Package ‘mlr3’

November 16, 2021

Title Machine Learning in R - Next Generation

Version 0.13.0

Description Efficient, object-oriented programming on the building blocks of machine learning. Provides 'R6' objects for tasks, learners, resamplings, and measures. The package is geared towards scalability and larger datasets by supporting parallelization and out-of-memory data-backends like databases. While 'mlr3' focuses on the core computational operations, add-on packages provide additional functionality.

License LGPL-3

Depends R (>= 3.1.0)

Imports R6 (>= 2.4.1), backports, checkmate (>= 2.0.0), data.table (>= 1.14.2), future, future.apply (>= 1.5.0), lgr (>= 0.3.4), mlbench, mlr3measures (>= 0.4.0), mlr3misc (>= 0.9.3), parallelly, palmerpenguins, paradox (>= 0.6.0), uuid

Suggests Matrix, callr, codetools, datasets, distr6, evaluate, future.callr, mlr3data, progressr, remotes, rpart, testthat (>= 3.1.0)

Encoding UTF-8

Config/testthat/edition 3

Config/testthat/parallel false

NeedsCompilation no

RoxygenNote 7.1.2

R topics documented:

mlr3-package ... 6
as_benchmark_result 8
as_data_backend.Matrix 8
as_learner .. 10
as_measure ... 10
as_prediction ... 11
as_prediction_classif 12
as_prediction_data .. 13
as_prediction_regr .. 14
as_resample_result .. 15
as_resampling .. 16
as_result_data ... 17
as_task ... 18
as_task_classif .. 19
as_task_regr ... 20
benchmark .. 22
BenchmarkResult ... 25
benchmark_grid .. 31
convert_task ... 32
DataBackend ... 33
DataBackendDataTable 35
DataBackendMatrix ... 37
default_measures .. 40
HotstartStack ... 41
install_pkgs ... 43
Learner ... 44
LearnerClassif ... 51
LearnerRegr .. 54
Measure ... 56
MeasureClassif ... 61
MeasureRegr ... 63
MeasureSimilarity ... 65
mlr_learners ... 68
mlr_learners_classif.debug 69
mlr_learners_classif.featureless 71
mlr_learners_classif.rpart 74
mlr_learners_regr.debug 76
mlr_learners_regr.featureless 78
mlr_learners_regr.rpart 80
mlr_measures .. 82
mlr_measures_aic .. 83
mlr_measures_bic .. 84
mlr_measures_classif.acc 86
mlr_measures_classif.auc 87
mlr_measures_classif.bacc 88
mlr_measures_classif.bbrier 89
mlr_measures_classif.ce ... 91
mlr_measures_classif.costs ... 92
mlr_measures_classif.dor .. 94
mlr_measures_classif.fbeta .. 95
mlr_measures_classif.fdr .. 97
mlr_measures_classif.fn ... 98
mlr_measures_classif.fnr .. 99
mlr_measures_classif.fomr .. 100
mlr_measures_classif.fp .. 102
mlr_measures_classif.fpr .. 103
mlr_measures_classif.logloss .. 104
mlr_measures_classif.mbrier .. 105
mlr_measures_classif.mcc ... 107
mlr_measures_classif.npv ... 108
mlr_measures_classif.ppv ... 109
mlr_measures_classif.prauc .. 111
mlr_measures_classif.precision .. 112
mlr_measures_classif.recall .. 113
mlr_measures_classif.sensitivity .. 114
mlr_measures_classif.specificity .. 116
mlr_measures_classif.tn .. 117
mlr_measures_classif.tnr ... 118
mlr_measures_classif.tp .. 120
mlr_measures_classif.tpr ... 121
mlr_measures_debug .. 122
mlr_measures_elapsed_time .. 124
mlr_measures_oob_error .. 126
mlr_measures_regr.bias .. 127
mlr_measures_regr.ktau .. 128
mlr_measures_regr.mae .. 129
mlr_measures_regr.mape .. 130
mlr_measures_regr.maxae .. 131
mlr_measures_regr.medae .. 132
mlr_measures_regr.medse .. 133
mlr_measures_regr.mse .. 134
mlr_measures_regr.msle .. 135
mlr_measures_regr.pbias ... 136
mlr_measures_regr.rae ... 137
mlr_measures_regr.rmse .. 139
mlr_measures_regr.rmsle ... 140
mlr_measures_regr.rse ... 142
mlr_measures_regr.rsq ... 143
mlr_measures_regr.sae ... 144
mlr_measures_regr.smape .. 145
mlr_measures_regr.srho ... 146
mlr_measures_regr.sse ... 147
mlr_measures_regr.spearman ... 148
mlr_measures_selected_features ... 148
R topics documented:

mlr_measures_sim.jaccard 150
mlr_measures_sim.phi 151
mlr_resamplings ... 152
mlr_resamplings_bootstrap 153
mlr_resamplings_custom 155
mlr_resamplings_custom_cv 156
mlr_resamplings_cv .. 158
mlr_resamplings_holdout 160
mlr_resamplings_insample 162
mlr_resamplings_loo 163
mlr_resamplings_repeated_cv 165
mlr_resamplings_subsampling 167
mlr_sugar ... 169
mlr_tasks .. 171
mlr_tasks_boston_housing 172
mlr_tasks_breast_cancer 173
mlr_tasks_german_credit 174
mlr_tasks_iris .. 176
mlr_tasks_mtcars ... 177
mlr_tasks_penguins 178
mlr_tasks_pima ... 180
mlr_tasks_sonar .. 181
mlr_tasks_spam ... 182
mlr_tasks_wine ... 183
mlr_tasks_zoo .. 185
mlr_task_generators 186
mlr_task_generators_2dnormals 187
mlr_task_generators_cassini 188
mlr_task_generators_circle 190
mlr_task_generators_friedman1 192
mlr_task_generators_moons 193
mlr_task_generators_simplex 195
mlr_task_generators_smiley 197
mlr_task_generators_spirals 198
mlr_task_generators_xor 200
partition .. 202
predict.Learner .. 203
Prediction .. 204
PredictionClassif .. 207
PredictionData ... 210
PredictionRegr .. 211
resample .. 212
ResampleResult ... 215
Resampling .. 219
set_threads .. 224
Task .. 225
TaskClassif .. 235
TaskGenerator ... 238
Description

Efficient, object-oriented programming on the building blocks of machine learning. Provides ‘R6’ objects for tasks, learners, resamplings, and measures. The package is geared towards scalability and larger datasets by supporting parallelization and out-of-memory data-backends like databases. While ‘mlr3’ focuses on the core computational operations, add-on packages provide additional functionality.

Learn mlr3

- Use cases and examples gallery: https://mlr3gallery.mlr-org.com
- Cheat Sheets: https://github.com/mlr-org/mlr3cheatsheets

mlr3 extensions

- Preprocessing and machine learning pipelines: mlr3pipelines
- Analysis of benchmark experiments: mlr3benchmark
- More classification and regression tasks: mlr3data
- Connector to OpenML: mlr3oml
- Solid selection of good classification and regression learners: mlr3learners
- Even more learners: https://github.com/mlr-org/mlr3extralearners
- Tuning of hyperparameters: mlr3tuning
- Hyperband tuner: mlr3hyperband
- Visualizations for many mlr3 objects: mlr3viz
- Survival analysis and probabilistic regression: mlr3proba
- Cluster analysis: mlr3cluster
- Feature selection filters: mlr3filters
- Feature selection wrappers: mlr3fselect
- Interface to real (out-of-memory) data bases: mlr3db
- Performance measures as plain functions: mlr3measures

Suggested packages

- Parallelization framework: future
- Progress bars: progressr
- Encapsulated evaluation: evaluate, callr (external process)
Package Options

- **"mlr3.debug"**: If set to TRUE, parallelization via future is disabled to simplify debugging and provide more concise tracebacks. Note that results computed with debug mode enabled use a different seeding mechanism and are not reproducible.

- **"mlr3.allow_utf8_names"**: If set to TRUE, checks on the feature names are relaxed, allowing non-ascii characters in column names. This is an experimental and temporal option to pave the way for text analysis, and will likely be removed in a future version of the package.

Author(s)

Maintainer: Michel Lang <michellang@gmail.com> (ORCID)

Authors:

- Bernd Bischl <bernd_bischl@gmx.net> (ORCID)
- Jakob Richter <jakob1richter@gmail.com> (ORCID)
- Patrick Schratz <patrick.schratz@gmail.com> (ORCID)
- Martin Binder <mlr.developer@mb706.com>

Other contributors:

- Giuseppe Casalicchio <giuseppe.casalicchio@stat.uni-muenchen.de> (ORCID) [contributor]
- Stefan Coors <mail@stefancoors.de> (ORCID) [contributor]
- Quay Au <quayau@gmail.com> (ORCID) [contributor]
- Marc Becker <marcbecker@posteo.de> (ORCID) [contributor]

References

See Also

Useful links:

- https://mlr3.mlr-org.com
- https://github.com/mlr-org/mlr3
as_benchmark_result Convert to BenchmarkResult

Description

Convert object to a BenchmarkResult.

Usage

as_benchmark_result(x, ...)

S3 method for class 'BenchmarkResult'
as_benchmark_result(x, ...)

S3 method for class 'ResampleResult'
as_benchmark_result(x, ...)

Arguments

x (any)
Object to convert.

... (any)
Additional arguments.

Value

(BenchmarkResult).

as_data_backend.Matrix Create a Data Backend

Description

Wraps a DataBackend around data. mlr3 ships with methods for data.frame (converted to a DataBackendDataTable and Matrix from package Matrix (converted to a DataBackendMatrix).

Additional methods are implemented in the package mlr3db, e.g. to connect to real DBMS like PostgreSQL (via dbplyr) or DuckDB (via DBI/duckdb).
Usage

```r
## S3 method for class 'Matrix'
as_data_backend(data, primary_key = NULL, dense = NULL, ...)
as_data_backend(data, primary_key = NULL, ...)

## S3 method for class 'data.frame'
as_data_backend(data, primary_key = NULL, keep_rownames = FALSE, ...)
```

Arguments

data (data.frame())
The input `data.frame()`. Converted to a `data.table::data.table()` automatically.

primary_key (character(1) | integer())
Name of the primary key column, or integer vector of row ids.

dense (data.frame()). Dense data.

... (any)
Additional arguments passed to the respective `DataBackend` method.

keep_rownames (logical(1) | character(1))
If TRUE or a single string, keeps the row names of `data` as a new column. The column is named like the provided string, defaulting to "..rownames" for `keep_rownames == TRUE`. Note that the created column will be used as a regular feature by the task unless you manually change the column role. Also see `data.table::as.data.table()`.

Value

DataBackend.

See Also

- Package mlr3db to interface out-of-memory data, e.g. SQL servers or duckdb.

Other DataBackend: DataBackendDataTable, DataBackendMatrix, DataBackend

Examples

```r
# create a new backend using the penguins data:
as_data_backend(palmerpenguins::penguins)
```
as_learner Convert to a Learner

Description

Convert object to a Learner or a list of Learner.

Usage

as_learner(x, ...)

S3 method for class 'Learner'
as_learner(x, clone = FALSE, ...)

as_learners(x, clone = FALSE, ...)

S3 method for class 'list'
as_learners(x, clone = FALSE, ...)

S3 method for class 'Learner'
as_learners(x, clone = FALSE, ...)

Arguments

x (any)
Object to convert.

... (any)
Additional arguments.

clone (logical(1))
If TRUE, ensures that the returned object is not the same as the input x.

