies. Note that if you need to work with precomputed training and test splits (i.e., resampling instances), you have to stick with `resample`.

Usage

```r
resample(
 learner,
 task,
 resampling,
 measures,
 weights = NULL,
 models = FALSE,
 extract,
 keep.pred = TRUE,
 ...,
 show.info = getMlrOption("show.info")
)

crossval(
 learner,
 task,
 iters = 10L,
 stratify = FALSE,
 measures,
 models = FALSE,
 keep.pred = TRUE,
 ...,
 show.info = getMlrOption("show.info")
)

crepcv(
 learner,
 task,
 folds = 10L,
 reps = 10L,
)```
resample

stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
...
show.info = getMlrOption("show.info")
)

holdout(
learner,
task,
split = 2/3,
stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
...
show.info = getMlrOption("show.info")
)

subsample(
learner,
task,
iters = 30,
split = 2/3,
stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
...
show.info = getMlrOption("show.info")
)

bootstrapOOB(
learner,
task,
iters = 30,
stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
...
show.info = getMlrOption("show.info")
)

bootstrapB632(
learner,
task,

resample

iter = 30,
stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
...
show.info = getMlrOption("show.info")
)

bootstrapB632plus(
learner,
task,
iter = 30,
stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
...
show.info = getMlrOption("show.info")
)

growingcv(
learner,
task,
horizon = 1,
initial.window = 0.5,
skip = 0,
measures,
models = FALSE,
keep.pred = TRUE,
...
show.info = getMlrOption("show.info")
)

fixedcv(
learner,
task,
horizon = 1L,
initial.window = 0.5,
skip = 0,
measures,
models = FALSE,
keep.pred = TRUE,
...
show.info = getMlrOption("show.info")
)
Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

task (Task)
The task.

resampling (ResampleDesc or ResampleInstance)
Resampling strategy. If a description is passed, it is instantiated automatically.

measures (Measure | list of Measure)
Performance measure(s) to evaluate. Default is the default measure for the task, see here getDefaultMeasure.

weights (numeric)
Optional, non-negative case weight vector to be used during fitting. If given, must be of same length as observations in task and in corresponding order. Overwrites weights specified in the task. By default NULL which means no weights are used unless specified in the task.

models (logical(1))
Should all fitted models be returned? Default is FALSE.

extract (function)
Function used to extract information from a fitted model during resampling. Is applied to every WrappedModel resulting from calls to train during resampling. Default is to extract nothing.

keep.pred (logical(1))
Keep the prediction data in the pred slot of the result object. If you do many experiments (on larger data sets) these objects might unnecessarily increase object size / mem usage, if you do not really need them. The default is set to TRUE.

... (any)
Further hyperparameters passed to learner.

show.info (logical(1))
Print verbose output on console? Default is set via configureMlr.

iters (integer(1))
See ResampleDesc.

stratify (logical(1))
See ResampleDesc.

folds (integer(1))
See ResampleDesc.

reps (integer(1))
See ResampleDesc.

split (numeric(1))
See ResampleDesc.

horizon (numeric(1))
See ResampleDesc.

initial.window (numeric(1))
See ResampleDesc.

skip (integer(1))
See ResampleDesc.
ResamplePrediction

Value

(ResampleResult).

Note

If you would like to include results from the training data set, make sure to appropriately adjust the resampling strategy and the aggregation for the measure. See example code below.

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(), getRRPredictions(), getRRTaskDescription(), getRRTaskDesc(), makeResampleDesc(), makeResampleInstance()

Examples

```r
task = makeClassifTask(data = iris, target = "Species")
rdesc = makeResampleDesc("CV", iters = 2)
r = resample(makeLearner("classif.qda"), task, rdesc)
print(r$aggr)
print(r$measures.test)
print(r$pred)

# include the training set performance as well
rdesc = makeResampleDesc("CV", iters = 2, predict = "both")
r = resample(makeLearner("classif.qda"), task, rdesc,
    measures = list(mmce, setAggregation(mmce, train.mean)))
print(r$aggr)
```

ResamplePrediction Prediction from resampling.

Description

Contains predictions from resampling, returned (among other stuff) by function resample. Can basically be used in the same way as Prediction, its super class. The main differences are: (a) The internal data.frame (member data) contains an additional column iter, specifying the iteration of the resampling strategy, and and additional columns set, specifying whether the prediction was from an observation in the “train” or “test” set. (b) The prediction time is a numeric vector, its length equals the number of iterations.

See Also

Other resample: ResampleResult, addRRMeasure(), getRRPredictionList(), getRRPredictions(), getRRTaskDescription(), getRRTaskDesc(), makeResampleDesc(), makeResampleInstance(), resample()
ResampleResult

ResampleResult object.

Description

A container for resample results.

Details

Resample Result:

A resample result is created by resample and contains the following object members:

- **task.id** (character(1)): Name of the Task.
- **learner.id** (character(1)): Name of the Learner.
- **measures.test** (data.frame): Gives you access to performance measurements on the individual test sets. Rows correspond to sets in resampling iterations, columns to performance measures.
- **measures.train** (data.frame): Gives you access to performance measurements on the individual training sets. Rows correspond to sets in resampling iterations, columns to performance measures. Usually not available, only if specifically requested, see general description above.
- **aggr** (numeric): Named vector of aggregated performance values. Names are coded like this <measure>.<aggregation>.
- **errmsgs** (data.frame): Number of rows equals resampling iterations and columns are: iter, train, predict. Stores error messages generated during train or predict, if these were caught via configureMlr.
- **err.dumps** (list of list of dump.frames): List with length equal to number of resampling iterations. Contains lists of dump.frames objects that can be fed to debugger() to inspect error dumps generated on learner errors. One iteration can generate more than one error dump depending on which of training, prediction on training set, or prediction on test set, operations fail. Therefore the lists have named slots $train, $predict.train, or $predict.test if relevant. The error dumps are only saved when option on.error.dump is TRUE.
- **pred** (ResamplePrediction): Container for all predictions during resampling.
- **models** [list of WrappedModel]: List of fitted models or NULL.
- **extract** (list): List of extracted parts from fitted models or NULL.
- **runtime** (numeric(1)): Time in seconds it took to execute the resampling.

The print method of this object gives a short overview, including task and learner ids, aggregated measures and runtime for the resampling.

See Also

- Other resample: ResamplePrediction, addRRMeasure(), getRRPredictionList(), getRRPredictions(), getRRTaskDescription(), getRRTaskDesc(), makeResampleDesc(), makeResampleInstance(), resample()
- Other debug: FailureModel, getPredictionDump(), getRRDump()
Description

Wraps an already implemented learning method from R to make it accessible to mlr. Call this method in your constructor. You have to pass an id (name), the required package(s), a description object for all changeable parameters (you do not have to do this for the learner to work, but it is strongly recommended), and use property tags to define features of the learner.

For a general overview on how to integrate a learning algorithm into mlr's system, please read the section in the online tutorial: https://mlr.mlr-org.com/articles/tutorial/create_learner.html

To see all possible properties of a learner, go to: LearnerProperties.

Usage

makeRLearner()

makeRLearnerClassif(
 cl, package, par.set, par.vals = list(), properties = character(0L), name = cl, short.name = cl, note = "", class.weights.param = NULL, callees = character(0L))

makeRLearnerMultilabel(
 cl, package, par.set, par.vals = list(), properties = character(0L), name = cl, short.name = cl, note = "", callees = character(0L))

makeRLearnerRegr(
 cl, package,
makeRLearnerSurv(
 cl,
 package,
 par.set,
 par.vals = list(),
 properties = character(0L),
 name = cl,
 short.name = cl,
 note = "",
 callees = character(0L)
)

makeRLearnerCluster(
 cl,
 package,
 par.set,
 par.vals = list(),
 properties = character(0L),
 name = cl,
 short.name = cl,
 note = "",
 callees = character(0L)
)

makeRLearnerCostSens(
 cl,
 package,
 par.set,
 par.vals = list(),
 properties = character(0L),
 name = cl,
 short.name = cl,
 note = "",
 callees = character(0L)
)

Arguments

cl (character(1))
Class of learner. By convention, all classification learners start with “classif.”
selectFeatures

all regression learners with “regr.” all survival learners start with “surv.” all clustering learners with “cluster.” and all multilabel classification learners start with “multilabel.”. A list of all integrated learners is available on the learners help page.

package
(character)
Package(s) to load for the implementation of the learner.

par.set
(ParamHelpers::ParamSet)
Parameter set of (hyper)parameters and their constraints. Dependent parameters with a requires field must use quote and not expression to define it.

par.vals
(list)
Always set hyperparameters to these values when the object is constructed. Useful when default values are missing in the underlying function. The values can later be overwritten when the user sets hyperparameters. Default is empty list.

properties
(character)
Set of learner properties. See above. Default is character(0).

name
(character(1))
Meaningful name for learner. Default is id.

short.name
(character(1))
Short name for learner. Should only be a few characters so it can be used in plots and tables. Default is id.

note
(character(1))
Additional notes regarding the learner and its integration in mlr. Default is ““.

class.weights.param
(character(1))
Name of the parameter, which can be used for providing class weights.

callees
(character)
Character vector naming all functions of the learner’s package being called which have a relevant R help page. Default is character(0).

Value
(RLearner). The specific subclass is one of R LearnerClassif, R LearnerCluster, R Learner Multilabel, R LearnerRegr, R LearnerSurv.

Description
Optimizes the features for a classification or regression problem by choosing a variable selection wrapper approach. Allows for different optimization methods, such as forward search or a genetic algorithm. You can select such an algorithm (and its settings) by passing a corresponding control object. For a complete list of implemented algorithms look at the subclasses of (FeatSelControl).

All algorithms operate on a 0-1-bit encoding of candidate solutions. Per default a single bit corresponds to a single feature, but you are able to change this by using the arguments bit.names and bits.to.features. Thus allowing you to switch on whole groups of features with a single bit.
Usage

```r
selectFeatures(
  learner,
  task,
  resampling,
  measures,
  bit.names, 
  bits.to.features,
  control,
  show.info = getMlrOption("show.info")
)
```

Arguments

- **learner** *(Learner | character(1))*
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **task** *(Task)*
 The task.

- **resampling** *(ResampleInstance | ResampleDesc)*
 Resampling strategy for feature selection. If you pass a description, it is instantiated once at the beginning by default, so all points are evaluated on the same training/test sets. If you want to change that behavior, look at `FeatSelControl`.

- **measures** *(list of Measure | Measure)*
 Performance measures to evaluate. The first measure, aggregated by the first aggregation function is optimized, others are simply evaluated. Default is the default measure for the task, see here `getDefaultMeasure`.

- **bit.names** *(character)*
 Names of bits encoding the solutions. Also defines the total number of bits in the encoding. Per default these are the feature names of the task. Has to be used together with `bits.to.features`.

- **bits.to.features** *(function(x, task))*
 Function which transforms an integer-0-1 vector into a character vector of selected features. Per default a value of 1 in the ith bit selects the ith feature to be in the candidate solution. The vector `x` will correspond to the `bit.names` and has to be of the same length.

- **control** *(see `FeatSelControl`)*
 Control object for search method. Also selects the optimization algorithm for feature selection.

- **show.info** *(logical(1))*
 Print verbose output on console? Default is set via `configureMlr`.

Value

(FeatSelResult).

See Also

Other featsel: `FeatSelControl`, `analyzeFeatSelResult()`, `getFeatSelResult()`, `makeFeatSelWrapper()`
Examples

```r
desc = makeResampleDesc("Holdout")
ctrl = makeFeatSelControlSequential(method = "sfs", maxit = NA)
res = selectFeatures("classif.rpart", iris.task, rdesc, control = ctrl)
analyzeFeatSelResult(res)
```

setAggregation

Set aggregation function of measure.

Description

Set how this measure will be aggregated after resampling. To see possible aggregation functions: aggregations.

Usage

```r
setAggregation(measure, aggr)
```

Arguments

- `measure` *(Measure)*
 - Performance measure.
- `aggr` *(Aggregation)*
 - Aggregation function.

Value

(Measure) with changed aggregation behaviour.

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(), estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(), measures, performance(), setMeasurePars()
setHyperPars

Set the hyperparameters of a learner object.

Description

Set the hyperparameters of a learner object.

Usage

setHyperPars(learner, ..., par.vals = list())

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

... (any)
Optional named (hyper)parameters. If you want to set specific hyperparameters for a learner during model creation, these should go here. You can get a list of available hyperparameters using getParamSet(<learner>). Alternatively hyperparameters can be given using the par.vals argument but ... should be preferred!

par.vals (list)
Optional list of named (hyper)parameters. The arguments in ... take precedence over values in this list. We strongly encourage you to use ... for passing hyperparameters.

Value

Learner.

Note

If a named (hyper)parameter can’t be found for the given learner, the 3 closest (hyper)parameter names will be output in case the user mistyped.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setId(), setLearnerId(), setPredictThreshold(), setPredictType()
Examples

```r
c11 = makeLearner("classif.ksvm", sigma = 1)
c12 = setHyperPars(c11, sigma = 10, par.vals = list(C = 2))
print(c11)
  # note the now set and altered hyperparameters:
  print(c12)
```

Description

Only exported for internal use.

Usage

```r
setHyperPars2(learner, par.vals)
```

Arguments

- `learner` *(Learner)*
 The learner.
- `par.vals` *(list)*
 List of named (hyper)parameter settings.

setId

Set the id of a learner object.

Description

Deprecated, use `setLearnerId` instead.

Usage

```r
setId(learner, id)
```

Arguments

- `learner` *(Learner | character(1))*
 The learner. If you pass a string the learner will be created via `makeLearner`.
- `id` *(character(1))*
 New id for learner.

Value

`Learner`.
setLearnerId

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(),
helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(),
setLearnerId(), setPredictThreshold(), setPredictType()

setLearnerId

Set the ID of a learner object.

Description

Set the ID of the learner.

Usage

setLearnerId(learner, id)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

id (character(1))
New ID for learner.

Value

Learner.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(),
helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(),
setLearnerId(), setPredictThreshold(), setPredictType()
setMeasurePars
Set parameters of performance measures

Description
Sets hyperparameters of measures.

Usage
```r  
setMeasurePars(measure, ..., par.vals = list())  
```

Arguments

- `measure`
 (Measure)
 Performance measure.

- `...`
 (any)
 Named (hyper)parameters with new settings. Alternatively these can be passed using the `par vals` argument.

- `par vals`
 (list)
 Optional list of named (hyper)parameter settings. The arguments in ... take precedence over values in this list.

Value
Measure.

See Also

Other performance: `ConfusionMatrix`, `calculateConfusionMatrix()`, `calculateROCMeasures()`, `estimateRelativeOverfitting()`, `makeCostMeasure()`, `makeCustomResampledMeasure()`, `makeMeasure()`, `measures`, `performance()`, `setAggregation()`

setPredictThreshold
Set the probability threshold the learner should use.

Description
See `predict.threshold` in `makeLearner` and `setThreshold`.

For complex wrappers only the top-level `predict.type` is currently set.

Usage
```r  
setPredictThreshold(learner, predict.threshold)  
```
setPredictType

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

predict.threshold (numeric)
Threshold to produce class labels. Has to be a named vector, where names correspond to class labels. Only for binary classification it can be a single numerical threshold for the positive class. See setThreshold for details on how it is applied. Default is NULL which means 0.5 / an equal threshold for each class.

Value

Learner.

See Also

Other predict: asROCRPrediction(), getPredictionProbabilities(), getPredictionResponse(), getPredictionTaskDesc(), predict.WrappedModel(), setPredictType()

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setPredictType()

setPredictType Set the type of predictions the learner should return.

Description

Possible prediction types are: Classification: Labels or class probabilities (including labels). Regression: Numeric or response or standard errors (including numeric response). Survival: Linear predictor or survival probability.

For complex wrappers the predict type is usually also passed down the encapsulated learner in a recursive fashion.

Usage

setPredictType(learner, predict.type)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

predict.type (character(1))
Classification: “response” or “prob”. Regression: “response” or “se”. Survival: “response” (linear predictor) or “prob”. Clustering: “response” or “prob”. Default is “response”.

setThreshold

Value

 Learner.

See Also

Other predict: asROCRPrediction(), getPredictionProbabilities(), getPredictionResponse(),
 getPredictionTaskDesc(), predict.WrappedModel(), setPredictThreshold()

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
 getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
 getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(),
 helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setHyperPars(), setId(),
 setLearnerId(), setPredictThreshold()

| setThreshold | Set threshold of prediction object. |

Description

Set threshold of prediction object for classification or multilabel classification. Creates corresponding
discrete class response for the newly set threshold. For binary classification: The positive class
is predicted if the probability value exceeds the threshold. For multiclass: Probabilities are divided
by corresponding thresholds and the class with maximum resulting value is selected. The result of
both are equivalent if in the multi-threshold case the values are greater than 0 and sum to 1. For
multilabel classification: A label is predicted (with entry TRUE) if a probability matrix entry exceeds
the threshold of the corresponding label.

Usage

 setThreshold(pred, threshold)

Arguments

 pred (Prediction) Prediction object.
 threshold (numeric) Threshold to produce class labels. Has to be a named vector, where names corre-
 spond to class labels. Only for binary classification it can be a single numerical
 threshold for the positive class.

Value

 (Prediction) with changed threshold and corresponding response.

See Also

 predict.WrappedModel
Examples

```r
# create task and train learner (LDA)
task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda", predict.type = "prob")
mod = train(lrn, task)

# predict probabilities and compute performance
pred = predict(mod, newdata = iris)
performance(pred, measures = mmce)
head(as.data.frame(pred))

# adjust threshold and predict probabilities again
threshold = c(setosa = 0.4, versicolor = 0.3, virginica = 0.3)
pred = setThreshold(pred, threshold = threshold)
performance(pred, measures = mmce)
head(as.data.frame(pred))
```

simplifyMeasureNames
Simplify measure names.

Description

Clips aggregation names from character vector. E.g: 'mmce.test.mean' becomes 'mmce'. Elements that don’t contain a measure name are ignored and returned unchanged.

Usage

```r
simplifyMeasureNames(xs)
```

Arguments

- `xs` *(character)*

 Character vector that (possibly) contains aggregated measure names.

Value

(character).
smote

Synthetic Minority Oversampling Technique to handle class imbalancy in binary classification.

Description

In each iteration, samples one minority class element x_1, then one of x_1’s nearest neighbors: x_2. Both points are now interpolated / convex-combined, resulting in a new virtual data point x_3 for the minority class.

The method handles factor features, too. The gower distance is used for nearest neighbor calculation, see cluster::daisy. For interpolation, the new factor level for x_3 is sampled from the two given levels of x_1 and x_2 per feature.

Usage

```
smote(task, rate, nn = 5L, standardize = TRUE, alt.logic = FALSE)
```

Arguments

- **task** (Task)
 The task.
- **rate** (numeric(1))
 Factor to upsample the smaller class. Must be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size.
- **nn** (integer(1))
 Number of nearest neighbors to consider. Default is 5.
- **standardize** (integer(1))
 Standardize input variables before calculating the nearest neighbors for data sets with numeric input variables only. For mixed variables (numeric and factor) the gower distance is used and variables are standardized anyway. Default is TRUE.
- **alt.logic** (integer(1))
 Use an alternative logic for selection of minority class observations. Instead of sampling a minority class element AND one of its nearest neighbors, each minority class element is taken multiple times (depending on rate) for the interpolation and only the corresponding nearest neighbor is sampled. Default is FALSE.

Value

Task.

References

See Also

Other imbalancy: `makeOverBaggingWrapper()`, `makeUndersampleWrapper()`, `oversample()`

sonar.task
Sonar classification task.

Description
Contains the task (sonar.task).

References
See mlbench::Sonar.

spam.task
Spam classification task.

Description
Contains the task (spam.task).

References
See kernlab::spam.

spatial.task
J. Muenchow’s Ecuador landslide data set

Description
Data set created by Jannes Muenchow, University of Erlangen-Nuremberg, Germany. These data should be cited as Muenchow et al. (2012) (see reference below). This publication also contains additional information on data collection and the geomorphology of the area. The data set provided here is (a subset of) the one from the ‘natural’ part of the RBSF area and corresponds to landslide distribution in the year 2000.

Format
a `data.frame` with point samples of landslide and non-landslide locations in a study area in the Andes of southern Ecuador.

References

subsetTask

Subset data in task.

Description
See title.

Usage
subsetTask(task, subset = NULL, features)

Arguments
- **task** *(Task)*
 The task.
- **subset** *(integer | logical | NULL)*
 Selected cases. Either a logical or an index vector. By default NULL if all observations are used.
- **features** *(character | integer | logical)*
 Vector of selected inputs. You can either pass a character vector with the feature names, a vector of indices, or a logical vector.
 In case of an index vector each element denotes the position of the feature name returned by `getTaskFeatureNames`.
 Note that the target feature is always included in the resulting task, you should not pass it here. Default is to use all features.

Value
(Task). Task with subsetted data.

See Also
Other task: `getTaskClassLevels()`, `getTaskCosts()`, `getTaskData()`, `getTaskDesc()`, `getTaskFeatureNames()`, `getTaskFormula()`, `getTaskId()`, `getTaskNFeats()`, `getTaskSize()`, `getTaskTargetNames()`, `getTaskTargets()`, `getTaskType()`

Examples
```r
task = makeClassifTask(data = iris, target = "Species")
subsetTask(task, subset = 1:100)
```
summarizeColumns Summarize columns of data.frame or task.

Description

Summarizes a data.frame, somewhat differently than the normal summary function of R. The function is mainly useful as a basic EDA tool on data.frames before they are converted to tasks, but can be used on tasks as well.

Columns can be of type numeric, integer, logical, factor, or character. Characters and logicals will be treated as factors.

Usage

summarizeColumns(obj)

Arguments

obj (data.frame | Task) Input data.

Value

(data.frame). With columns:

- name Name of column.
- type Data type of column.
- na Number of NAs in column.
- disp Measure of dispersion, for numerics and integers sd is used, for categorical columns the qualitative variation.
- mean Mean value of column, NA for categorical columns.
- median Median value of column, NA for categorical columns.
- mad MAD of column, NA for categorical columns.
- min Minimal value of column, for categorical columns the size of the smallest category.
- max Maximal value of column, for categorical columns the size of the largest category.
- nlevs For categorical columns, the number of factor levels, NA else.

See Also

Other eda_and_preprocess: capLargeValues(), createDummyFeatures(), dropFeatures(), mergeSmallFactorLevels(), normalizeFeatures(), removeConstantFeatures(), summarizeLevels()

Examples

summarizeColumns(iris)
summarizeLevels

summarizeLevels

Summarizes factors of a data.frame by tabling them.

Description

Characters and logicals will be treated as factors.

Usage