Value

Learner.

as_measure Convert to a Measure

Description

Convert object to a Measure or a list of Measure.
Usage

```r
as_measure(x, ...)  
```

```r  
## S3 method for class 'NULL'
as_measure(x, task_type = NULL, clone = FALSE, ...)
```

```r  
## S3 method for class 'Measure'
as_measure(x, clone = FALSE, ...)
```

```r
as_measures(x,...)
```

```r  
## S3 method for class 'NULL'
as_measures(x, task_type = NULL, clone = FALSE, ...)
```

```r  
## S3 method for class 'list'
as_measures(x, clone = FALSE, ...)
```

```r  
## S3 method for class 'Measure'
as_measures(x, clone = FALSE, ...)
```

Arguments

- **x** *(any)*
 Object to convert.

- **...** *(any)*
 Additional arguments.

- **task_type** *(character(1))*
 Used if `x` is `NULL` to construct a default measure for the respective task type. The default measures are stored in `mlr_reflections$default_measures`.

- **clone** *(logical(1))*
 If `TRUE`, ensures that the returned object is not the same as the input `x`.

Value

- **Measure**.

Description

Convert object to a `Prediction` or a list of `Prediction`.

Usage

as_prediction(x, check = TRUE, ...)

S3 method for class 'Prediction'
as_prediction(x, check = TRUE, ...)

S3 method for class 'PredictionDataClassif'
as_prediction(x, check = TRUE, ...)

S3 method for class 'PredictionDataRegr'
as_prediction(x, check = TRUE, ...)

as_predictions(x, predict_sets = "test", ...)

S3 method for class 'list'
as_predictions(x, predict_sets = "test", ...)

Arguments

x (any)
Object to convert.

check (logical(1))
Perform argument checks and type conversions?

... (any)
Additional arguments.

predict_sets (character())
Prediction sets to operate on, used in aggregate() to extract the matching predict_sets from the ResampleResult. Multiple predict sets are calculated by the respective Learner during resample() / benchmark(). Must be a non-empty subset of \{"train", "test", "validation"\}. If multiple sets are provided, these are first combined to a single prediction object. Default is "test".

Value

Prediction.

as_prediction_classif *Convert to a Classification Prediction*

Description

Convert object to a PredictionClassif.
Usage

```r
as_prediction_classif(x, ...)
```

S3 method for class 'PredictionClassif'
```r
as_prediction_classif(x, ...)
```

S3 method for class 'data.frame'
```r
as_prediction_classif(x, ...)
```

Arguments

- **x** (any)
 - Object to convert.
- **...** (any)
 - Additional arguments.

Value

- `PredictionClassif`

Examples

```r
# create a prediction object
task = tsk("penguins")
learner = lrn("classif.rpart", predict_type = "prob")
learner$train(task)
p = learner$predict(task)

# convert to a data.table
tab = as.data.table(p)

# convert back to a Prediction
as_prediction_classif(tab)

# split data.table into a list of data.tables
tabs = split(tab, tab$truth)

# convert back to list of predictions
preds = lapply(tabs, as_prediction_classif)

# calculate performance in each group
sapply(preds, function(p) p$score())
```

Description

Convert object to a `PredictionData` or a list of `PredictionData`.
Usage

as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...)

S3 method for class 'Prediction'
as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...)

S3 method for class 'PredictionData'
as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...)

S3 method for class 'list'
as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...)

Arguments

x (any) Object to convert.
task (Task).
row_ids integer() Row indices.
check (logical(1)) Perform argument checks and type conversions?
... (any) Additional arguments.

Value

PredictionData.

as_prediction_regr Convert to a Regression Prediction

Description

Convert object to a PredictionRegr.

Usage

as_prediction_regr(x, ...)

S3 method for class 'PredictionRegr'
as_prediction_regr(x, ...)

S3 method for class 'data.frame'
as_prediction_regr(x, ...)

as_prediction_regr
as_resample_result

Convert to ResampleResult

Description

Convert object to a `ResampleResult`.

Usage

```r
as_resample_result(x, ...)
```

```r
## S3 method for class 'ResampleResult'
as_resample_result(x, ...)
```
as_resampling

Convert to a Resampling

Description

Convert object to a `Resampling` or a list of `Resampling`.

Usage

```r
as_resampling(x, ...)  
## S3 method for class 'Resampling'
as_resampling(x, clone = FALSE, ...)  
as_resamplings(x, ...)  
## S3 method for class 'list'
as_resamplings(x, clone = FALSE, ...)  
## S3 method for class 'Resampling'
as_resamplings(x, clone = FALSE, ...)  
```

Arguments

- `x` (any)

 Object to convert.

- `...` (any)

 Currently not used.

- `clone` (logical(1))

 If TRUE, ensures that the returned object is not the same as the input `x`.

as_result_data

Convert to ResultData

Description

This function allows to construct or convert to a ResultData object, the result container used by ResampleResult and BenchmarkResult. A ResampleResult or BenchmarkResult can be initialized with the returned object. Note that ResampleResults can be converted to a BenchmarkResult with as_benchmark_result() and multiple BenchmarkResults can be combined to a larger BenchmarkResult with the $combine() method of BenchmarkResult.

Usage

as_result_data(
 task,
 learners,
 resampling,
 iterations,
 predictions,
 learner_states = NULL,
 store_backends = TRUE
)

Arguments

- task: (Task).
- learners: (list of trained Learners).
- resampling: (Resampling).
- iterations: (integer()).
- predictions: (list of Predictions).
- learner_states: (list())
 Learner states. If not provided, the states of learners are automatically extracted.
- store_backends: (logical(1))
 If set to FALSE, the backends of the Tasks provided in data are removed.

Value

ResultData object which can be passed to the constructor of ResampleResult.

Examples

task = tsk("penguins")
learner = lrn("classif.rpart")
resampling = rsmp("cv", folds = 2)$instantiate(task)
iterations = seq_len(resampling$iters)
manually train two learners.
store learners and predictions
learners = list()
predictions = list()
for (i in iterations) {
 l = learner.Clone(deep = TRUE)
 learners[[i]] = l$train(task, row_ids = resampling$train_set(i))
 predictions[[i]] = l$predict(task, row_ids = resampling$test_set(i))
}

rdata = as_result_data(task, learners, resampling, iterations, predictions)
ResampleResult$new(rdata)

as_task

Convert to a Task

Description

Convert object to a Task or a list of Task.

Usage

as_task(x, ...)

S3 method for class 'Task'
as_task(x, clone = FALSE, ...)

as_tasks(x, ...)

S3 method for class 'list'
as_tasks(x, clone = FALSE, ...)

S3 method for class 'Task'
as_tasks(x, clone = FALSE, ...)

Arguments

x (any)
Object to convert.

... (any)
Additional arguments.

clone (logical(1))
If TRUE, ensures that the returned object is not the same as the input x.
as_task_classif Convert to a Classification Task

Description

Convert object to a TaskClassif. This is a S3 generic, specialized for at least the following objects:

1. TaskClassif: ensure the identity
2. data.frame() and DataBackend: provides an alternative to the constructor of TaskClassif.
3. TaskRegr: Calls convert_task().

Usage

as_task_classif(x, ...)

S3 method for class 'TaskClassif'
as_task_classif(x, clone = FALSE, ...)

S3 method for class 'data.frame'
as_task_classif(
 x,
 target = NULL,
 id = deparse(substitute(x)),
 positive = NULL,
 ...
)

S3 method for class 'DataBackend'
as_task_classif(
 x,
 target = NULL,
 id = deparse(substitute(x)),
 positive = NULL,
 ...
)

S3 method for class 'TaskRegr'
as_task_classif(
 x,
 target = NULL,
 drop_original_target = FALSE,
 drop_levels = TRUE,
 ...
)
as_task_regr

Arguments

\(x \) (any)
Object to convert.

\(\ldots \) (any)
Additional arguments.

\(\text{clone} \) (logical(1))
If TRUE, ensures that the returned object is not the same as the input \(x \).

\(\text{target} \) (character(1))
Name of the target column.

\(\text{id} \) (character(1))
Id for the new task. Defaults to the (deparsed and substituted) name of \(x \).

\(\text{positive} \) (character(1))
Level of the positive class. See \text{TaskClassif}.

\(\text{drop_original_target} \) (logical(1))
If FALSE (default), the original target is added as a feature. Otherwise the original target is dropped.

\(\text{drop_levels} \) (logical(1))
If TRUE (default), unused levels of the new target variable are dropped.

Value

\text{TaskClassif}.

Examples

\[
\text{as_task_classif(palmerpenguins::penguins, target = "species")}
\]

\[
\text{as_task_regr} \quad \text{Convert to a Regression Task}
\]

Description

Convert object to a \text{TaskRegr}. This is a S3 generic, specialized for at least the following objects:

1. \text{TaskRegr}: ensure the identity

2. \text{data.frame}() and \text{DataBackend}: provides an alternative to the constructor of \text{TaskRegr}.

3. \text{TaskClassif}: Calls \text{convert_task}().
Usage

as_task_regr(x, ...)

S3 method for class 'TaskRegr'
as_task_regr(x, clone = FALSE, ...)

S3 method for class 'data.frame'
as_task_regr(x, target, id = deparse(substitute(x)), ...)

S3 method for class 'DataBackend'
as_task_regr(x, target, id = deparse(substitute(x)), ...)

S3 method for class 'TaskClassif'
as_task_regr(x, target = NULL, drop_original_target = FALSE, drop_levels = TRUE, ...)

Arguments

x (any)
Object to convert.

... (any)
Additional arguments.

clonelogical(1))
If TRUE, ensures that the returned object is not the same as the input x.

target (character(1))
Name of the target column.

id (character(1))
Id for the new task. Defaults to the (deparsed and substituted) name of x.

drop_original_target (logical(1))
If FALSE (default), the original target is added as a feature. Otherwise the original target is dropped.

drop_levels (logical(1))
If TRUE (default), unused levels of the new target variable are dropped.

Value

TaskRegr.

Examples

as_task_regr(datasets::mtcars, target = "mpg")
benchmark

Benchmark Multiple Learners on Multiple Tasks

Description

Runs a benchmark on arbitrary combinations of tasks (Task), learners (Learner), and resampling strategies (Resampling), possibly in parallel.

Usage

```r
benchmark(
  design,
  store_models = FALSE,
  store_backends = TRUE,
  encapsulate = NA_character_,
  allow_hotstart = FALSE
)
```

Arguments

- `design` *(data.frame())*
 Data frame (or `data.table::data.table()`) with three columns: "task", "learner", and "resampling". Each row defines a resampling by providing a Task, Learner and an instantiated Resampling strategy. The helper function `benchmark_grid()` can assist in generating an exhaustive design (see examples) and instantiate the Resamplings per Task.

- `store_models` *(logical(1))*
 Store the fitted model in the resulting object. Set to TRUE if you want to further analyse the models or want to extract information like variable importance.

- `store_backends` *(logical(1))*
 Keep the DataBackend of the Task in the ResampleResult? Set to TRUE if your performance measures require a Task, or to analyse results more conveniently. Set to FALSE to reduce the file size and memory footprint after serialization. The current default is TRUE, but this eventually will be changed in a future release.

- `encapsulate` *(character(1))*
 If not NA, enables encapsulation by setting the field Learner$encapsulate to one of the supported values: "none" (disable encapsulation), "evaluate" (execute via `evaluate`) and "callr" (start in external session via `callr`). If NA, encapsulation is not changed, i.e. the settings of the individual learner are active. Additionally, if encapsulation is set to "evaluate" or "callr", the fallback learner is set to the featureless learner if the learner does not already have a fallback configured.