```
summarizeLevels(obj, cols = NULL)
```

Arguments

- `obj` *(data.frame | Task)*
 - Input data.
- `cols` *(character)*
 - Restrict result to columns in `cols`. Default is all factor, character and logical columns of `obj`.

Value

(list). Named list of tables.

See Also

Other eda_and_preprocess: `capLargeValues()`, `createDummyFeatures()`, `dropFeatures()`, `mergeSmallFactorLevels()`, `normalizeFeatures()`, `removeConstantFeatures()`, `summarizeColumns()`

Examples

```
summarizeLevels(iris)
```

Task

Create a classification, regression, survival, cluster, cost-sensitive classification or multilabel task.

Description

The task encapsulates the data and specifies - through its subclasses - the type of the task. It also contains a description object detailing further aspects of the data.

Useful operators are:

- `getTaskFormula`,
- `getTaskFeatureNames`,
- `getTaskData`,
- `getTaskDescription`,
• getTaskTargets, and
• subsetTask.

Object members:

env (environment) Environment where data for the task are stored. Use getTaskData in order to access it.

weights (numeric) See argument. NULL if not present.

blocking (factor) See argument. NULL if not present.

task.desc (TaskDesc) Encapsulates further information about the task.

Functional data can be added to a task via matrix columns. For more information refer to make-FunctionalData.

Arguments

id (character(1))
Id string for object. Default is the name of the R variable passed to data.

data (data.frame)
A data frame containing the features and target variable(s).

target (character(1) | character(2) | character(n.classes))
Name(s) of the target variable(s). For survival analysis these are the names of the survival time and event columns, so it has length 2. For multilabel classification it contains the names of the logical columns that encode whether a label is present or not and its length corresponds to the number of classes.

costs (data.frame)
A numeric matrix or data frame containing the costs of misclassification. We assume the general case of observation specific costs. This means we have n rows, corresponding to the observations, in the same order as data. The columns correspond to classes and their names are the class labels (if unnamed we use y1 to yk as labels). Each entry (i,j) of the matrix specifies the cost of predicting class j for observation i.

weights (numeric)
Optional, non-negative case weight vector to be used during fitting. Cannot be set for cost-sensitive learning. Default is NULL which means no (= equal) weights.

blocking (factor)
An optional factor of the same length as the number of observations. Observations with the same blocking level “belong together”. Specifically, they are either put all in the training or the test set during a resampling iteration. Default is NULL which means no blocking.

positive (character(1))
Positive class for binary classification (otherwise ignored and set to NA). Default is the first factor level of the target attribute.

fixup.data (character(1))
Should some basic cleaning up of data be performed? Currently this means
removing empty factor levels for the columns. Possible choices are: "no" = Don’t do it. "warn" = Do it but warn about it. "quiet" = Do it but keep silent. Default is "warn".

check.data (logical(1))
Should sanity of data be checked initially at task creation? You should have good reasons to turn this off (one might be speed). Default is TRUE.

coordinates (data.frame)
Coordinates of a spatial data set that will be used for spatial partitioning of the data in a spatial cross-validation resampling setting. Coordinates have to be numeric values. Provided data.frame needs to have the same number of rows as data and consist of at least two dimensions.

Value

Task.

See Also

ClassifTask ClusterTask CostSensTask MultilabelTask RegrTask SurvTask

Examples

if (requireNamespace("mlbench")) {
 library(mlbench)
 data(BostonHousing)
 data(Ionosphere)

 makeClassifTask(data = iris, target = "Species")
 makeRegrTask(data = BostonHousing, target = "medv")
 # an example of a classification task with more than those standard arguments:
 # blocking = factor(c(rep(1, 51), rep(2, 300)))
 makeClassifTask(id = "myIonosphere", data = Ionosphere, target = "Class",
 positive = "good", blocking = blocking)
 makeClusterTask(data = iris[, -5L])
}

TaskDesc

Description object for task.

Description

Description object for task, encapsulates basic properties of the task without having to store the complete data set.
Details

Object members:

id (character(1)) Id string of task.

type (character(1)) Type of task, “classif” for classification, “regr” for regression, “surv” for survival and “cluster” for cluster analysis, “costsens” for cost-sensitive classification, and “multilabel” for multilabel classification.

target (character(0) | character(1) | character(2) | character(n.classes)) Name(s) of the target variable(s). For “surv” these are the names of the survival time and event columns, so it has length 2. For “costsens” it has length 0, as there is no target column, but a cost matrix instead. For “multilabel” these are the names of logical columns that indicate whether a class label is present and the number of target variables corresponds to the number of classes.

size (integer(1)) Number of cases in data set.

n.feat (integer(2)) Number of features, named vector with entries: “numerics”, “factors”, “ordered”, “functionals”.

has.missings (logical(1)) Are missing values present?

has.weights (logical(1)) Are weights specified for each observation?

has.blocking (logical(1)) Is a blocking factor for cases available in the task?

class.levels (character) All possible classes. Only present for “classif”, “costsens”, and “multilabel”.

positive (character(1)) Positive class label for binary classification. Only present for “classif”, NA for multiclass.

negative (character(1)) Negative class label for binary classification. Only present for “classif”, NA for multiclass.

train

Train a learning algorithm.

Description

Given a Task, creates a model for the learning machine which can be used for predictions on new data.

Usage

train(learner, task, subset = NULL, weights = NULL)

Arguments

learner (Learner | character(1)) The learner. If you pass a string the learner will be created via makeLearner.

task (Task) The task.
trainLearner

subset (integer | logical | NULL)
Selected cases. Either a logical or an index vector. By default NULL if all observations are used.

weights (numeric)
Optional, non-negative case weight vector to be used during fitting. If given, must be of same length as subset and in corresponding order. By default NULL which means no weights are used unless specified in the task (Task). Weights from the task will be overwritten.

Value

(WrappedModel).

See Also

predict.WrappedModel

Examples

training.set = sample(seq_len(nrow(iris)), nrow(iris) / 2)

use linear discriminant analysis to classify iris data
task = makeClassifTask(data = iris, target = "Species")
learner = makeLearner("classif.lda", method = "mle")
mod = train(learner, task, subset = training.set)
print(mod)

use random forest to classify iris data
task = makeClassifTask(data = iris, target = "Species")
learner = makeLearner("classif.rpart", minsplit = 7, predict.type = "prob")
mod = train(learner, task, subset = training.set)
print(mod)
Arguments

 Args

.learner (RLearner)
Wrapped learner.

.task (Task)
Task to train learner on.

.subset (integer)
Subset of cases for training set, index the task with this. You probably want to use getTaskData for this purpose.

.weights (numeric)
Weights for each observation.

... (any)
Additional (hyper)parameters, which need to be passed to the underlying train function.

Details

Your implementation must adhere to the following: The model must be fitted on the subset of .task given by .subset. All parameters in ... must be passed to the underlying training function.

Value

(any). Model of the underlying learner.

TuneControl Control object for tuning

Description

General tune control object.

Arguments

 Args

 same.resampling.instance
(logical(1))
Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

 impute.val
(numeric)
If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. Imputation is only active if on.learner.error is configured not to stop in configureMlr. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.
TuneMultiCritControl

Create control structures for multi-criteria tuning.

Description

The following tuners are available:

- **makeTuneMultiCritControlGrid** Grid search. All kinds of parameter types can be handled. You can either use their correct param type and resolution, or discretize them yourself by always using `ParamHelpers::makeDiscreteParam` in the `par.set` passed to `tuneParams`.

start (list)

Named list of initial parameter values.

tune.threshold (logical(1))

Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via `tuneThreshold`? Only works for classification if the predict type is “prob”. Default is FALSE.

tune.threshold.args

(list)

Further arguments for threshold tuning that are passed down to `tuneThreshold`. Default is none.

log.fun (function | character(1))

Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory” the memory usage for each evaluation will also be displayed, with character(1) small increase in run time. Otherwise character(1) function with arguments `learner`, `resampling`, `measures`, `par.set`, `control`, `opt.path`, `dob`, `x`, `y`, `remove.nas`, `stage` and `prev.stage` is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from `gc`). See the implementation for details.

final.dw.perc (boolean)

If a Learner wrapped by a `makeDownsampleWrapper` is used, you can define the value of `dw.perc` which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

... (any)

Further control parameters passed to the control arguments of `cmaes::cma_es` or `GenSA::GenSA`, as well as towards the tunerConfig argument of `irace::irace`.

See Also

Other tune: `getNestedTuneResultsOptPathDf()`, `getNestedTuneResultsX()`, `getResamplingIndices()`, `getTuneResult()`, `makeModelMultiplexerParamSet()`, `makeModelMultiplexer()`, `makeTuneControlCMAES()`, `makeTuneControlDesign()`, `makeTuneControlGenSA()`, `makeTuneControlGrid()`, `makeTuneControlIrace()`, `makeTuneControlMBO()`, `makeTuneControlRandom()`, `makeTuneWrapper()`, `tuneParams()`, `tuneThreshold()`
makeTuneMultiCritControlRandom Random search. All kinds of parameter types can be handled.

makeTuneMultiCritControlNSGA2 Evolutionary method `mco::nsga2`. Can handle numeric(vector) and integer(vector) hyperparameters, but no dependencies. For integers the internally proposed numeric values are automatically rounded.

makeTuneMultiCritControlMBO Model-based/ Bayesian optimization. All kinds of parameter types can be handled.

Usage