- `allow_hotstart` *(logical(1))*
 Determines if learner(s) are hot started with trained models in $hotstart_stack. See also HotstartStack.
Value

BenchmarkResult.

Parallelization

This function can be parallelized with the future package. One job is one resampling iteration, and all jobs are send to an apply function from future::apply in a single batch. To select a parallel backend, use future::plan().

Progress Bars

This function supports progress bars via the package progressr. Simply wrap the function call in progressr::with_progress() to enable them. Alternatively, call progressr::handlers() with global = TRUE to enable progress bars globally. We recommend the progress package as backend which can be enabled with progressr::handlers("progress").

Logging

The mlr3 uses the lgr package for logging. lgr supports multiple log levels which can be queried with getOption("lgr.log_levels").

To suppress output and reduce verbosity, you can lower the log from the default level "info" to "warn":

lgr::get_logger("mlr3")$set_threshold("warn")

To get additional log output for debugging, increase the log level to "debug" or "trace":

lgr::get_logger("mlr3")$set_threshold("debug")

To log to a file or a data base, see the documentation of lgr::lgr-package.

Note

The fitted models are discarded after the predictions have been scored in order to reduce memory consumption. If you need access to the models for later analysis, set store_models to TRUE.

See Also

• Package mlr3viz for some generic visualizations.
• mlr3benchmark for post-hoc analysis of benchmark results.

Other benchmark: BenchmarkResult, benchmark_grid()
Examples

```r
# benchmarking with benchmark_grid()
tasks = lapply(c("penguins", "sonar"), tsk)
learners = lapply(c("classif.featureless", "classif.rpart"), lrn)
resamplings = rsmp("cv", folds = 3)

design = benchmark_grid(tasks, learners, resamplings)
print(design)

set.seed(123)
bmr = benchmark(design)

## Data of all resamplings
head(as.data.table(bmr))

## Aggregated performance values
aggr = bmr$aggregate()
print(aggr)

## Extract predictions of first resampling result
rr = aggr$resample_result[[1]]
as.data.table(rr$prediction())

## Benchmarking with a custom design:
## - fit classif.featureless on penguins with a 3-fold CV
## - fit classif.rpart on sonar using a holdout

tasks = list(tsk("penguins"), tsk("sonar"))
learners = list(lrn("classif.featureless"), lrn("classif.rpart"))
resamplings = list(rsmp("cv", folds = 3), rsmp("holdout"))

design = data.table(task = tasks,
                    learner = learners,
                    resampling = resamplings)

## Instantiate resamplings
design$resampling = Map(
  function(task, resampling) resampling$clone()$instantiate(task),
  task = design$task, resampling = design$resampling)

## Run benchmark
bmr = benchmark(design)
print(bmr)

## Get the training set of the 2nd iteration of the featureless learner on penguins
rr = bmr$aggregate()[learner_id == "classif.featureless"]$resample_result[[1]]
rr$resampling$train_set(2)
```
BenchmarkResult

Container for Benchmarking Results

Description

This is the result container object returned by `benchmark()`. A `BenchmarkResult` consists of the data row-bound data of multiple `ResampleResults`, which can easily be re-constructed.

`BenchmarkResults` can be visualized via `mlr3viz`'s `autoplot()` function.

For statistical analysis of benchmark results and more advanced plots, see `mlr3benchmark`.

S3 Methods

- `as.data.table(rr,...,reassemble_learners = TRUE,convert_predictions = TRUE,predict_sets = "test")`
 `BenchmarkResult` -> `data.table::data.table()`
 Returns a tabular view of the internal data.

- `c(...)`
 `(BenchmarkResult, ...) -> BenchmarkResult`
 Combines multiple objects convertible to `BenchmarkResult` into a new `BenchmarkResult`.

Active bindings

- `data (ResultData)`
 Internal data storage object of type `ResultData`. This field is deprecated and will be removed in the next release. Use `as.table.table(BenchmarkResult)` instead.

- `task_type (character(1))`
 Task type of objects in the `BenchmarkResult`. All stored objects (`Task`, `Learner`, `Prediction`) in a single `BenchmarkResult` are required to have the same task type, e.g., "classif" or "regr". This is NA for empty `BenchmarkResults`.

- `tasks (data.table::data.table())`
 Table of included `Tasks` with three columns:
 - "task_hash" (character(1)),
 - "task_id" (character(1)), and
 - "task" (Task).

- `learners (data.table::data.table())`
 Table of included `Learners` with three columns:
 - "learner_hash" (character(1)),
 - "learner_id" (character(1)), and
 - "learner" (Learner).

 Note that it is not feasible to access learned models via this field, as the training task would be ambiguous. For this reason the returned learner are reset before they are returned. Instead, select a row from the table returned by `$score()`.

- `resamplings (data.table::data.table())`
 Table of included `Resamplings` with three columns:
BenchmarkResult

- "resampling_hash" (character(1)),
- "resampling_id" (character(1)), and
- "resampling" (Resampling).

resample_results (data.table::data.table())
Returns a table with three columns:
- uhash (character()).
- resample_result (ResampleResult).

n_resample_results (integer(1))
Returns the total number of stored ResampleResults.

uhashes (character())
Set of (unique) hashes of all included ResampleResults.

Methods

Public methods:
- BenchmarkResult$new()
- BenchmarkResult$help()
- BenchmarkResult$format()
- BenchmarkResult$print()
- BenchmarkResult$combine()
- BenchmarkResult$score()
- BenchmarkResult$aggregate()
- BenchmarkResult$filter()
- BenchmarkResult$resample_result()
- BenchmarkResult$discard()
- BenchmarkResult$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
BenchmarkResult$new(data = NULL)

Arguments:
data (ResultData)
An object of type ResultData, either extracted from another ResampleResult, another BenchmarkResult, or manually constructed with as_result_data().

Method help(): Opens the help page for this object.

Usage:
BenchmarkResult$help()

Method format(): Helper for print outputs.

Usage:
BenchmarkResult$format()

Method print(): Printer.
BenchmarkResult

Usage:
BenchmarkResult$print()

Method combine(): Fuses a second BenchmarkResult into itself, mutating the BenchmarkResult in-place. If the second BenchmarkResult bmr is NULL, simply returns self. Note that you can alternatively use the combine function `c()` which calls this method internally.

Usage:
BenchmarkResult$combine(bmr)

Arguments:

bmr (BenchmarkResult)
A second BenchmarkResult object.

Returns: Returns the object itself, but modified by reference. You need to explicitly $clone() the object beforehand if you want to keep the object in its previous state.

Method score(): Returns a table with one row for each resampling iteration, including all involved objects: Task, Learner, Resampling, iteration number (integer(1)), and Prediction. If ids is set to TRUE, character column of extracted ids are added to the table for convenient filtering: "task_id", "learner_id", and "resampling_id".

Additionally calculates the provided performance measures and binds the performance scores as extra columns. These columns are named using the id of the respective Measure.

Usage:
BenchmarkResult$score(
 measures = NULL,
 ids = TRUE,
 conditions = FALSE,
 predict_sets = "test"
)

Arguments:

measures (Measure | list of Measure)
 Measure(s) to calculate.

ids (logical(1))
 Adds object ids ("task_id", "learner_id", "resampling_id") as extra character columns to the returned table.

conditions (logical(1))
 Adds condition messages ("warnings", "errors") as extra list columns of character vectors to the returned table.

predict_sets (character())
 Prediction sets to operate on, used in aggregate() to extract the matching predict_sets from the ResampleResult. Multiple predict sets are calculated by the respective Learner during resample()/benchmark(). Must be a non-empty subset of {"train", "test", "validation"}. If multiple sets are provided, these are first combined to a single prediction object. Default is "test".

Returns: data.table::data.table().
Method aggregate(): Returns a result table where resampling iterations are combined into ResampleResult. A column with the aggregated performance score is added for each Measure, named with the id of the respective measure.

Note that the aggregated performances just give a quick impression which approaches work well and which approaches are probably underperforming. However, the aggregates do not account for variance and cannot replace a statistical test. See mlr3viz to get a better impression via boxplots or mlr3benchmark for critical difference plots and significance tests.

For convenience, different flags can be set to extract more information from the returned ResampleResult.

Usage:
```r
BenchmarkResult$aggregate(
  measures = NULL,
  ids = TRUE,
  uhashes = FALSE,
  params = FALSE,
  conditions = FALSE
)
```

Arguments:
- `measures` (Measure | list of Measure): Measure(s) to calculate.
- `ids` (logical(1)): Adds object ids ("task_id", "learner_id", "resampling_id") as extra character columns for convenient subsetting.
- `uhashes` (logical(1)): Adds the uhash values of the ResampleResult as extra character column "uhash".
- `params` (logical(1)): Adds the hyperparameter values as extra list column "params". You can unnest them with `mlr3misc::unnest()`.
- `conditions` (logical(1)): Adds the number of resampling iterations with at least one warning as extra integer column "warnings", and the number of resampling iterations with errors as extra integer column "errors".

Returns: data.table::data.table().

Method filter(): Subsets the benchmark result. If task_ids is not NULL, keeps all tasks with provided task ids and discards all others tasks. Same procedure for learner_ids and resampling_ids.

Usage:
```r
BenchmarkResult$filter(
  task_ids = NULL,
  task_hashes = NULL,
  learner_ids = NULL,
  learner_hashes = NULL,
  resampling_ids = NULL,
  resampling_hashes = NULL
)
```
Arguments:
- task_ids (character()): Ids of Tasks to keep.
- task_hashes (character()): Hashes of Tasks to keep.
- learner_ids (character()): Ids of Learners to keep.
- learner_hashes (character()): Hashes of Learners to keep.
- resampling_ids (character()): Ids of Resamplings to keep.
- resampling_hashes (character()): Hashes of Resamplings to keep.

Returns: Returns the object itself, but modified by reference. You need to explicitly $clone()$ the object beforehand if you want to keep it in its previous state.

Method `resample_result()`: Retrieve the i-th ResampleResult, by position or by unique hash `uhash`. i and `uhash` are mutually exclusive.

Usage:
BenchmarkResult$resample_result(i = NULL, uhash = NULL)

Arguments:
- i (integer(1)): The iteration value to filter for.
- uhash (logical(1)): The `uhash` value to filter for.

Returns: ResampleResult.

Method `discard()`: Shrinks the BenchmarkResult by discarding parts of the internally stored data. Note that certain operations might stop working, e.g., extracting importance values from learners or calculating measures requiring the task's data.

Usage:
BenchmarkResult$discard(backends = FALSE, models = FALSE)

Arguments:
- backends (logical(1)): If TRUE, the DataBackend is removed from all stored Tasks.
- models (logical(1)): If TRUE, the stored model is removed from all Learners.

Returns: Returns the object itself, but modified by reference. You need to explicitly $clone()$ the object beforehand if you want to keep it in its previous state.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
BenchmarkResult$clone(deep = FALSE)

Arguments:
- deep Whether to make a deep clone.
Note

All stored objects are accessed by reference. Do not modify any extracted object without cloning it first.

See Also

- Package mlr3viz for some generic visualizations.
- mlr3benchmark for post-hoc analysis of benchmark results.