```r
makeTuneMultiCritControlGrid(  
same.resampling.instance = TRUE,  
resolution = 10L,  
log.fun = "default",  
final.dw.perc = NULL,  
budget = NULL)
```

```r
makeTuneMultiCritControlMBO(  
n.objectives = mbo.control$n.objectives,  
same.resampling.instance = TRUE,  
impute.val = NULL,  
learner = NULL,  
mbo.control = NULL,  
tune.threshold = FALSE,  
tune.threshold.args = list(),  
continue = FALSE,  
log.fun = "default",  
final.dw.perc = NULL,  
budget = NULL,  
mbo.design = NULL)
```

```r
makeTuneMultiCritControlNSGA2(  
same.resampling.instance = TRUE,  
impute.val = NULL,  
log.fun = "default",  
final.dw.perc = NULL,  
budget = NULL,  
...)
```

```r
makeTuneMultiCritControlRandom(  
same.resampling.instance = TRUE,  
maxit = 100L,  
log.fun = "default",  
final.dw.perc = NULL,  
budget = NULL)
```
Arguments

same.resampling.instance
 (logical(1))
 Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

resolution
 (integer)
 Resolution of the grid for each numeric/integer parameter in par.set. For vector parameters, it is the resolution per dimension. Either pass one resolution for all parameters, or a named vector. See ParamHelpers::generateGridDesign. Default is 10.

log.fun
 (function | character(1))
 Function used for logging. If set to "default" (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to "memory" the memory usage for each evaluation will also be displayed, with character(1) small increase in run time. Otherwise character(1) function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

final.dw.perc
 (boolean)
 If a Learner wrapped by a makeDownsampleWrapper is used, you can define the value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget
 (integer(1))
 Maximum budget for tuning. This value restricts the number of function evaluations. In case of makeTuneMultiCritControlGrid this number must be identical to the size of the grid. For makeTuneMultiCritControlRandom the budget equals the number of iterations (maxit) performed by the random search algorithm. In case of makeTuneMultiCritControlNSGA2 the budget corresponds to the product of the maximum number of generations (max(generations)) + 1 (for the initial population) and the size of the population (popsize). For makeTuneMultiCritControlMBO the budget equals the number of objective function evaluations, i.e. the number of MBO iterations + the size of the initial design. If not NULL, this will overwrite existing stopping conditions in mbo.control.

n.objectives
 (integer(1))
 Number of objectives, i.e. number of Measures to optimize.

impute.val
 (numeric)
 If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. Imputation is only active if on.learner.error is configured not to stop in configureMlr. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization
TuneMultiCritControl

measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or \(\text{Inf} \) instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

learner

(Learner | NULL)

The surrogate learner: A regression learner to model performance landscape. For the default, NULL, \texttt{mlrMBO} will automatically create a suitable learner based on the rules described in \texttt{mlrMBO::makeMBOLearner}.

mbo.control

(mlrMBO::MBOControl | NULL)

Control object for model-based optimization tuning. For the default, NULL, the control object will be created with all the defaults as described in \texttt{mlrMBO::makeMBOControl}.

tune.threshold

(logical(1))

Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via \texttt{tuneThreshold}? Only works for classification if the predict type is “prob”. Default is \texttt{FALSE}.

tune.threshold.args

(list)

Further arguments for threshold tuning that are passed down to \texttt{tuneThreshold}. Default is none.

continue

(logical(1))

Resume calculation from previous run using \texttt{mlrMBO::mboContinue}? Requires “save.file.path” to be set. Note that the \texttt{ParamHelpers::OptPath} in the \texttt{mlrMBO::OptResult} will only include the evaluations after the continuation. The complete \texttt{OptPath} will be found in the slot `$mbo.result$opt.path`.

mbo.design

(data.frame | NULL)

Initial design as data frame. If the parameters have corresponding trafo functions, the design must not be transformed before it is passed! For the default, NULL, a default design is created like described in \texttt{mlrMBO::mbo}.

... (any)

Further control parameters passed to the control arguments of \texttt{cmaes::cma_es} or \texttt{GenSA::GenSA}, as well as towards the \texttt{tunerConfig} argument of \texttt{irace::irace}.

maxit

(integer(1))

Number of iterations for random search. Default is 100.

Value

(TuneMultiCritControl). The specific subclass is one of \texttt{TuneMultiCritControlGrid}, \texttt{TuneMultiCritControlRandom}, \texttt{TuneMultiCritControlNSGA2}, \texttt{TuneMultiCritControlMBO}.

See Also

Other tune_multicrit: \texttt{plotTuneMultiCritResult()}, \texttt{tuneParamsMultiCrit()}

TuneMultiCritResult

Result of multi-criteria tuning.

Description

Container for results of hyperparameter tuning. Contains the obtained pareto set and front and the optimization path which lead there.

Object members:

- **learner (Learner)** Learner that was optimized.
- **control (TuneControl)** Control object from tuning.
- **x (list)** List of lists of non-dominated hyperparameter settings in pareto set. Note that when you have trafos on some of your params, x will always be on the TRANSFORMED scale so you directly use it.
- **y (matrix)** Pareto front for x.
- **threshold** Currently NULL.
- **opt.path (ParamHelpers::OptPath)** Optimization path which lead to x. Note that when you have trafos on some of your params, the opt.path always contains the UNTRANSFORMED values on the original scale. You can simply call trafoOptPath(opt.path) to transform them, or, as.data.frame(trafoOptPath(opt.path))
- **ind (integer(n))** Indices of Pareto optimal params in opt.path.
- **measures ([list of] Measure)** Performance measures.

TuneParams

Hyperparameter tuning.

Description

Optimizes the hyperparameters of a learner. Allows for different optimization methods, such as grid search, evolutionary strategies, iterated F-race, etc. You can select such an algorithm (and its settings) by passing a corresponding control object. For a complete list of implemented algorithms look at TuneControl.

Multi-criteria tuning can be done with tuneParamsMultiCrit.

Usage

```r
  tuneParams(
    learner,
    task,
    resampling,
    measures,
    par.set,
    control,
    show.info = getMlrOption("show.info"),
    resample.fun = resample
  )
```
Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

task (Task)
The task.

resampling (ResampleInstance | ResampleDesc)
Resampling strategy to evaluate points in hyperparameter space. If you pass a
description, it is instantiated once at the beginning by default, so all points are
evaluated on the same training/test sets. If you want to change that behavior,
look at TuneControl.

measures (list of Measure | Measure)
Performance measures to evaluate. The first measure, aggregated by the first
aggregation function is optimized, others are simply evaluated. Default is the
default measure for the task, see here getDefaultMeasure.

par.set (ParamHelpers::ParamSet)
Collection of parameters and their constraints for optimization. Dependent pa-
rameters with a requires field must use quote and not expression to define
it.

control (TuneControl)
Control object for search method. Also selects the optimization algorithm for
tuning.

show.info (logical(1))
Print verbose output on console? Default is set via configureMlr.

resample.fun (closure)
The function to use for resampling. Defaults to resample. If a user-given func-
tion is to be used instead, it should take the arguments “learner”, “task”, “re-
sampling”, “measures”, and “show.info”; see resample. Within this function, it
is easiest to call resample and possibly modify the result. However, it is pos-
sible to return a list with only the following essential slots: the “aggr” slot for
general tuning, additionally the “pred” slot if threshold tuning is performed (see
TuneControl), and the “err.msgs” and “err.dumps” slots for error reporting. This
parameter must be the default when mbo tuning is performed.

Value

(TuneResult).

Note

If you would like to include results from the training data set, make sure to appropriately adjust the
resampling strategy and the aggregation for the measure. See example code below.

See Also

generateHyperParsEffectData

Other tune: TuneControl, getNestedTuneResultsOptPathDf(), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexerParamSet(), makeModelMultiplexer(),
Examples

```r
set.seed(123)
# a grid search for an SVM (with a tiny number of points...)
# note how easily we can optimize on a log-scale
ps = makeParamSet(
  makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
  makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x)
)
ctrl = makeTuneControlGrid(resolution = 2L)
rdesc = makeResampleDesc("CV", iters = 2L)
res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps, control = ctrl)
print(res)
# access data for all evaluated points
df = as.data.frame(res$opt.path)
df1 = as.data.frame(res$opt.path, trafo = TRUE)
print(head(df[, -ncol(df)]))
print(head(df1[, -ncol(df)]))
# access data for all evaluated points - alternative
df2 = generateHyperParsEffectData(res)
df3 = generateHyperParsEffectData(res, trafo = TRUE)
print(head(df2$data[, -ncol(df2$data)]))
print(head(df3$data[, -ncol(df3$data)]))
## Not run:
# we optimize the SVM over 3 kernels simultaneously
# note how we use dependent params (requires = ...) and iterated F-racing here
ps = makeParamSet(
  makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
  makeDiscreteParam("kernel", values = c("vanilladot", "polydot", "rbfdot")),
  makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x,
    requires = quote(kernel == "rbfdot")),
  makeIntegerParam("degree", lower = 2L, upper = 5L,
    requires = quote(kernel == "polydot"))
)
print(ps)
ctrl = makeTuneControlIrace(maxExperiments = 5, nbIterations = 1, minNbSurvival = 1)
rdesc = makeResampleDesc("Holdout")
res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps, control = ctrl)
print(res)
df = as.data.frame(res$opt.path)
print(head(df[, -ncol(df)]))