Other benchmark: benchmark_grid(), benchmark()

Examples

```r
set.seed(123)
learners = list(
  lrn("classif.featureless", predict_type = "prob"),
  lrn("classif.rpart", predict_type = "prob")
)
design = benchmark_grid(
  tasks = list(tsk("sonar"), tsk("spam")),
  learners = learners,
  resamplings = rsmpl("cv", folds = 3)
)
print(design)

bmr = benchmark(design)
print(bmr)

bmr$tasks
bmr$learners

# first 5 resampling iterations
head(as.data.table(bmr, measures = c("classif.acc", "classif.auc")), 5)

# aggregate results
bmr$aggregate()

# aggregate results with hyperparameters as separate columns
mlr3misc::unnest(bmr$aggregate(params = TRUE), "params")

# extract resample result for classif.rpart
rr = bmr$aggregate()[learner_id == "classif.rpart", resample_result][[1]]
print(rr)

# access the confusion matrix of the first resampling iteration
rr$predictions()[[1]]$confusion

# reduce to subset with task id "sonar"
bmr$filter(task_ids = "sonar")
print(bmr)
```
benchmark_grid
Generate a Benchmark Grid Design

Description

Takes a lists of **Task**, a list of **Learner** and a list of **Resampling** to generate a design in an `expand.grid()` fashion (a.k.a. cross join or Cartesian product).

Resampling strategies are not allowed to be instantiated when passing the argument, and instead will be instantiated per task internally. The only exception to this rule applies if all tasks have exactly the same number of rows, and the resamplings are all instantiated for such tasks.

Usage

```
benchmark_grid(tasks, learners, resamplings)
```

Arguments

- `tasks` (list of **Task**).
- `learners` (list of **Learner**).
- `resamplings` (list of **Resampling**).

Value

A `data.table::data.table()` with the cross product of the input vectors.

See Also

- Package **mlr3viz** for some generic visualizations.
- **mlr3benchmark** for post-hoc analysis of benchmark results.

Other benchmark: **BenchmarkResult**, **benchmark()**

Examples

```
tasks = list(tsk("penguins"), tsk("sonar"))
learners = list(lrn("classif.featureless"), lrn("classif.rpart"))
resamplings = list(rsmp("cv"), rsmp("subsampling"))

grid = benchmark_grid(tasks, learners, resamplings)
print(grid)
## Not run:
benchmark(grid)
## End(Not run)

# manual construction of the grid with data.table::CJ()
grid = data.table::CJ(task = tasks, learner = learners,
```
resampling = resamplings, sorted = FALSE)

manual instantiation (not suited for a fair comparison of learners!)
Map(function(task, resampling) {
 resampling$instantiate(task)
}, task = grid$task, resampling = grid$resampling)
Not run:
benchmark(grid)
End(Not run)

convert_task
Convert a Task from One Type to Another

Description
The task’s target is replaced by a different column from the data.

Usage
```r
convert_task(
    intask,  
    target = NULL,  
    new_type = NULL,  
    drop_original_target = FALSE,  
    drop_levels = TRUE
)
```

Arguments
- **intask** *(Task)*
 A Task to be converted.
- **target** *(character(1))*
 New target to be set, must be a column in the intask data. If NULL, no new target is set, and task is converted as-is.
- **new_type** *(character(1))*
 The new task type. Must be in `mlr_reflections$task_types`. If NULL (default), a new task with the same task_type is created.
- **drop_original_target** *(logical(1))*
 If FALSE (default), the original target is added as a feature. Otherwise the original target is dropped.
- **drop_levels** *(logical(1))*
 If TRUE (default), unused levels of the new target variable are dropped.

Value
Task of requested type.
DataBackend

Description

This is the abstract base class for data backends. Data backends provide a layer of abstraction for various data storage systems. It is not recommended to work directly with the DataBackend. Instead, all data access is handled transparently via the Task.

This package comes with two implementations for backends:

- `DataBackendDataTable` which stores the data as `data.table::data.table()`.
- `DataBackendMatrix` which stores the data as sparse `Matrix::sparseMatrix()`.

To connect to out-of-memory database management systems such as SQL servers, see the extension package `mlr3db`.

The required set of fields and methods to implement a custom DataBackend is listed in the respective sections (see `DataBackendDataTable` or `DataBackendMatrix` for exemplary implementations of the interface).

Public fields

- `primary_key` (character(1))
 Column name of the primary key column of unique integer row ids.

- `data_formats` (character())
 Set of supported formats, e.g. "data.table" or "Matrix".

Active bindings

- `hash` (character(1))
 Hash (unique identifier) for this object.

- `col_hashes` (named character)
 Hash (unique identifier) for all columns except the primary_key: A character vector, named by the columns that each element refers to.
 Columns of different Tasks or DataBackends that have agreeing col_hashes always represent the same data, given that the same rows are selected. The reverse is not necessarily true: There can be columns with the same content that have different col_hashes.

Methods

Public methods:

- `DataBackend$new()`
- `DataBackend$format()`
- `DataBackend$print()`
Method `new()`: Creates a new instance of this R6 class.

Note: This object is typically constructed via a derived classes, e.g. `DataBackendDataTable` or `DataBackendMatrix`, or via the S3 method `as_data_backend()`.

Usage:

```r
dataBackend$new(data, primary_key, data_formats = "data.table")
```

Arguments:

data (any)
The format of the input data depends on the specialization. E.g., `DataBackendDataTable` expects a `data.table::data.table()` and `DataBackendMatrix` expects a `Matrix::Matrix()` from `Matrix`.

primary_key (character(1))
Each DataBackend needs a way to address rows, which is done via a column of unique integer values, referenced here by `primary_key`. The use of this variable may differ between backends.

data_formats (character())
Set of supported data formats which can be processed during `$train()` and `$predict()`, e.g. "data.table".

Method `format()`: Helper for print outputs.

Usage:

```r
dataBackend$format()
```

Method `print()`: Printer.

Usage:

```r
dataBackend$print()
```

See Also

- Package `mlr3db` to interface out-of-memory data, e.g. SQL servers or `duckdb`.

Other DataBackend: `DataBackendDataTable, DataBackendMatrix, as_data_backend.Matrix()`

Examples

```r
data = data.table::data.table(id = 1:5, x = runif(5),
                              y = sample(letters[1:3], 5, replace = TRUE))

b = DataBackendDataTable$new(data, primary_key = "id")
print(b)
b$head(2)
b$data(rows = 1:2, cols = "x")
b$distinct(rows = b$rownames, "y")
b$missings(rows = b$rownames, cols = names(data))
```
DataBackendDataTable

Description

DataBackend for data.table which serves as an efficient in-memory data base.

Super class

mlr3::DataBackend -> DataBackendDataTable

Public fields

compact_seq logical(1)
If TRUE, row ids are a natural sequence from 1 to nrow(data) (determined internally). In this case, row lookup uses faster positional indices instead of equi joins.

Active bindings

rownames (integer())
Returns vector of all distinct row identifiers, i.e. the contents of the primary key column.

colnames (character())
Returns vector of all column names, including the primary key column.

nrow (integer(1))
Number of rows (observations).

ncol (integer(1))
Number of columns (variables), including the primary key column.

Methods

Public methods:

• DataBackendDataTable$new()
• DataBackendDataTable$data()
• DataBackendDataTable$head()
• DataBackendDataTable$distinct()
• DataBackendDataTable$missings()

Method new(): Creates a new instance of this R6 class.
Note that DataBackendDataTable does not copy the input data, while as_data_backend() calls data.table::copy(). as_data_backend() also takes care about casting to a data.table() and adds a primary key column if necessary.

Usage:

DataBackendDataTable$new(data, primary_key)

Arguments:
data (data.table::data.table())

 The input data.table().

primary_key (character(1)|integer())

 Name of the primary key column, or integer vector of row ids.

Method data(): Returns a slice of the data in the specified format. Currently, the only supported formats are "data.table" and "Matrix". The rows must be addressed as vector of primary key values, columns must be referred to via column names. Queries for rows with no matching row id and queries for columns with no matching column name are silently ignored. Rows are guaranteed to be returned in the same order as rows, columns may be returned in an arbitrary order. Duplicated row ids result in duplicated rows, duplicated column names lead to an exception.

Usage:
DataBackendDataTable$data(rows, cols, data_format = "data.table")

Arguments:
rows integer()
 Row indices.
cols character()
 Column names.
data_format (character(1))
 Desired data format, e.g. "data.table" or "Matrix".

Method head(): Retrieve the first n rows.

Usage:
DataBackendDataTable$head(n = 6L)

Arguments:
n (integer(1))
 Number of rows.

Returns: data.table::data.table() of the first n rows.

Method distinct(): Returns a named list of vectors of distinct values for each column specified. If na.rm is TRUE, missing values are removed from the returned vectors of distinct values. Non-existing rows and columns are silently ignored.

Usage:
DataBackendDataTable$distinct(rows, cols, na_rm = TRUE)

Arguments:
rows integer()
 Row indices.
cols character()
 Column names.
na_rm logical(1)
 Whether to remove NAs or not.

Returns: Named list() of distinct values.

Method missings(): Returns the number of missing values per column in the specified slice of data. Non-existing rows and columns are silently ignored.
Usage:
DataBackendDataTable$missings(rows, cols)

Arguments:
rows integer()
 Row indices.
cols character()
 Column names.

Returns: Total of missing values per column (named numeric()).

See Also
- Chapter in the mlrbook: https://mlr3book.mlr-org.com/technical.html#backends
- Package mlr3db to interface out-of-memory data, e.g. SQL servers or duckdb.

Other DataBackend: DataBackendMatrix, DataBackend, as_data_backend.Matrix()

Examples

data = as.data.table(palmerpenguins::penguins)
data$id = seq_len(nrow(palmerpenguins::penguins))
b = DataBackendDataTable$new(data = data, primary_key = "id")
print(b)
b$head()
b$data(rows = 100:101, cols = "species")

b$nrow
head(b$rownames)

b$ncol
b$colnames

alternative construction
as_data_backend(palmerpenguins::penguins)

DataBackendMatrix DataBackend for Matrix

Description

DataBackend for Matrix. Data is split into a (numerical) sparse part and an optional dense part. These parts are automatically merged to a sparse format during $data(). Note that merging both parts potentially comes with a data loss, as all dense columns are converted to numeric columns.

Super class

mlr3::DataBackend -> DataBackendMatrix
Active bindings

- rownames (integer())
 Returns vector of all distinct row identifiers, i.e. the contents of the primary key column.

- colnames (character())
 Returns vector of all column names, including the primary key column.

- nrow (integer(1))
 Number of rows (observations).

- ncol (integer(1))
 Number of columns (variables), including the primary key column.

Methods

Public methods:

- DataBackendMatrix$new()
- DataBackendMatrix$data()
- DataBackendMatrix$head()
- DataBackendMatrix$distinct()
- DataBackendMatrix$missings()

Method new(): Creates a new instance of this R6 class.

Usage:
DataBackendMatrix$new(data, dense = NULL, primary_key = NULL)

Arguments:
- data Matrix::Matrix()
 The input Matrix::Matrix.
- dense data.frame(). Dense data, converted to data.table::data.table().
- primary_key (character(1)|integer())
 Name of the primary key column, or integer vector of row ids.

Method data(): Returns a slice of the data in the specified format. Currently, the only supported formats are "data.table" and "Matrix". The rows must be addressed as vector of primary key values, columns must be referred to via column names. Queries for rows with no matching row id and queries for columns with no matching column name are silently ignored. Rows are guaranteed to be returned in the same order as rows, columns may be returned in an arbitrary order. Duplicated row ids result in duplicated rows, duplicated column names lead to an exception.

Usage:
DataBackendMatrix$data(rows, cols, data_format = "data.table")

Arguments:
- rows integer()
 Row indices.
- cols character()
 Column names.
- data_format (character(1))
 Desired data format, e.g. "data.table" or "Matrix".
Method head(): Retrieve the first n rows.

Usage:

```r
DataBackendMatrix$head(n = 6L)
```

Arguments:

- `n` (integer(1))
 - Number of rows.