# include the training set performance as well
rdesc = makeResampleDesc("Holdout", predict = "both")
res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps,
  control = ctrl, measures = list(mmce, setAggregation(mmce, train.mean)))
print(res)
df2 = as.data.frame(res$opt.path)
print(head(df2[, -ncol(df2)]))
```
tuneParamsMultiCrit

Hyperparameter tuning for multiple measures at once.

Description

Optimizes the hyperparameters of a learner in a multi-criteria fashion. Allows for different optimization methods, such as grid search, evolutionary strategies, etc. You can select such an algorithm (and its settings) by passing a corresponding control object. For a complete list of implemented algorithms look at TuneMultiCritControl.

Usage

tuneParamsMultiCrit(
 learner,
 task,
 resampling,
 measures,
 par.set,
 control,
 show.info = getMlrOption("show.info"),
 resample.fun = resample
)

Arguments

learner
(Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

task
(Task)
The task.

resampling
(ResampleInstance | ResampleDesc)
Resampling strategy to evaluate points in hyperparameter space. If you pass a description, it is instantiated once at the beginning by default, so all points are evaluated on the same training/test sets. If you want to change that behavior, look at TuneMultiCritControl.

measures
[list of Measure]
Performance measures to optimize simultaneously.

par.set
(ParamHelpers::ParamSet)
Collection of parameters and their constraints for optimization. Dependent parameters with a requires field must use quote and not expression to define it.

control
(TuneMultiCritControl)
Control object for search method. Also selects the optimization algorithm for tuning.
show.info (logical(1))
Print verbose output on console? Default is set via configureMlr.

resample.fun (closure)
The function to use for resampling. Defaults to resample and should take the
same arguments as, and return the same result type as, resample.

Value
(TuneMultiCritResult).

See Also
Other tune_multicrit: TuneMultiCritControl, plotTuneMultiCritResult()

Examples

multi-criteria optimization of (tpr, fpr) with NGSA-II
lrn = makeLearner("classif.ksvm")
rdesc = makeResampleDesc("Holdout")
ps = makeParamSet(
 makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
 makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x)
)
ctrl = makeTuneMultiCritControlNSGA2(popsize = 4L, generations = 1L)
res = tuneParamsMultiCrit(lrn, sonar.task, rdesc, par.set = ps,
 measures = list(tpr, fpr), control = ctrl)
plotTuneMultiCritResult(res, path = TRUE)
tuneThreshold

Tune prediction threshold.

Description

Optimizes the threshold of predictions based on probabilities. Works for classification and multilabel tasks. Uses `BBmisc::optimizeSubInts` for normal binary class problems and `GenSA::GenSA` for multiclass and multilabel problems.

Usage

```r
tuneThreshold(pred, measure, task, model, nsub = 20L, control = list())
```

Arguments

- `pred` *(Prediction)*: Prediction object.
- `measure` *(Measure)*: Performance measure to optimize. Default is the default measure for the task.
- `task` *(Task)*: Learning task. Rarely needed, only when required for the performance measure.
- `model` *(WrappedModel)*: Fitted model. Rarely needed, only when required for the performance measure.
- `nsub` *(integer(1))*: Passed to `BBmisc::optimizeSubInts` for 2class problems. Default is 20.
- `control` *(list)*: Control object for `GenSA::GenSA` when used. Default is empty list.

Value

(list). A named list with with the following components: `th` is the optimal threshold, `perf` the performance value.

See Also

Other tune: `TuneControl`, `getNestedTuneResultsOptPathDf()`, `getNestedTuneResultsX()`, `getResamplingIndices()`, `getTuneResult()`, `makeModelMultiplexerParamSet()`, `makeModelMultiplexer()`, `makeTuneControlCMAES()`, `makeTuneControlDesign()`, `makeTuneControlGenSA()`, `makeTuneControlGrid()`, `makeTuneControlIrace()`, `makeTuneControlMBO()`, `makeTuneControlRandom()`, `makeTuneWrapper()`, `tuneParams()`
wpbc.task

Wisconsin Prognostic Breast Cancer (WPBC) survival task.

Description
Contains the task (wpbc.task).

References
See TH.data::wpbc. Incomplete cases have been removed from the task.

yeast.task

Yeast multilabel classification task.

Description
Contains the task (yeast.task).

Source
https://archive.ics.uci.edu/ml/datasets/Yeast (In long instead of wide format)

References
Index

* benchmark
 - benchmark, 14
 - benchmark, 16
 - BenchmarkResult, 18
 - convertBMRToRankMatrix, 26
 - friedmanPostHocTestBMR, 50
 - friedmanTestBMR, 51
 - generateCritDifferencesData, 54
 - getBMRAggrPerformances, 67
 - getBMRFeatSelResults, 69
 - getBMRFilteredFeatures, 70
 - getBMRLearnerIds, 71
 - getBMRLearners, 72
 - getBMRLearnerShortNames, 72
 - getBMRMergeIds, 73
 - getBMRMergeIds, 74
 - getBMRLearners, 75
 - getBMRLearners, 76
 - getBMRLearnerShortNames, 78
 - getBMRTaskDescs, 78
 - getBMRTaskDescs, 79
 - getBMRTuneResults, 80
 - plotBMRAggrPerformances, 225
 - plotBMRRanksAsBarChart, 226
 - plotBMRSummary, 227
 - plotCritDifferences, 230
 - reduceBatchmarkResults, 246
* calibration
 - generateCalibrationData, 53
 - plotCalibration, 229
* configure
 - configureMlr, 24
 - getMLrOptions, 96
* costsens
 - makeCostSensClassifWrapper, 141
 - makeCostSensRegrWrapper, 142
 - makeCostSensTask, 143
 - makeCostSensWeightedPairsWrapper, 144
* datasets
 - aggregations, 11
 - measures, 213
 - spatial.task, 270
* data
 - agri.task, 12
 - bc.task, 16
 - bh.task, 18
 - costiris.task, 28
 - fuelsubset.task, 52
 - gunpoint.task, 117
 - iris.task, 124
 - lung.task, 133
 - mtcars.task, 219
 - phoneme.task, 224
 - pid.task, 224
 - pid.task, 224
 - sonar.task, 270
 - spam.task, 270
 - wpbc.task, 289
 - yeast.task, 289
* debug
 - FailureModel, 43
 - getPredictionDump, 100
 - getRRDump, 104
 - ResampleResult, 256
* downsample
 - downsample, 33
 - makeDownsampleWrapper, 146
* eda_and_preprocess
 - capLargeValues, 22
 - createDummyFeatures, 28
 - dropFeatures, 33
 - mergeSmallFactorLevels, 217
 - normalizeFeatures, 220
 - removeConstantFeatures, 249
 - summarizeColumns, 272
 - summarizeLevels, 273
* extractFDAFeatures
 - reextractFDAFeatures, 247
* **fda_featextractor**
 - extractFDABsignal, 36
 - extractFDADTWKernel, 37
 - extractFDAFourier, 39
 - extractFDAFPCA, 40
 - extractFDAMultiResFeatures, 40
 - extractFDATsfeatures, 41
 - extractFDAWavelets, 42

 + FDA
 - extractFDAFeatures, 38
 - makeExtractFDAMethod, 148
 - makeExtractFDAsWrapper, 149

* **featsel**
 - analyzeFeatSelResult, 13
 - FeatSelControl, 44
 - getFeatSelResult, 85
 - makeFeatSelWrapper, 150
 - selectFeatures, 259

* **filter**
 - filterFeatures, 48
 - generateFilterValuesData, 58
 - getFilteredFeatures, 87
 - listFilterEnsembleMethods, 127
 - listFilterMethods, 128
 - makeFilter, 151
 - makeFilterEnsemble, 152
 - makeFilterWrapper, 153
 - plotFilterValues, 231

* **generate_plot_data**
 - generateCalibrationData, 53
 - generateCritDifferencesData, 54
 - generateFeatureImportanceData, 56
 - generateFilterValuesData, 58
 - generateLearningCurveData, 62
 - generatePartialDependenceData, 63
 - generateThresholdVsPerfData, 66
 - plotFilterValues, 231

* **help**
 - helpLearner, 119
 - helpLearnerParam, 119

* **imbalance**
 - makeOverBaggingWrapper, 178
 - makeUndersampleWrapper, 208
 - oversample, 221
 - smote, 269

* **impute**
 - imputations, 120
 - impute, 122

 + IMPUTE
 - makeImputeMethod, 158
 - makeImputeWrapper, 158
 - reimpute, 248

* **learner**
 - getClassWeightParam, 82
 - getHyperPars, 89
 - getLearnerId, 90
 - getLearnerPackages, 92
 - getLearnerParamSet, 92
 - getLearnerParVals, 93
 - getLearnerPredictType, 94
 - getLearnerShortName, 94
 - getLearnerType, 95
 - getParamSet, 99
 - helpLearner, 119
 - helpLearnerParam, 119
 - LearnerProperties, 126
 - makeLearner, 160
 - makeLearners, 163
 - removeHyperPars, 250
 - setHyperPars, 262
 - setId, 263
 - setLearnerId, 264
 - setPredictThreshold, 265
 - setPredictType, 266

* **learning_curve**
 - generateLearningCurveData, 62
 - plotLearningCurve, 237

* **multilabel**
 - getMultilabelBinaryPerformances, 96
 - makeMultilabelBinaryRelevanceWrapper, 170
 - makeMultilabelClassifierChainsWrapper, 171
 - makeMultilabelDBRWrapper, 172
 - makeMultilabelNestedStackingWrapper, 174
 - makeMultilabelStackingWrapper, 175

* **multiplexer**
 - makeModelMultiplexer, 166
 - makeModelMultiplexerParamSet, 168

* **partial_dependency**
 - generatePartialDependenceData, 63
 - plotPartialDependence, 238

* **performance**
 - calculateConfusionMatrix, 19
calculateROCMeasures, 21
ConfusionMatrix, 25
estimateRelativeOverfitting, 34
makeCostMeasure, 140
makeCustomResampledMeasure, 145
makeMeasure, 164
measures, 213
performance, 223
setAggregation, 261
setMeasurePars, 265

* plot
createSpatialResamplingPlots, 29
plotBMRBoxplots, 225
plotBMRRanksAsBarChart, 226
plotBMRSummary, 227
plotCalibration, 229
plotCritDifferences, 230
plotLearningCurve, 237
plotPartialDependence, 238
plotResiduals, 239
plotROCCurves, 240
plotThreshVsPerf, 241

* predict
asROCRPrediction, 13
getPredictionProbabilities, 100
getPredictionResponse, 101
getPredictionTaskDesc, 102
predict.WrappedModel, 244
setPredictThreshold, 265
setPredictType, 266

* resample
addRRMeasure, 10
getRRRPredictionList, 105
getRRRPredictions, 105
getRRTaskDesc, 106
getRRTaskDescription, 107
makeResampleDesc, 184
makeResampleInstance, 187
resample, 251
ResamplePrediction, 255
ResampleResult, 256

* roc
asROCRPrediction, 13
calculateROCMeasures, 21

* task
getTaskClassLevels, 108
getTaskCosts, 108
getTaskData, 109
getTaskDesc, 110
getTaskFeatureNames, 111
getTaskFormula, 112
getTaskId, 113
getTaskNFeats, 113
getTaskSize, 114
getTaskTargetNames, 114
getTaskTargets, 115
getTaskType, 116
subsetTask, 271

* thresh_vs_perf
generateThreshVsPerfData, 66
plotROCCurves, 240
plotThreshVsPerf, 241

* tune_multicrit
plotTuneMultiCritResult, 243
TuneMultiCritControl, 279
tuneParamsMultiCrit, 286

* tune
getNestedTuneResultsOptPathDf, 97
getNestedTuneResultsX, 98
getResamplingIndices, 103
getTuneResult, 116
makeModelMultiplexer, 166
makeModelMultiplexerParamSet, 168
makeTuneControlCMAES, 194
makeTuneControlDesign, 196
makeTuneControlGenSA, 197
makeTuneControlGrid, 199
makeTuneControlIrace, 201
makeTuneControlMBO, 203
makeTuneControlRandom, 205
makeTuneWrapper, 206
TuneControl, 278
tuneParams, 283
tuneThreshold, 288

* wrapper
makeBaggingWrapper, 134
makeClassificationViaRegressionWrapper, 135
makeConstantClassWrapper, 139
makeCostSensClassifWrapper, 141
makeCostSensRegrWrapper, 142
makeDownsampleWrapper, 146
makeDummyFeaturesWrapper, 147
makeExtractFDAFeatsWrapper, 149
makeFeatSelWrapper, 150
makeFilterWrapper, 153
makeImputeWrapper, 158
makeMulticlassWrapper, 169
makeMultilabelBinaryRelevanceWrapper, 170
makeMultilabelClassifierchainsWrapper, 171
makeMultilabelDBRWrapper, 172
makeMultilabelNestedStackingWrapper, 174
makeMultilabelStackingWrapper, 175
makeOverBaggingWrapper, 178
makePreprocWrapper, 179
makePreprocWrapperCaret, 181
makeRemoveConstantFeaturesWrapper, 183
makeSMOTEWrapper, 189
makeTuneWrapper, 206
makeUndersampleWrapper, 208
makeWeightedClassesWrapper, 209

acc (measures), 213
addRRMeasure, 10, 105–107, 186, 188, 255, 256
Aggregation, 11, 12, 134, 165, 261
aggregations, 11, 12, 134, 261
agri.task, 12
analyzeFeatSelResult, 13, 47, 48, 85, 151, 260
as.data.frame, 18
asROCRPrediction, 13, 22, 101, 102, 244, 266, 267
auc (measures), 213

b632 (aggregations), 11
b632plus (aggregations), 11
bac (measures), 213
base::data.frame, 246
base::expand.grid, 14
base::rank, 27
benchmark, 14, 17, 18, 27, 51, 52, 56, 68,
70–77, 79, 81, 226–228, 231, 246, 247
batchtools::ExperimentRegistry, 246, 247
batchtools::findDone, 246
batchtools::makeExperimentRegistry, 14,
15, 247
batchtools::Registry, 15
batchtools::submitJobs, 14

batchtools::waitForJobs, 14
BBmisc::normalize, 220, 221
BBmisc::optimizeSubInts, 288
bc.task, 16
benchmark, 14, 15, 16, 18, 27, 51, 52, 56, 62,
68, 70–77, 79, 81, 226–228, 231, 247
BenchmarkResult, 14, 15, 17, 18, 27, 50–53,
55, 56, 67–81, 216, 217, 225–228,
231, 239, 240, 246, 247
ber (measures), 213
bh.task, 18
bootstrapB632 (resample), 251
bootstrapB632plus (resample), 251
bootstrapOOB (resample), 251
brier (measures), 213
cache Helpers, 19
calculateConfusionMatrix, 19, 22, 26, 35,
83, 141, 146, 165, 216, 224, 261, 265
calculateROCMeasures, 14, 20, 21, 22, 26,
35, 141, 146, 165, 216, 224, 261, 265
CalibrationData, 53, 229
CalibrationData
generateCalibrationData, 53
capLargeValues, 22, 29, 34, 217, 221, 250,
272, 273
caret::preProcess, 181
caret::predict, 181
character, 11, 15, 16, 23, 29, 30, 34, 38, 48,
49, 57, 59, 64, 65, 71, 73, 79, 82, 87,
88, 91, 92, 100, 108, 109, 112, 115,
121–123, 126, 129–133, 141,
145–147, 150, 152, 154, 157, 159,
163, 165, 171, 174, 183, 185, 212,
217, 220, 236, 249, 250, 259, 260,
268, 271, 273, 276
cindex (measures), 213
ClassifTask, 139, 144, 178, 183, 194, 275
ClassifTask (makeClassifTask), 136
closure, 284, 287
class::agriculture, 12
class::daisy, 269
ClusterTask, 138, 144, 178, 183, 194, 275
ClusterTask (makeClusterTask), 138
cmaes::cma_es, 194, 195, 199, 202, 279, 282
configureMlr, 17, 24, 43, 46, 62, 84, 85, 96,
100, 104, 124, 151, 161, 194, 196,
198, 200, 201, 203, 207, 247, 249,
254, 256, 260, 278, 281, 284, 287
ConfusionMatrix, 19, 20, 22, 25, 35, 141, 146, 165, 216, 224, 261, 265