Returns: `data.table::data.table()` of the first n rows.

Method distinct(): Returns a named list of vectors of distinct values for each column specified. If `na_rm` is TRUE, missing values are removed from the returned vectors of distinct values. Non-existing rows and columns are silently ignored.

Usage:

```r
DataBackendMatrix$distinct(rows, cols, na_rm = TRUE)
```

Arguments:

- `rows` integer()
 - Row indices.
- `cols` character()
 - Column names.
- `na_rm` logical(1)
 - Whether to remove NAs or not.

Returns: Named list() of distinct values.

Method missings(): Returns the number of missing values per column in the specified slice of data. Non-existing rows and columns are silently ignored.

Usage:

```r
DataBackendMatrix$missings(rows, cols)
```

Arguments:

- `rows` integer()
 - Row indices.
- `cols` character()
 - Column names.

Returns: Total of missing values per column (named numeric()).

See Also

- Package [mlr3db](https://mlr3db.mlr-org.com) to interface out-of-memory data, e.g. SQL servers or [duckdb](https://duckdb.org).

Other DataBackend: DataBackendDataTable, DataBackend, as_data_backend.Matrix()
Examples

```r
requireNamespace("Matrix")
data = Matrix::Matrix(sample(0:1, 20, replace = TRUE), ncol = 2)
colnames(data) = c("x1", "x2")
dense = data.frame(
  ..row_id = 1:10,
  num = runif(10),
  fact = factor(sample(c("a", "b"), 10, replace = TRUE), levels = c("a", "b"))
)

b = as_data_backend(data, dense = dense, primary_key = ".row_id")
b$head()
b$data(1:3, b$colnames, data_format = "Matrix")
b$data(1:3, b$colnames, data_format = "data.table")
```

default_measures

Get the Default Measure

Description

Gets the default measures using the information in `mlr_reflections$default_measures`:

- "classif.ce" for classification ("classif").
- "regr.mse" for regression ("regr").
- Add-on package may register additional default measures for their own task types.

Usage

```r
default_measures(task_type)
```

Arguments

- `task_type` (character(1))
 Get the default measure for the task type `task_type`, e.g., "classif" or "regr".
 If `task_type` is `NULL`, an empty list is returned.

Value

`list of Measure`.

Examples

```r
default_measures("classif")
default_measures("regr")
```
HotstartStack

Stack for Hot Start Learners

Description

This class stores learners for hot starting training, i.e. resuming or continuing from an already fitted model. We assume that hot starting is only possible if a single hyperparameter (also called the fidelity parameter, usually controlling the complexity or expensiveness) is altered and all other hyperparameters are identical.

The HotstartStack stores trained learners which can be potentially used to hot start a learner. Learner automatically hot start while training if a stack is attached to the $hotstart_stack field and the stack contains a suitable learner.

For example, if you want to train a random forest learner with 1000 trees but already have a random forest learner with 500 trees (hot start learner), you can add the hot start learner to the HotstartStack of the expensive learner with 1000 trees. If you now call the train() method (or resample() or benchmark()), a random forest with 500 trees will be fitted and combined with the 500 trees of the hotstart learner, effectively saving you to fit 500 trees.

Hot starting is only supported by learners which have the property "hotstart_forward" or "hotstart_backward". For example, an xgboost model (in mlr3learners) can hot start forward by adding more boosting iterations, and a random forest can go backwards by removing trees. The fidelity parameters are tagged with "hotstart" in learner's parameter set.

Public fields

stack data.table::data.table()
Stores hot start learners.

Methods

Public methods:

- HotstartStack$new()
- HotstartStack$add()
- HotstartStack$start_cost()
- HotstartStack$format()
- HotstartStack$print()
- HotstartStack$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

HotstartStack$new(learners = NULL)

Arguments:

learners (List of Learners)
Learners are added to the hotstart stack. If NULL (default), empty stack is created.
Method `add()`: Add learners to hot start stack.

Usage:

HotstartStack$add(learners)

Arguments:

learners (List of Learners). Learners are added to the hotstart stack.

Returns: self (invisibly).

Method `start_cost()`: Calculates the cost for each learner of the stack to hot start the target learner.

The following cost values can be returned:

- `NA_real_`: Learner is unsuitable to hot start target learner.
- `-1`: Hotstart learner in the stack and target learner are identical.
- `0`: Cost for hot starting backwards is always 0.
- `> 0`: Cost for hot starting forward.

Usage:

HotstartStack$start_cost(learner, task_hash)

Arguments:

learner Learner
- Target learner.

task_hash Task
- Hash of the task on which the target learner is trained.

Method `format()`: Helper for print outputs.

Usage:

HotstartStack$format()

Method `print()`: Printer.

Usage:

HotstartStack$print(...)

Arguments:

... (ignored).

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

HotstartStack$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
Examples

```r
# train learner on pima task
task = tsk("pima")
learner = lrn("classif.debug", iter = 1)
learner$train(task)

# initialize stack with previously fitted learner
hot = HotstartStack$new(list(learner))

# retrieve learner with increased fidelity parameter
learner = lrn("classif.debug", iter = 2)

# calculate cost of hot starting
hot$start_cost(learner, task$hash)

# add stack with hot start learner
learner$hotstart_stack = hot

# train automatically uses hot start learner while fitting the model
learner$train(task)
```

Description

`extract_pkgs()` extracts required package from various objects, including `TaskGenerator`, `Learner`, `Measure` and objects from extension packages such as `mlr3pipelines` or `mlr3filters`. If applied on a list, the function is called recursively on all elements.

`install_pkgs()` calls `extract_pkgs()` internally and proceeds with the installation of extracted packages.

Usage

```r
install_pkgs(x, ...)
extract_pkgs(x)
```

S3 methods

```
## S3 method for class 'character'
extract_pkgs(x)

## S3 method for class 'R6'
extract_pkgs(x)

## S3 method for class 'list'
extract_pkgs(x)

## S3 method for class 'ResampleResult'
extract_pkgs(x)
```
extract_pkgs(x)

S3 method for class 'BenchmarkResult'
extract_pkgs(x)

Arguments

- **x** (any)
 Object with package information (or a list of such objects).
- **...** (any)
 Additional arguments passed down to `remotes::install_cran()` or `remotes::install_github()`. Arguments `force` and `upgrade` are often important in this context.

Details

If a package contains a forward slash (`'/'`), it is assumed to be a package hosted on GitHub in `"<user>/<repo>"` format, and the string will be passed to `remotes::install_github()`. Otherwise, the package name will be passed to `remotes::install_cran()`.

Value

`extract_pkgs()` returns a `character()` of package strings, `install_pkgs()` returns the names of extracted packages invisibly.

Examples

```r
extract_pkgs(lrns(c("regr.rpart", "regr.featureless")))
```

<table>
<thead>
<tr>
<th>Learner</th>
<th>Learner Class</th>
</tr>
</thead>
</table>

Description

This is the abstract base class for learner objects like LearnerClassif and LearnerRegr. Learners are build around the three following key parts:

- Methods `$train()` and `$predict()` which call internal methods (either public method `$train_internal()`/$`predict_internal()` (deprecated) or private methods `$train()`/$`predict()`).
- A `paradox::ParamSet` which stores meta-information about available hyperparameters, and also stores hyperparameter settings.
- Meta-information about the requirements and capabilities of the learner.
- The fitted model stored in field `$model`, available after calling `$train()`.
Predefined learners are stored in the dictionary `mlr_learners`, e.g. `classif.rpart` or `regr.rpart`. More classification and regression learners are implemented in the add-on package `mlr3learners`. Learners for survival analysis (or more general, for probabilistic regression) can be found in `mlr3proba`. Unsupervised cluster algorithms are implemented in `mlr3cluster`. The dictionary `mlr_learners` gets automatically populated with the new learners as soon as the respective packages are loaded.

More (experimental) learners can be found in the GitHub repository: https://github.com/mlr-org/mlr3extralearners. A guide on how to extend `mlr3` with custom learners can be found in the `mlr3book`.

To combine the learner with preprocessing operations like factor encoding, `mlr3pipelines` is recommended. Hyperparameters stored in the `param_set` can be tuned with `mlr3tuning`.

Optional Extractors

Specific learner implementations are free to implement additional getters to ease the access of certain parts of the model in the inherited subclasses.

For the following operations, extractors are standardized:

- `importance(...)`: Returns the feature importance score as numeric vector. The higher the score, the more important the variable. The returned vector is named with feature names and sorted in decreasing order. Note that the model might omit features it has not used at all. The learner must be tagged with property "importance". To filter variables using the importance scores, see package `mlr3filters`.
- `selected_features(...)`: Returns a subset of selected features as `character()`. The learner must be tagged with property "selected_features".
- `oob_error(...)`: Returns the out-of-bag error of the model as `numeric(1)`. The learner must be tagged with property "oob_error".
- `loglik(...)`: Extracts the log-likelihood (c.f. `stats::logLik()`). This can be used in measures like `mlr_measures_aic` or `mlr_measures_bic`.

Setting Hyperparameters

All information about hyperparameters is stored in the slot `param_set` which is a `paradox::ParamSet`. The printer gives an overview about the ids of available hyperparameters, their storage type, lower and upper bounds, possible levels (for factors), default values and assigned values. To set hyperparameters, assign a named list to the subslot `values`:

```r
lrn = lrn("classif.rpart")
lrn$param_set$values = list(minsplit = 3, cp = 0.01)
```

Note that this operation replaces all previously set hyperparameter values. If you only intend to change one specific hyperparameter value and leave the others as-is, you can use the helper function `mlr3misc::insert_named()`:

```r
lrn$param_set$values = mlr3misc::insert_named(lrn$param_set$values, list(cp = 0.001))
```

If the learner has additional hyperparameters which are not encoded in the `ParamSet`, you can easily extend the learner. Here, we add a factor hyperparameter with id "foo" and possible levels "a" and "b":

```r
lrn$param_set$add(paradox::ParamFct$new("foo", levels = c("a", "b")))
```
Public fields

id (character(1))
Identifier of the object. Used in tables, plot and text output.

state (NULL | named list())
Current (internal) state of the learner. Contains all information gathered during train() and predict(). It is not recommended to access elements from state directly. This is an internal data structure which may change in the future.

task_type (character(1))
Task type, e.g. "classif" or "regr".
For a complete list of possible task types (depending on the loaded packages), see mlr_reflections$task_types$type.

predict_types (character())
Stores the possible predict types the learner is capable of. A complete list of candidate predict types, grouped by task type, is stored in mlr_reflections$learner_predict_types.

feature_types (character())
Stores the feature types the learner can handle, e.g. "logical", "numeric", or "factor". A complete list of candidate feature types, grouped by task type, is stored in mlr_reflections$task_feature_types.

properties (character())
Stores a set of properties/capabilities the learner has. A complete list of candidate properties, grouped by task type, is stored in mlr_reflections$learner_properties.

data_formats (character())
Supported data format, e.g. "data.table" or "Matrix".

packages (character(1))
Set of required packages. These packages are loaded, but not attached.

predict_sets (character())
During resample() / benchmark(), a Learner can predict on multiple sets. Per default, a learner only predicts observations in the test set (predict_sets == "test"). To change this behavior, set predict_sets to a non-empty subset of \{"train", "test", "validation"\}. Each set yields a separate Prediction object. Those be combined via getters in ResampleResult/BenchmarkResult, or Measures can be altered to operate on specific subsets of the calculated prediction sets.

parallel_predict (logical(1))
If set to TRUE, use future to calculate predictions in parallel (default: FALSE). The row ids of the task will be split into future::nbrOfWorkers() chunks, and predictions are evaluated according to the active future::plan(). This currently only works for methods Learner$predict() and Learner$predict_newdata(), and has no effect during resample() or benchmark() where you have other means to parallelize.

timeout (named numeric(2))
Timeout for the learner’s train and predict steps, in seconds. This works differently for different encapsulation methods, see mlr3misc::encapsulate(). Default is c(train = Inf, predict = Inf). Also see the section on error handling the mlr3book: https://mlr3book.mlr-org.com/technical.html#error-handling

fallback (Learner)
Learner which is fitted to impute predictions in case that either the model fitting or the prediction of the top learner is not successful. Requires you to enable encapsulation, otherwise errors
are not caught and the execution is terminated before the fallback learner kicks in. Also see the section on error handling the mlrbook: https://mlr3book.mlr-org.com/technical.html#error-handling

man (character(1))
String in the format [pkg]:[topic] pointing to a manual page for this object. Defaults to NA, but can be set by child classes.