costsSensClassifModel (makeCostSensClassifWrapper), 141
CostSensClassifWrapper (makeCostSensClassifWrapper), 141
CostSensRegrModel (makeCostSensRegrWrapper), 142
CostSensRegrWrapper (makeCostSensRegrWrapper), 142
CostSensTask, 108, 138, 139, 178, 183, 194, 275
CostSensTask (makeCostSensTask), 143
CostSensWeightedPairsModel (makeCostSensWeightedPairsWrapper), 144
CostSensWeightedPairsWrapper, 129
CostSensWeightedPairsWrapper (makeCostSensWeightedPairsWrapper), 144
cowplot::save_plot, 30
createDummyFeatures, 23, 28, 34, 147, 217, 221, 250, 272, 273
creatSpatialResamplingPlots, 29, 226, 227, 229–231, 237, 239–242
crossover, 32, 33
crossval (resample), 251
cv10 (makeResampleDesc), 184
cv2 (makeResampleDesc), 184
cv3 (makeResampleDesc), 184
cv5 (makeResampleDesc), 184
data.table, 15
data.table::data.table, 246
datasets::iris, 28, 124
datasets::mtcars, 220
db (measures), 213
deleteCacheDir (cache_helpers), 19
downsampe, 33, 146, 147
dropFeatures, 23, 29, 33, 217, 221, 250, 272, 273
dump.frames, 256
evironment, 112
estimateRelativeOverfitting, 20, 22, 26, 34, 141, 146, 165, 216, 224, 261, 265
estimateResidualVariance, 35
expvar (measures), 213
extractFDABsignal, 36, 37, 39–43
extractFDADTWKernel, 36, 37, 39–43
extractFDAFeatures, 38, 38, 149, 247
extractFDAFourier, 36, 37, 39, 40–43
extractFDAPCA, 36, 37, 39, 40–43
extractFDAMultiResFeatures, 36, 37, 39, 40, 42, 43
extractFDATsfeatures, 36, 37, 39–41, 41, 43
extractFDAWavelets, 36, 37, 39–42, 42
f1 (measures), 213
factor, 134, 137, 138, 143, 145, 177, 182, 187, 193, 215, 274
FailureModel, 25, 43, 100, 104, 256
FDboost::bsignal(), 36
FDboost::FDboost, 52
fdr (measures), 213
featperc (measures), 213
FeatSelControl, 13, 44, 47, 48, 85, 150, 151, 259, 260
FeatSelControlExhaustive, 47
FeatSelControlExhaustive (FeatSelControl), 44
FeatSelControlGA, 47
FeatSelControlGA (FeatSelControl), 44
FeatSelControlRandom, 47
FeatSelControlRandom (FeatSelControl), 44
FeatSelControlSequential, 47
FeatSelControlSequential (FeatSelControl), 44
FeatSelResult, 13, 48, 69, 85, 260
FeatureImportanceData (generateFeatureImportanceData), 56
getFailureModelMsg, 85
getFeatSelResult, 13, 47, 85, 150, 151, 260
getFeatureImportance, 86
getFilteredFeatures, 50, 60, 87, 127, 128, 152–155, 232
getFunctionalFeatures, 88
getHomogeneousEnsembleModels, 89
getHyperPars, 82, 89, 90, 92–95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getLearnerId, 82, 90, 90, 92–95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getLearnerModel, 91, 134, 141, 142, 144, 170–172, 174, 175, 178
getLearnerNote, 82, 90, 91, 92–95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getLearnerPackages, 82, 90, 92, 93–95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getLearnerParamSet, 82, 90, 92, 93–95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getLearnerParamValues, 82, 90, 92, 93, 94, 95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getLearnerPredictType, 82, 90, 92, 93, 94, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getLearnerProperties, 166
getLearnerProperties
(LearnerProperties), 126
getLearnerShortName, 82, 90, 92–94, 94, 95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getLearnerType, 82, 90, 92–95, 95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getMeasureProperties
(MeasureProperties), 212
getMlrOptions, 25, 96
getMultilabelBinaryPerformances, 96, 170, 172, 173, 175, 176
getNestedTuneResultsOptPathDF, 97, 98, 103, 117, 166, 168, 195, 197, 199, 201, 202, 205–207, 279, 284, 288
getNestedTuneResultsX, 97, 98, 103, 117, 166, 168, 195, 197, 199, 201, 202, 205–207, 279, 284, 288
getOOBPreds, 98
getParamSet, 82, 90, 92–95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
getParamSet(), 89
getPredictionDump, 25, 43, 100, 104, 256
getPredictionProbabilities, 14, 100, 102, 244, 266, 267
getPredictionResponse, 14, 101, 102, 244, 266, 267
getPredictionSE
(getPredictionResponse), 101
getPredictionTaskDesc, 14, 101, 102, 244, 266, 267
getPredictionTruth
(getPredictionResponse), 101
getProbabilities, 103
getResamplingIndices, 97, 98, 103, 117, 166, 168, 195, 197, 199, 201, 202, 205–207, 279, 284, 288
getRRDump, 25, 43, 100, 104, 256
getRPPredictionList, 10, 105, 106, 107, 186, 188, 255, 256
getRPPredictions, 10, 105, 106, 107, 186, 188, 255, 256
getRTaskDesc, 10, 105, 106, 107, 186, 188, 255, 256
getRTaskDescription, 10, 105, 106, 107, 186, 188, 255, 256
getStackedBaseLearnerPredictions, 107
getTaskData, 108, 109, 109, 111–116, 271, 273, 274, 278
getTaskDesc, 108–110, 110, 111–116, 271
getTaskDescription, 111
getTestId, 108–112, 113, 114–116, 271
getTaskTargetNames, 108–114, 114, 115, 116, 271
getTaskType, 108–115, 116, 271
getTuneResult, 97, 98, 103, 116, 166, 168, 195, 197, 199, 201, 202, 205–207, 279, 284, 288
getTuneResultOptPath, 117
ggplot2::coord_sf, 31
ggplot2::geom_point, 228, 236, 243
ggplot2::ggplot, 235
ggplot2::scale_x_log10, 227, 228
gmean (measures), 213
gpr (measures), 213
graphics::hist, 121
growingcv (resample), 251
gunpoint.task, 117
h2o::h2o.varimp(), 86
hasFunctionalFeatures, 118
hasLearnerProperties
 (LearnerProperties), 126
hasMeasureProperties
 (MeasureProperties), 212
hasProperties, 118
helpLearner, 82, 90, 92–95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
helpLearnerParam, 82, 90, 92–95, 99, 119, 127, 163, 164, 250, 262, 264, 266, 267
hist, 53
holdout (resample), 251
hout (makeResampleDesc), 184
iauc.uno (measures), 213
ibrier (measures), 213
imputations, 120, 122, 124, 158, 159, 248
impute, 121, 122, 158, 159, 248
imputeConstant (imputations), 120
imputeHist (imputations), 120
imputeLearner (imputations), 120
imputeMax (imputations), 120
imputeMean (imputations), 120
imputeMedian (imputations), 120
imputeMin (imputations), 120
imputeMode (imputations), 120
imputeNormal (imputations), 120
imputeUniform (imputations), 120
irace::irace, 195, 199, 201, 202, 279, 282
iris.task, 124
isFailureModel, 124
joinClassLevels, 125
kappa (measures), 213
kendalltau (measures), 213
kernlab::spam, 270
Learner (makeLearner), 160
learnerArgsToControl, 125
LearnerParam, 82
LearnerProperties, 82, 90, 92–95, 99, 119, 120, 126, 160, 163, 164, 250, 257, 262, 264, 266, 267
learners, 127, 160, 259
LearningCurveData, 63, 237
LearningCurveData
 (generateLearningCurveData), 62
list(), 38, 149
listFilterEnsembleMethods, 50, 60, 87, 127, 128, 152–153, 232
listFilterMethods, 49, 50, 58, 60, 87, 127, 128, 151–155, 232
listLearnerProperties, 129
listLearners, 127, 129
listMeasureProperties, 131
listMeasures, 132, 213
listTaskTypes, 132
logical, 32, 49, 88, 103, 108, 109, 154, 168, 212, 223, 244, 271, 277
logloss (measures), 213
lslr (measures), 213
lung.task, 133
mae (measures), 213
makeAggregation, 11, 133
makeClassifierTask, 136
makeClusterTask, 138
makeCostMeasure, 20, 22, 26, 35, 140, 146, 165, 213, 216, 224, 261, 265
makeCostSensTask, 142, 143, 145
makeCostSensWeightedPairsWrapper, 142, 144, 144
makeCustomResampledMeasure, 20, 22, 26, 35, 141, 145, 165, 216, 224, 261, 265
makeExtractFDAFeatMethod, 39, 148, 149
makeFeatSelControlExhaustive (FeatSelControl), 44
makeFeatSelControlGA (FeatSelControl), 44
makeFeatSelControlRandom (FeatSelControl), 44
makeFeatSelControlSequential (FeatSelControl), 44
makeFilter, 50, 60, 87, 127, 128, 151, 153, 155, 232
makeFilterEnsemble, 50, 60, 87, 127, 128, 152, 155, 232
makeFixedHoldoutInstance, 156, 186
makeFunctionalData, 157, 274
makeImputeMethod, 121, 122, 124, 158, 159, 248
makeImputeWrapper, 121, 124, 135, 136, 140, 142, 147–149, 151, 155, 158, 158, 169, 170, 172–174, 176, 179–181, 184, 190, 207, 209, 210, 248
makeLearners, 82, 90, 92–95, 99, 119, 120, 127, 163, 163, 250, 262, 264, 266, 267
makeMeasure, 20, 22, 26, 35, 140, 141, 146, 164, 213, 216, 224, 261, 265
makeModelMultiplexer, 97, 98, 103, 117, 166, 168, 195, 197, 199, 201, 202
INDEX
205–207, 279, 284, 288
makeModelMultiplexerParamSet, 97, 98,
103, 117, 166, 167, 195, 197, 199,
201, 202, 205–207, 279, 284, 288
makeMulticlassWrapper, 135, 136, 140, 142,
147–149, 151, 155, 160, 169, 170,
172–174, 176, 179–181, 184, 190,
207, 209, 210, 222
makeMultilabelBinaryRelevanceWrapper,
97, 129, 135, 136, 140, 142,
147–149, 151, 155, 160, 169, 170,
172–176, 179–181, 184, 190, 207,
209, 210, 222
makeMultilabelClassifierChainsWrapper,
97, 135, 136, 140, 142, 147–149,
151, 155, 160, 169, 170, 171, 173,
175, 176, 179–181, 184, 190, 207,
209, 210
makeMultilabelDBRWrapper, 97, 135, 136,
140, 142, 147–149, 151, 155, 160,
169, 170, 172, 172, 175, 176,
179–181, 184, 190, 207, 209, 210
makeMultilabelNestedStackingWrapper,
97, 135, 136, 140, 142, 147–149,
151, 155, 160, 169, 170, 172, 173,
174, 176, 179–181, 184, 190, 207,
209, 210
makeMultilabelStackingWrapper, 97, 135,
136, 140, 142, 147–149, 151, 155,
160, 169, 170, 172, 173, 175, 175,
179–181, 184, 190, 207, 209, 210
makeMultilabelTask, 176
makeOverBaggingWrapper, 135, 136, 140,
142, 147–149, 151, 155, 160, 169,
170, 172, 173, 175, 176, 178, 180,
181, 184, 190, 207, 209, 210, 222,
270
makeOversampleWrapper
(makeUndersampleWrapper), 208
makePrediction, 105
makePreprocWrapper, 135, 136, 140, 142,
147–149, 151, 155, 160, 169, 170,
172, 173, 175, 176, 179, 179, 181,
184, 190, 207, 209, 210
makePreprocWrapperCaret, 135, 136, 140,
142, 147–149, 151, 155, 160, 169,
170, 172, 173, 175, 176, 179, 180,
181, 184, 190, 207, 209, 210

299
makeRegrTask, 182
makeRemoveConstantFeaturesWrapper, 135,
136, 140, 142, 147–149, 151, 155,
160, 169, 170, 172, 173, 175, 176,
179–181, 183, 190, 207, 209, 210
makeResampleDesc, 10, 105–107, 184, 187,
188, 255, 256
makeResampleInstance, 10, 33, 105–107,
186, 187, 255, 256
makeRLearner (RLearner), 257
makeRLearner.classif.fdausc.glm, 188
makeRLearner.classif.fdausc.kernel,
188
makeRLearner.classif.fdausc.np, 189
makeRLearnerClassif (RLearner), 257
makeRLearnerCluster (RLearner), 257
makeRLearnerCostSens (RLearner), 257
makeRLearnerMultilabel (RLearner), 257
makeRLearnerRegr (RLearner), 257
makeRLearnerSurv (RLearner), 257
makeSMOTEWrapper, 135, 136, 140, 142,
147–149, 151, 155, 160, 169, 170,
172, 173, 175, 176, 179–181, 184,
189, 207, 209, 210
makeStackedLearner, 190
makeSurvTask, 193
makeTuneControlCMAES, 97, 98, 103, 117,
166, 168, 194, 197, 199, 201, 203,
205–207, 279, 285, 288
makeTuneControlDesign, 97, 98, 103, 117,
166, 168, 196, 196, 199, 201, 203,
205–207, 279, 285, 288
makeTuneControlGenSA, 97, 98, 103, 117,
166, 168, 196, 197, 197, 201, 203,
205–207, 279, 285, 288
makeTuneControlGrid, 97, 98, 103, 117, 166,
168, 196, 197, 199, 199, 203,
205–207, 279, 285, 288