Active bindings

model (any)
The fitted model. Only available after `train()` has been called.

timings (named numeric(2))
Elapsed time in seconds for the steps "train" and "predict". Measured via `mlr3misc::encapsulate()`.

log (data.table::data.table())
Returns the output (including warning and errors) as table with columns
- "stage" ("train" or "predict"),
- "class" ("output", "warning", or "error"), and
- "msg" (character()).

warnings (character())
Logged warnings as vector.

errors (character())
Logged errors as vector.

hash (character(1))
Hash (unique identifier) for this object.

phash (character(1))
Hash (unique identifier) for this partial object, excluding some components which are varied systematically during tuning (parameter values) or feature selection (feature names).

predict_type (character(1))
Stores the currently active predict type, e.g. "response". Must be an element of $predict_types.

param_set (paradox::ParamSet)
Set of hyperparameters.

encapsulate (named character())
Controls how to execute the code in internal train and predict methods. Must be a named character vector with names "train" and "predict". Possible values are "none", "evaluate" (requires package `evaluate`) and "callr" (requires package `callr`). See `mlr3misc::encapsulate()` for more details.

hotstart_stack (HotstartStack)
Stores HotstartStack.

Methods

Public methods:
- Learner$new()
- Learner$format()
• Learner$print()
• Learner$help()
• Learner$train()
• Learner$predict()
• Learner$predict_newdata()
• Learner$reset()
• Learner$base_learner()
• Learner$clone()

Method new(): Creates a new instance of this R6 class.

Note that this object is typically constructed via a derived classes, e.g. LearnerClassif or LearnerRegr.

Usage:
Learner$new(
 id,
 task_type,
 param_set = ps(),
 predict_types = character(),
 feature_types = character(),
 properties = character(),
 data_formats = "data.table",
 packages = character(),
 man = NA_character_
)

Arguments:
id (character(1))
 Identifier for the new instance.
task_type (character(1))
 Type of task, e.g. "regr" or "classif". Must be an element of mlr_reflections$task_types$type.
param_set (paradox::ParamSet)
 Set of hyperparameters.
predict_types (character())
 Supported predict types. Must be a subset of mlr_reflections$learner_predict_types.
feature_types (character())
 Feature types the learner operates on. Must be a subset of mlr_reflections$task_feature_types.
properties (character())
 Set of properties of the Learner. Must be a subset of mlr_reflections$learner_properties.
 The following properties are currently standardized and understood by learners in mlr3:
 • "missings": The learner can handle missing values in the data.
 • "weights": The learner supports observation weights.
 • "importance": The learner supports extraction of importance scores, i.e. comes with an
 $importance() extractor function (see section on optional extractors in Learner).
 • "selected_features": The learner supports extraction of the set of selected features,
 i.e. comes with a $selected_features() extractor function (see section on optional extractors in Learner).
• "oob_error": The learner supports extraction of estimated out of bag error, i.e. comes with a oob_error() extractor function (see section on optional extractors in Learner).

data_formats (character())
Set of supported data formats which can be processed during $train() and $predict(), e.g. "data.table".

packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via requireNamespace().

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The referenced help package can be opened via method $help().

Method format(): Helper for print outputs.

Usage:
Learner$format()

Method print(): Printer.

Usage:
Learner$print(...)
Arguments:
... (ignored).

Method help(): Opens the corresponding help page referenced by field $man.

Usage:
Learner$help()

Method train(): Train the learner on a set of observations of the provided task. Mutates the learner by reference, i.e. stores the model alongside other information in field $state.

Usage:
Learner$train(task, row_ids = NULL)
Arguments:
task (Task).
row_ids (integer())
Vector of training indices as subset of task$row_ids. For a simple split into training and test set, see partition().

Returns:
Returns the object itself, but modified by reference. You need to explicitly $clone() the object beforehand if you want to keep the object in its previous state.

Method predict(): Uses the information stored during $train() in $state to create a new Prediction for a set of observations of the provided task.

Usage:
Learner$predict(task, row_ids = NULL)
Arguments:
task (Task).
row_ids (integer())

Vector of test indices as subset of task$row_ids. For a simple split into training and test set, see partition().

Returns: Prediction.

Method predict_newdata(): Uses the model fitted during $train() to create a new Prediction based on the new data in newdata. Object task is the task used during $train() and required for conversion of newdata. If the learner’s $train() method has been called, there is a (size reduced) version of the training task stored in the learner. If the learner has been fitted via resample() or benchmark(), you need to pass the corresponding task stored in the ResampleResult or BenchmarkResult, respectively.

Usage:
Learner$predict_newdata(newdata, task = NULL)

Arguments:
newdata (any object supported by as_data_backend())

New data to predict on. All data formats convertible by as_data_backend() are supported, e.g. data.frame() or DataBackend. If a DataBackend is provided as newdata, the row ids are preserved, otherwise they are set to the sequence 1:nrow(newdata).

task (Task).

Returns: Prediction.

Method reset(): Reset the learner, i.e. un-train by resetting the state.

Usage:
Learner$reset()

Returns: Returns the object itself, but modified by reference. You need to explicitly $clone() the object beforehand if you want to keeps the object in its previous state.

Method base_learner(): Extracts the base learner from nested learner objects like GraphLearner in mlr3pipelines or AutoTuner in mlr3tuning. Returns the Learner itself for regular learners.

Usage:
Learner$base_learner(recursive = Inf)

Arguments:
recursive (integer(1))

Depth of recursion for multiple nested objects.

Returns: Learner.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Learner$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
Description

This Learner specializes [Learner](#) for classification problems:

- task_type is set to "classif".
- Creates Predictions of class PredictionClassif.
- Possible values for predict_types are:
 - "response": Predicts a class label for each observation in the test set.
 - "prob": Predicts the posterior probability for each class for each observation in the test set.
- Additional learner properties include:
 - "twoclass": The learner works on binary classification problems.
 - "multiclass": The learner works on multiclass classification problems.

Predefined learners can be found in the dictionary [mlr_learners](#). Essential classification learners can be found in this dictionary after loading [mlr3learners](#). Additional learners are implement in the Github package https://github.com/mlr-org/mlr3extralearners.

Super class

```
mlr3::Learner -> LearnerClassif
```
Methods

Public methods:

- LearnerClassif$new()
- LearnerClassif$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
LearnerClassif$new(id, param_set = ps(), predict_types = "response", feature_types = character(), properties = character(), data_formats = "data.table", packages = character(), man = NA_character_)

Arguments:

id (character(1))
Identifier for the new instance.

param_set (paradox::ParamSet)
Set of hyperparameters.

predict_types (character())
Supported predict types. Must be a subset of mlr_reflections$learner_predict_types.

feature_types (character())
Feature types the learner operates on. Must be a subset of mlr_reflections$task_feature_types.

properties (character())
Set of properties of the Learner. Must be a subset of mlr_reflections$learner_properties. The following properties are currently standardized and understood by learners in mlr3:

- "missings": The learner can handle missing values in the data.
- "weights": The learner supports observation weights.
- "importance": The learner supports extraction of importance scores, i.e. comes with an $importance() extractor function (see section on optional extractors in Learner).
- "selected_features": The learner supports extraction of the set of selected features, i.e. comes with a $selected_features() extractor function (see section on optional extractors in Learner).
- "oob_error": The learner supports extraction of estimated out of bag error, i.e. comes with a oob_error() extractor function (see section on optional extractors in Learner).

data_formats (character())
Set of supported data formats which can be processed during $train() and $predict(), e.g. "data.table".

packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
man (character(1))
 String in the format [pkg]::[topic] pointing to a manual page for this object. The referenced
 help package can be opened via method $help().

Method **clone()**: The objects of this class are cloneable with this method.

Usage:
LearnerClassif$clone(deep = FALSE)

Arguments:
- deep: Whether to make a deep clone.

See Also
- Package [mlr3learners](https://mlr3learners.mlr-org.com/basics.html#learners) for a solid collection of essential learners.
- Package [mlr3extralearners](https://mlr3extralearners.mlr-org.com/basics.html#learners) for more learners.
- Dictionary of Learners: [mlr_learners](https://mlr_learners.mlr-org.com/basics.html#learners)
- `as.data.table(mlr_learners)` for a table of available Learners in the running session (depending on the loaded packages).
- [mlr3pipelines](https://github.com/mlr-org/mlr3pipelines) to combine learners with pre- and postprocessing steps.
- Package [mlr3viz](https://mlr3viz.mlr-org.com/basics.html#learners) for some generic visualizations.
- Extension packages for additional task types:
 - [mlr3proba](https://github.com/mlr-org/mlr3proba) for probabilistic supervised regression and survival analysis.
 - [mlr3cluster](https://github.com/mlr-org/mlr3cluster) for unsupervised clustering.
- [mlr3tuning](https://github.com/mlr-org/mlr3tuning) for tuning of hyperparameters, [mlr3tuningspaces](https://github.com/mlr-org/mlr3tuningspaces) for established default tuning spaces.

Examples

```r
# get all classification learners from mlr_learners:
lrns = mlr_learners$mget(mlr_learners$keys("^classif"))
names(lrns)

# get a specific learner from mlr_learners:
lrn = lrn("classif.rpart")
print(lrn)

# train the learner:
task = tsk("penguins")
lrn$train(task, 1:200)

# predict on new observations:
lrn$predict(task, 201:344)$confusion
```
Description

This Learner specializes Learner for regression problems:

- task_type is set to "regr".
- Creates Predictions of class PredictionRegr.
- Possible values for predict_types are:
 - "response": Predicts a numeric response for each observation in the test set.
 - "se": Predicts the standard error for each value of response for each observation in the test set.
 - "distr": Probability distribution as distr6::VectorDistribution object (requires package distr6).

Predefined learners can be found in the dictionary mlr_learners. Essential regression learners can be found in this dictionary after loading mlr3learners. Additional learners are implement in the Github package https://github.com/mlr-org/mlr3extralearners.