makeTuneControlIrace, 97, 98, 103, 117,
166, 168, 196, 197, 199, 201, 201,
205–207, 279, 285, 288
makeTuneControlMBO, 97, 98, 103, 117, 166,
168, 196, 197, 199, 201, 203, 203,
206, 207, 279, 285, 288
makeTuneControlRandom, 97, 98, 103, 117,
166, 168, 196, 197, 199, 201, 203,
205, 205, 207, 279, 285, 288
makeTuneMultiCritControlGrid


makeTuneMultiCritControlMBO (TuneMultiCritControl), 279
makeTuneMultiCritControlNSGA2 (TuneMultiCritControl), 279
makeTuneMultiCritControlRandom (TuneMultiCritControl), 279
makeUndersampleWrapper, 135, 136, 140, 142, 147–149, 151, 155, 160, 169, 170, 172, 173, 175, 176, 179–181, 184, 190, 207, 208, 210, 222, 270
makeWeightedClassesWrapper, 135, 136, 140, 142, 147–149, 151, 155, 160, 169, 170, 172, 173, 175, 176, 179–181, 184, 190, 196, 199, 201, 203, 205, 206, 209, 210, 279, 285, 288
makeWrappedModel, 211
mape (measures), 213
matrix, 26, 27, 83, 140, 215, 283
mcc (measures), 213
mco::nsga2, 280
mcp (measures), 213
mean, 140
meancosts (measures), 213
Measure (makeMeasure), 164
measureACC (measures), 213
measureAU1P (measures), 213
measureAU1U (measures), 213
measureAUC (measures), 213
measureAU1P (measures), 213
measureAUNU (measures), 213
measureEER (measures), 213
measureBrier (measures), 213
measureBrierScaled (measures), 213
measureEXPVAR (measures), 213
measureF1 (measures), 213
measureFDR (measures), 213
measureFN (measures), 213
measureFNR (measures), 213
measureFP (measures), 213
measureFPR (measures), 213
measureGMEAN (measures), 213
measureGPR (measures), 213
measureKAPPA (measures), 213
measureKendallTau (measures), 213
measureLogloss (measures), 213
measureLSR (measures), 213
measureMAE (measures), 213
measureMAPE (measures), 213
measureMCC (measures), 213
measureMEDAE (measures), 213
measureMEDSE (measures), 213
measureMMCE (measures), 213
measureMSE (measures), 213
measureMSLE (measures), 213
measureMulticlassBrier (measures), 213
measureMultilabelACC (measures), 213
measureMultilabelF1 (measures), 213
measureMultilabelHamloss (measures), 213
measureMultilabelPPV (measures), 213
measureMultilabelSubset01 (measures), 213
measureMultilabelTPR (measures), 213
measureNPV (measures), 213
measurePPV (measures), 213
MeasureProperties, 212
measureQSR (measures), 213
measureRAE (measures), 213
measureRMSE (measures), 213
measureRMSLE (measures), 213
measureRRSE (measures), 213
measureRSQ (measures), 213
measures, 24–22, 26, 35, 141, 146, 164, 165, 190, 224, 251, 261, 265
measureSAE (measures), 213
measureSpearmanRho (measures), 213
measureSSE (measures), 213
measureSSR (measures), 213
measureTN (measures), 213
measureTNR (measures), 213
measureTP (measures), 213
measureTPR (measures), 213
measureWKAPPA (measures), 213
medae (measures), 213
medse (measures), 213
mergeBenchmarkResults, 216
mergeSmallFactorLevels, 23, 29, 34, 217, 221, 250, 272, 273
mlbench::BostonHousing, 18
mlbench::BreastCancer, 16
mlbench::PimaIndiansDiabetes, 224
mlbench::Sonar, 270
mlr (mlr-package), 9
mlrFamilies, 218
mlrMBO::makeMBOControl, 204, 282
mlrMBO::makeMBOLearner, 203, 282
mlrMBO::mbo, 203, 204, 282
mlrMBO::mboContinue, 204, 282
mlrMBO::MBOControl, 204, 282
mlrMBO::OptResult, 204, 282
mmce (measures), 213
mmpf::marginalPrediction, 65
model.matrix, 28
ModelMultiplexer, 166, 168
ModelMultiplexer (makeModelMultiplexer), 166
mse (measures), 213
msle (measures), 213
mtcars.task, 219
multiclass.au1p (measures), 213
multiclass.au1u (measures), 213
multiclass.aunp (measures), 213
multiclass aunu (measures), 213
multiclass.brier (measures), 213
multilabel.acc (measures), 213
multilabel.f1 (measures), 213
multilabel.hamloss (measures), 213
multilabel.ppv (measures), 213
multilabel.subset01 (measures), 213
multilabel.trp (measures), 213
MultilabelTask, 138, 139, 144, 183, 194, 275
MultilabelTask (makeMultilabelTask), 176
normalizeFeatures, 23, 29, 34, 217, 220, 250, 272, 273
npv (measures), 213
numDeriv::grad, 64
numDeriv::jacobian, 64
options, 24
OptPath, 204, 282
oversample, 179, 208, 209, 221, 270
parallelization, 222
parallelMap::parallelMap, 222
parallelMap::parallelStart, 222
parallelMap::parallelStop, 222
parallelStart, 222
ParamHelpers::generateDesign, 196
ParamHelpers::generateGridDesign, 200, 281
ParamHelpers::LearnerParam, 89, 93, 180
ParamHelpers::makeDiscreteParam, 199, 279
ParamHelpers::OptPath, 48, 117, 204, 282, 283, 288
ParamHelpers::Param, 168
ParamHelpers::ParamSet, 81, 99, 168, 180, 207, 259, 284, 286
ParamSet, 93, 99, 148, 168
PartialDependenceData, 65, 238
PartialDependenceData (generatePartialDependenceData), 63
party::varimp(), 86
performance, 20, 22, 26, 35, 134, 141, 146, 165, 216, 223, 261, 265
phoneme.task, 224
pid.task, 224
plotCalibration, 31, 54, 226, 227, 229, 229, 231, 237, 239–242
plotFilterValues, 50, 54, 56, 58, 60, 63, 66, 67, 87, 127, 128, 152, 153, 155, 231
plotHyperParsEffect, 60, 61, 232
plotLearnerPrediction, 235
plotLearningCurve, 31, 63, 226, 227, 229–231, 237, 239–242
plotPartialDependence, 31, 64, 66, 226, 227, 229–231, 237, 238, 240–242
plotResiduals, 31, 226, 227, 229–231, 237, 239, 241, 242
plotTuneMultiCritResult, 243, 282, 287
PMCMRplus::frdAllPairsNemenyiTest, 50, 51, 55
ppv (measures), 213
predict.WrappedModel, 14, 83, 101, 102, 244, 266, 267, 277
predictLearner, 245
print.ConfusionMatrix
 (calculateConfusionMatrix), 19
print.ROCMeasures
 (calculateROCMeasures), 21
qsr (measures), 213
rae (measures), 213
randomForest::importance(), 86
randomForestSRC::vimp(), 86
ranger::importance(), 87
rank, 227
reduceBatchmarkResults, 15, 17, 18, 27, 51, 52, 56, 68, 70–77, 79, 81, 226–228, 231, 246
reextractFDAFeatures, 38, 149, 247
RegrTask, 36, 138, 139, 144, 178, 194, 275
RegrTask (makerRegrTask), 182
 reimpute, 121, 122, 124, 158, 159, 248
removeConstantFeatures, 23, 29, 34, 183, 217, 221, 249, 272, 273
removeHyperPars, 82, 90, 92–95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
repcv (resample), 251
resample, 10, 30, 60, 67, 75, 76, 104–107, 186, 188, 251, 255, 256, 284, 287
ResampleDesc, 15, 16, 34, 62, 150, 186, 187, 192, 201, 207, 251, 254, 260, 284, 286
ResampleDesc (makeResampleDesc), 184
ResampleInstance, 16, 33, 62, 150, 156, 184, 188, 201, 207, 251, 254, 260, 284, 286
ResampleInstance
 (makeResampleInstance), 187
ResamplePrediction, 10, 34, 67, 76, 105–107, 145, 186, 188, 255, 255, 256
ResampleResult, 10, 15, 17, 18, 30, 43, 53, 60, 67, 97, 98, 100, 103–107, 186, 188, 255, 256
RLearner, 245, 257, 259, 278
RLearnerClassif, 259
RLearnerClassif (RLearner), 257
RLearnerCluster, 259
RLearnerCluster (RLearner), 257
RLearnerMultilabel, 259
RLearnerMultilabel (RLearner), 257
RLearnerRegr, 259
RLearnerRegr (RLearner), 257
RLearnerSurv, 259
RLearnerSurv (RLearner), 257
rmse (measures), 213
rsme (measures), 213
rpart::rpart, 91
rre (measures), 213
rsq (measures), 213
sae (measures), 213
sd, 272
selectFeatures, 13, 44, 47, 85, 150, 151, 259
setAggregation, 20, 22, 26, 35, 134, 140, 141, 146, 165, 186, 216, 224, 261, 265
setHyperPars, 82, 90, 92–95, 99, 119, 120, 127, 163, 164, 250, 262, 264, 266, 267
setHyperPars2, 263
setId, 82, 90, 92–95, 99, 119, 120, 127, 163, 164, 250, 262, 263, 264, 266, 267
setLearnerId, 82, 90, 92–95, 99, 119, 120, 127, 163, 164, 250, 262–264, 264, 266, 267
setMeasurePars, 20, 22, 26, 35, 141, 146, 165, 213, 216, 224, 261, 265
setMeasurePars(), 165
setPredictThreshold, 14, 82, 90, 92–95, 99, 101, 102, 119, 120, 127, 134, 163, 164, 244, 250, 262, 264, 265, 267
setPredictType, 14, 82, 90, 92–95, 99, 101, 102, 119, 120, 127, 134, 163, 164, 244, 250, 262, 264, 266, 267
setThreshold, 160, 161, 170, 244, 265, 266, 267
silhouette (measures), 213
simplifyMeasureNames, 268
smote, 179, 189, 209, 222, 269
sonar.task, 270
spam.task, 270
spatial.task, 270
spearmanrho (measures), 213
sse (measures), 213
ssr (measures), 213
stats::fft, 39
stats::friedman.test, 50–52
subsample (resample), 251
subsetTask, 108–116, 271, 274
summarizeColumns, 23, 29, 34, 217, 221, 250, 272, 273
summarizeLevels, 23, 29, 34, 217, 221, 250, 272, 273
summary, 272
survival::lung, 133
survival::Surv, 88, 110, 115
SurvTask, 138, 139, 144, 178, 183, 275
SurvTask (makeSurvTask), 193
test.join (aggregations), 11
test.max (aggregations), 11
test.mean, 165
test.mean (aggregations), 11
test.median (aggregations), 11
test.min (aggregations), 11
test.range (aggregations), 11
test.rmse (aggregations), 11
test.sd (aggregations), 11
test.sum (aggregations), 11
testgroup.mean (aggregations), 11
testgroup.sd (aggregations), 11
TH.data::wpbc, 289
ThreshVsPerfData, 67, 240, 242
ThreshVsPerfData (generateThreshVsPerfData), 66
timeboth (measures), 213
timetrain (measures), 213
tn (measures), 213
tnr (measures), 213
tp (measures), 213
tpr (measures), 213
train, 35, 64, 91, 211, 244, 254, 276
train (), 86
train.max (aggregations), 11
train.mean (aggregations), 11
train.median (aggregations), 11
train.min (aggregations), 11
train.range (aggregations), 11
train.rmse (aggregations), 11
train.sd (aggregations), 11
train.sum (aggregations), 11
trainLearner, 109, 277
tsfeatures::tsfeatures (), 41
TuneControl, 97, 98, 103, 117, 166, 168, 195, 197, 199, 201, 202, 205–207, 278, 283, 284, 287, 288
TuneControlCMAES, 195
TuneControlCMAES (makeTuneControlCMAES), 194
TuneControlDesign, 197
TuneControlDesign (makeTuneControlDesign), 196
TuneControlGenSA, 199
TuneControlGenSA (makeTuneControlGenSA), 197
TuneControlGrid, 201
TuneControlGrid (makeTuneControlGrid), 199
TuneControlIrace, 202
TuneControlIrace (makeTuneControlIrace), 201
TuneControlMBO, 204
TuneControlMBO (makeTuneControlMBO), 203
TuneControlRandom, 206
TuneControlRandom
 (makeTuneControlRandom), 205
TuneMultiCritControl, 243, 279, 282, 286, 287
TuneMultiCritControlGrid, 282
TuneMultiCritControlGrid
 (TuneMultiCritControl), 279
TuneMultiCritControlMBO, 282
TuneMultiCritControlMBO
 (TuneMultiCritControl), 279
TuneMultiCritControlNSGA2, 282
TuneMultiCritControlNSGA2
 (TuneMultiCritControl), 279
TuneMultiCritControlRandom, 282
TuneMultiCritControlRandom
 (TuneMultiCritControl), 279
TuneMultiCritResult, 243, 282, 287
tuneParams, 60, 81, 97, 98, 103, 117, 166, 168, 196, 197, 199, 201, 203, 205–207, 279, 283, 288
tuneParamsMultiCrit, 243, 282, 283, 286
TuneResult, 60, 80, 117, 284, 287
tuneThreshold, 46, 97, 98, 103, 117, 166, 168, 170, 195–207, 279, 282, 285, 288
undersample, 208
undersample (oversample), 221

wavelets::dwt, 42
wkappa (measures), 213
wpbc.task, 289
WrappedModel, 36, 43, 64, 74, 84–87, 91, 99, 107, 116, 124, 165, 212, 223, 244, 245, 254, 256, 277, 288
WrappedModel (makeWrappedModel), 211

yeast.task, 289