Super class

mlr3::Learner -> LearnerRegr

Methods

Public methods:

- LearnerRegr$new()
- LearnerRegr$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
LearnerRegr$new(
 id,
 param_set = ps(),
 predict_types = "response",
 feature_types = character(),
 properties = character(),
 data_formats = "data.table",
 packages = character(),
 man = NA_character_
)

Arguments:

id (character(1))
 Identifier for the new instance.
LearnerRegr

```
param_set (paradox::ParamSet)
  Set of hyperparameters.
predict_types (character())
  Supported predict types. Must be a subset of `mlr_reflections$learner_predict_types`.
feature_types (character())
  Feature types the learner operates on. Must be a subset of `mlr_reflections$task_feature_types`.
properties (character())
  Set of properties of the Learner. Must be a subset of `mlr_reflections$learner_properties`.
  The following properties are currently standardized and understood by learners in `mlr3`:
  • "missings": The learner can handle missing values in the data.
  • "weights": The learner supports observation weights.
  • "importance": The learner supports extraction of importance scores, i.e. comes with an $importance() extractor function (see section on optional extractors in Learner).
  • "selected_features": The learner supports extraction of the set of selected features, i.e. comes with a $selected_features() extractor function (see section on optional extractors in Learner).
  • "oob_error": The learner supports extraction of estimated out of bag error, i.e. comes with a oob_error() extractor function (see section on optional extractors in Learner).
data_formats (character())
  Set of supported data formats which can be processed during $train() and $predict(), e.g. "data.table".
packages (character())
  Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via `requireNamespace()`.
man (character(1))
  String in the format [pkg]::[topic] pointing to a manual page for this object. The referenced help package can be opened via method $help().

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerRegr$clone(deep = FALSE)

Arguments:
deepeither Whether to make a deep clone.

See Also

• Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
• Package mlr3learners for a solid collection of essential learners.
• Package mlr3extralearners for more learners.
• Dictionary of Learners: mlr_learners
  as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
• mlr3pipelines to combine learners with pre- and postprocessing steps.
• Package mlr3viz for some generic visualizations.
• Extension packages for additional task types:
  – mlr3proba for probabilistic supervised regression and survival analysis.
  – mlr3cluster for unsupervised clustering.
• mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.


Examples

```r
get all regression learners from mlr_learners:
lrns = mlr_learners$mget(mlr_learners$keys("regr"))
names(lrns)

get a specific learner from mlr_learners:
mlr_learners$get("regr.rpart")
lrn("classif.featureless")
```

<table>
<thead>
<tr>
<th>Measure</th>
<th>Measure Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

This is the abstract base class for measures like MeasureClassif and MeasureRegr.

Measures are classes tailored around two functions doing the work:

1. A function $score() which quantifies the performance by comparing the truth and predictions.
2. A function $aggregator() which combines multiple performance scores returned by $score() to a single numeric value.

In addition to these two functions, meta-information about the performance measure is stored.

Predefined measures are stored in the dictionary mlr_measures, e.g. classif.auc or time_train.

Many of the measures in mlr3 are implemented in mlr3measures as ordinary functions.

A guide on how to extend mlr3 with custom measures can be found in the mlr3book.

Public fields

id (character(1))
  Identifier of the object. Used in tables, plot and text output.

task_type (character(1))
  Task type, e.g. "classif" or "regr".
  For a complete list of possible task types (depending on the loaded packages), see mlr_reflections$task_types$type

param_set (paradox::ParamSet)
  Set of hyperparameters.
predict_type (character(1))
   Required predict type of the Learner.

predict_sets (character())
   During resample() / benchmark(), a Learner can predict on multiple sets. Per default, a
   learner only predicts observations in the test set (predict_sets == "test"). To change
   this behavior, set predict_sets to a non-empty subset of {"train", "test", "validation"}.
   Each set yields a separate Prediction object. Those be combined via getters in ResampleRe-
   sult / BenchmarkResult, or Measures can be altered to operate on specific subsets of the calcu-
   lated prediction sets.

check_prerequisites (character(1))
   How to proceed if one of the following prerequisites is not met:
   • wrong predict type (e.g., probabilities required, but only labels available).
   • wrong predict set (e.g., learner predicted on training set, but predictions of test set re-
     quired).
   • task properties not satisfied (e.g., binary classification measure on multiclass task).
   Possible values are "ignore" (just return NaN) and "warn" (default, raise a warning before
   returning NaN).

task_properties (character())
   Required properties of the Task.

range (numeric(2))
   Lower and upper bound of possible performance scores.

properties (character())
   Properties of this measure.

minimize (logical(1))
   If TRUE, good predictions correspond to small values of performance scores.

packages (character(1))
   Set of required packages. These packages are loaded, but not attached.

man (character(1))
   String in the format [pkg]:[topic] pointing to a manual page for this object. Defaults to NA,
   but can be set by child classes.

Active bindings

hash (character(1))
   Hash (unique identifier) for this object.

average (character(1))
   Method for aggregation:
   • "micro": All predictions from multiple resampling iterations are first combined into a
     single Prediction object. Next, the scoring function of the measure is applied on this
     combined object, yielding a single numeric score.
   • "macro": The scoring function is applied on the Prediction object of each resampling
     iterations, each yielding a single numeric score. Next, the scores are combined with the
     aggregator function to a single numerical score.
   • "custom": The measure comes with a custom aggregation method which directly oper-
     ates on a ResampleResult.
aggregator (function())
Function to aggregate scores computed on different resampling iterations.

Methods

Public methods:
• Measure$new()
• Measure$format()
• Measure$print()
• Measure$help()
• Measure$score()
• Measure$aggregate()

Method new(): Creates a new instance of this R6 class.

Usage:
Measure$new(
  id,
  task_type = NA,
  param_set = ps(),
  range = c(-Inf, Inf),
  minimize = NA,
  average = "macro",
  aggregator = NULL,
  properties = character(),
  predict_type = "response",
  predict_sets = "test",
  task_properties = character(),
  packages = character(),
  man = NA_character_
)

Arguments:
id (character(1))
  Identifier for the new instance.
task_type (character(1))
  Type of task, e.g. "regr" or "classif". Must be an element of mlr_reflections$task_types$type.
param_set (paradox::ParamSet)
  Set of hyperparameters.
range (numeric(2))
  Feasible range for this measure as c(lower_bound, upper_bound). Both bounds may be infinite.
minimize (logical(1))
  Set to TRUE if good predictions correspond to small values, and to FALSE if good predictions correspond to large values. If set to NA (default), tuning this measure is not possible.
average (character(1))

How to average multiple Predictions from a ResampleResult.
The default, "macro", calculates the individual performances scores for each Prediction and then uses the function defined in $aggregator to average them to a single number.
If set to "micro", the individual Prediction objects are first combined into a single new Prediction object which is then used to assess the performance. The function in $aggregator is not used in this case.

aggregator (function())
Function to aggregate over multiple iterations. The role of this function depends on the value of field "average":
• "macro": A numeric vector of scores (one per iteration) is passed. The aggregate function defaults to mean() in this case.
• "micro": The aggregator function is not used. Instead, predictions from multiple iterations are first combined and then scored in one go.
• "custom": A ResampleResult is passed to the aggregate function.

properties (character())
Properties of the measure. Must be a subset of mlr_reflections$measure_properties. Supported by mlr3:
• "requires_task" (requires the complete Task),
• "requires_learner" (requires the trained Learner),
• "requires_model" (requires the trained Learner, including the fitted model),
• "requires_train_set" (requires the training indices from the Resampling), and
• "na_score" (the measure is expected to occasionally return NA or NaN).

predict_type (character(1))
Required predict type of the Learner. Possible values are stored in mlr_reflections$learner_predict_types.
predict_sets (character())
Prediction sets to operate on, used in aggregate() to extract the matching predict_sets from the ResampleResult. Multiple predict sets are calculated by the respective Learner during resample()/benchmark(). Must be a non-empty subset of {"train", "test", "validation"}. If multiple sets are provided, these are first combined to a single prediction object. Default is "test".
task_properties (character())
Required task properties, see Task.
packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
man (character(1))
String in the format [pkg]:[topic] pointing to a manual page for this object. The referenced help package can be opened via method $help().

Method format(): Helper for print outputs.
Usage:
Measure$format()

Method print(): Printer.
Usage:
Measure$print(...)  

Arguments:  
... (ignored).

**Method** help(): Opens the corresponding help page referenced by field $man.  

*Usage:*  
Measure$help()

**Method** score(): Takes a Prediction (or a list of Prediction objects named with valid predict_sets) and calculates a numeric score. If the measure is flagged with the properties "requires_task", "requires_learner", "requires_model" or "requires_train_set", you must additionally pass the respective Task, the (trained) Learner or the training set indices. This is handled internally during resample()/benchmark().  

*Usage:*  
Measure$score(prediction, task = NULL, learner = NULL, train_set = NULL)  

*Arguments:*  
prediction (Prediction | named list of Prediction).  
task (Task).  
learner (Learner).  
train_set (integer()).  

*Returns:* numeric(1).

**Method** aggregate(): Aggregates multiple performance scores into a single score, e.g. by using the aggregator function of the measure.  

*Usage:*  
Measure$aggregate(rr)  

*Arguments:*  
rr ResampleResult.  

*Returns:* numeric(1).

**See Also**

- Package mlr3measures for the scoring functions. Dictionary of Measures: mlr_measures as.data.table(mlr_measures) for a table of available Measures in the running session (depending on the loaded packages).  
- Extension packages for additional task types:  
  - mlr3proba for probabilistic supervised regression and survival analysis.  
  - mlr3cluster for unsupervised clustering.  

Other Measure: MeasureClassif, MeasureRegr, MeasureSimilarity, mlr_measures_aic, mlr_measures_bic, mlr_measures_classif.costs, mlr_measures_debug, mlr_measures_elapsed_time, mlr_measures_oob_error, mlr_measures_selected_features, mlr_measures
Description

This measure specializes Measure for classification problems:

- task_type is set to "classif".
- Possible values for predict_type are "response" and "prob".

Predefined measures can be found in the dictionary mlr_measures. The default measure for classification is classif.ce.

Super class

mlr3::Measure -> MeasureClassif

Methods

Public methods:

- MeasureClassif$new()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureClassif$new(
  id,
  param_set = ps(),
  range,
  minimize = NA,
  average = "macro",
  aggregator = NULL,
  properties = character(),
  predict_type = "response",
  predict_sets = "test",
  task_properties = character(),
  packages = character(),
  man = NA_character_
)

Arguments:

id (character(1))
  Identifier for the new instance.
param_set (paradox::ParamSet)
  Set of hyperparameters.
range (numeric(2))
  Feasible range for this measure as c(lower_bound, upper_bound). Both bounds may be infinite.
minimize (logical(1))
Set to TRUE if good predictions correspond to small values, and to FALSE if good predictions correspond to large values. If set to NA (default), tuning this measure is not possible.

average (character(1))
How to average multiple Predictions from a ResampleResult.
The default, "macro", calculates the individual performances scores for each Prediction and then uses the function defined in $aggregator to average them to a single number.
If set to "micro", the individual Prediction objects are first combined into a single new Prediction object which is then used to assess the performance. The function in $aggregator is not used in this case.

aggregator (function())
Function to aggregate over multiple iterations. The role of this function depends on the value of field "average":
- "macro": A numeric vector of scores (one per iteration) is passed. The aggregate function defaults to mean() in this case.
- "micro": The aggregator function is not used. Instead, predictions from multiple iterations are first combined and then scored in one go.
- "custom": A ResampleResult is passed to the aggregate function.

properties (character())
Properties of the measure. Must be a subset of mlr_reflections$measure_properties. Supported by mlr3:
- "requires_task" (requires the complete Task),
- "requires_learner" (requires the trained Learner),
- "requires_model" (requires the trained Learner, including the fitted model),
- "requires_train_set" (requires the training indices from the Resampling), and
- "na_score" (the measure is expected to occasionally return NA or NaN).

predict_type (character(1))
Required predict type of the Learner. Possible values are stored in mlr_reflections$learner_predict_types.
predict_sets (character())
Prediction sets to operate on, used in aggregate() to extract the matching predict_sets from the ResampleResult. Multiple predict sets are calculated by the respective Learner during resample()/benchmark(). Must be a non-empty subset of {"train", "test", "validation"}. If multiple sets are provided, these are first combined to a single prediction object. Default is "test".

task_properties (character())
Required task properties, see Task.

packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via requireNamespace().

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The referenced help package can be opened via method $help().

See Also
• Package `mlr3measures` for the scoring functions. Dictionary of Measures: `mlr_measures` as `data.table(mlr_measures)` for a table of available Measures in the running session (depending on the loaded packages).

• Extension packages for additional task types:
  – `mlr3proba` for probabilistic supervised regression and survival analysis.
  – `mlr3cluster` for unsupervised clustering.

Other Measure: `MeasureRegr`, `MeasureSimilarity`, `Measure`, `mlr_measures_aic`, `mlr_measures_bic`, `mlr_measures_classif.costs`, `mlr_measures_debug`, `mlr_measures_elapsed_time`, `mlr_measures_oob_error`, `mlr_measures_selected_features`, `mlr_measures`

<table>
<thead>
<tr>
<th>MeasureRegr</th>
<th>Regression Measure</th>
</tr>
</thead>
</table>

**Description**

This measure specializes `Measure` for regression problems:

• `task_type` is set to "regr".

• Possible values for `predict_type` are "response", "se" and "distr".

Predefined measures can be found in the dictionary `mlr_measures`. The default measure for regression is `regr.mse`.

**Super class**

`mlr3::Measure` $\rightarrow$ `MeasureRegr`

**Methods**

**Public methods:**

• `MeasureRegr$new()`

**Method** `new()`: Creates a new instance of this R6 class.

**Usage:**

```
MeasureRegr$new(
 id,
 param_set = ps(),
 range,
 minimize = NA,
 average = "macro",
 aggregator = NULL,
 properties = character(),
 predict_type = "response",
 predict_sets = "test",
 task_properties = character(),
 packages = character(),
 man = NA_character_
)
```
MeasureRegr

Arguments:
id (character(1))
   Identifier for the new instance.
param_set (paradox::ParamSet)
   Set of hyperparameters.
range (numeric(2))
   Feasible range for this measure as c(lower_bound, upper_bound). Both bounds may be infinite.
minimize (logical(1))
   Set to TRUE if good predictions correspond to small values, and to FALSE if good predictions correspond to large values. If set to NA (default), tuning this measure is not possible.
average (character(1))
   How to average multiple Predictions from a ResampleResult.
   The default, "macro", calculates the individual performances scores for each Prediction and then uses the function defined in $aggregator to average them to a single number.
   If set to "micro", the individual Prediction objects are first combined into a single new Prediction object which is then used to assess the performance. The function in $aggregator is not used in this case.
aggregator (function())
   Function to aggregate over multiple iterations. The role of this function depends on the value of field "average":
   • "macro": A numeric vector of scores (one per iteration) is passed. The aggregate function defaults to mean() in this case.
   • "micro": The aggregator function is not used. Instead, predictions from multiple iterations are first combined and then scored in one go.
   • "custom": A ResampleResult is passed to the aggregate function.
properties (character())
   Properties of the measure. Must be a subset of mlr_reflections$measure_properties. Supported by mlr3:
   • "requires_task" (requires the complete Task),
   • "requires_learner" (requires the trained Learner),
   • "requires_model" (requires the trained Learner, including the fitted model),
   • "requires_train_set" (requires the training indices from the Resampling), and
   • "na_score" (the measure is expected to occasionally return NA or NaN).
predict_type (character(1))
   Required predict type of the Learner. Possible values are stored in mlr_reflections$learner_predict_types.
predict_sets (character())
   Prediction sets to operate on, used in aggregate() to extract the matching predict_sets from the ResampleResult. Multiple predict sets are calculated by the respective Learner during resample() / benchmark(). Must be a non-empty subset of {"train", "test", "validation"}. If multiple sets are provided, these are first combined to a single prediction object. Default is "test".
task_properties (character())
   Required task properties, see Task.
packages (character())
   Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
**MeasureSimilarity**

String in the format [pkg]::[topic] pointing to a manual page for this object. The referenced help package can be opened via method $help().

**See Also**

- Package `mlr3measures` for the scoring functions. Dictionary of Measures: `mlr_measures as.data.table(mlr_measures)` for a table of available Measures in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.

Other Measure: `MeasureClassif`, `MeasureSimilarity`, `Measure`, `mlr_measures_aic`, `mlr_measures_bic`, `mlr_measures_classif.costs`, `mlr_measures_debug`, `mlr_measures_elapsed_time`, `mlr_measures_oob_error`, `mlr_measures_selected_features`, `mlr_measures`

---

**MeasureSimilarity**  
**Similarity Measure**

**Description**

This measure specializes `Measure` for measures quantifying the similarity of sets of selected features. To calculate similarity measures, the Learner must have the property "selected_features".

- `task_type` is set to `NA_character_`.
- `average` is set to "custom".

Predefined measures can be found in the dictionary `mlr_measures`, prefixed with "sim. ".

**Super class**

`mlr3::Measure` -> `MeasureSimilarity`

**Methods**

**Public methods:**

- `MeasureSimilarity$new()`

**Method** `new()`: Creates a new instance of this R6 class.

**Usage:**
MeasureSimilarity$new(
  id,
  param_set = ps(),
  range,
  minimize = NA,
  average = "macro",
  aggregator = NULL,
  properties = character(),
  predict_type = "response",
  predict_sets = "test",
  task_properties = character(),
  packages = character(),
  man = NA_character_
)

Arguments:

id (character(1))
  Identifier for the new instance.

param_set (paradox::ParamSet)
  Set of hyperparameters.

range (numeric(2))
  Feasible range for this measure as c(lower_bound, upper_bound). Both bounds may be
  infinite.

minimize (logical(1))
  Set to TRUE if good predictions correspond to small values, and to FALSE if good predictions
  correspond to large values. If set to NA (default), tuning this measure is not possible.

average (character(1))
  How to average multiple Predictions from a ResampleResult.
  The default, "macro", calculates the individual performances scores for each Prediction and
  then uses the function defined in $aggregator to average them to a single number.
  If set to "micro", the individual Prediction objects are first combined into a single new
  Prediction object which is then used to assess the performance. The function in $aggregator
  is not used in this case.

aggregator (function())
  Function to aggregate over multiple iterations. The role of this function depends on the
  value of field "average":
  • "macro": A numeric vector of scores (one per iteration) is passed. The aggregate function
    defaults to mean() in this case.
  • "micro": The aggregator function is not used. Instead, predictions from multiple iter-
    ations are first combined and then scored in one go.
  • "custom": A ResampleResult is passed to the aggregate function.

properties (character())
  Properties of the measure. Must be a subset of mlr_reflections$measure_properties. Sup-
  ported by mlr3:
  • "requires_task" (requires the complete Task),
  • "requires_learner" (requires the trained Learner),
  • "requires_model" (requires the trained Learner, including the fitted model),
• "requires_train_set" (requires the training indices from the Resampling), and
• "na_score" (the measure is expected to occasionally return NA or NaN).

predict_type (character(1))
Required predict type of the Learner. Possible values are stored in mlr_reflections$learner_predict_types.

predict_sets (character())
Prediction sets to operate on, used in aggregate() to extract the matching predict_sets from the ResampleResult. Multiple predict sets are calculated by the respective Learner during resample()/benchmark(). Must be a non-empty subset of {"train", "test", "validation"}. If multiple sets are provided, these are first combined to a single prediction object. Default is "test".

task_properties (character())
Required task properties, see Task.

packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via requireNamespace().

man (character(1))
String in the format [pkg]:[topic] pointing to a manual page for this object. The referenced help package can be opened via method $help().

See Also

• Package mlr3measures for the scoring functions. Dictionary of Measures: mlr_measures
  as.data.table(mlr_measures) for a table of available Measures in the running session (de-
  pending on the loaded packages).
• Extension packages for additional task types:
  – mlr3proba for probabilistic supervised regression and survival analysis.
  – mlr3cluster for unsupervised clustering.

Other Measure: MeasureClassif, MeasureRegr, Measure, mlr_measures_aic, mlr_measures_bic,
mlr_measures_classif.costs, mlr_measures_debug, mlr_measures_elapsed_time, mlr_measures_oob_error,
mlr_measures_selected_features, mlr_measures

Examples

task = tsk("penguins")
learners = list(
  lrn("classif.rpart", maxdepth = 1, id = "r1"),
  lrn("classif.rpart", maxdepth = 2, id = "r2")
)
resampling = rsmp("cv", folds = 3)
grid = benchmark_grid(task, learners, resampling)
bmr = benchmark(grid, store_models = TRUE)
bmr$aggregate(msrs(c("classif.ce", "sim.jaccard"))))
mlr_learners  Dictionary of Learners

Description

A simple mlr3misc::Dictionary storing objects of class Learner. Each learner has an associated help page, see mlr_learners_[id].

This dictionary can get populated with additional learners by add-on packages. For an opinionated set of solid classification and regression learners, install and load the mlr3learners package. More learners are connected via https://github.com/mlr-org/mlr3extralearners.

For a more convenient way to retrieve and construct learners, see lrn()/lrns().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

S3 methods

- as.data.table(dict)
  mlr3misc::Dictionary -> data.table::data.table()
  Returns a data.table::data.table() with fields "key", "feature_types", "packages", "properties" and "predict_types" as columns.

See Also

Sugar functions: lrn(), lrns()

Extension Packages: mlr3learners

Other Dictionary: mlr_measures, mlr_resamplings, mlr_task_generators, mlr_tasks


Examples

as.data.table(mlr_learners)
mlr_learners$get("classif.featureless")
lrn("classif.rpart")
Description

A simple LearnerClassif used primarily in the unit tests and for debugging purposes. If no hyperparameter is set, it simply constantly predicts a randomly selected label. The following hyperparameters trigger the following actions:

- **error_predict**: Probability to raise an exception during predict.
- **error_train**: Probability to raise an exception during train.
- **message_predict**: Probability to output a message during predict.
- **message_train**: Probability to output a message during train.
- **predict_missing**: Ratio of predictions which will be NA.
- **predict_missing_type**: To encode missingness. “na” will insert NA values, “omit” will just return fewer predictions than requested.
- **save_tasks**: Saves input task in model slot during training and prediction.
- **segfault_predict**: Probability to provoke a segfault during predict.
- **segfault_train**: Probability to provoke a segfault during train.
- **sleep_train**: Function returning a single number determining how many seconds to sleep during $train()$.
- **sleep_predict**: Function returning a single number determining how many seconds to sleep during $predict()$.
- **threads**: Number of threads to use. Has no effect.
- **warning_predict**: Probability to signal a warning during predict.
- **warning_train**: Probability to signal a warning during train.
- **x**: Numeric tuning parameter. Has no effect.

Note that segfaults may not be triggered reliably on your operating system. Also note that if they work as intended, they will tear down your R session immediately!

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

```r
classif.debug
```

```r
mlr_learners$get("classif.debug")
lrn("classif.debug")
```
Meta Information

- Task type: “classif”
- Predict Types: “response”, “prob”
- Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
- Required Packages: **mlr3**

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>error_predict</td>
<td>numeric</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>error_train</td>
<td>numeric</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>message_predict</td>
<td>numeric</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>message_train</td>
<td>numeric</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>predict_missing</td>
<td>numeric</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>predict_missing_type</td>
<td>character</td>
<td>na</td>
<td>-</td>
<td>na, omit</td>
</tr>
<tr>
<td>save_tasks</td>
<td>logical</td>
<td>FALSE</td>
<td>TRUE, FALSE</td>
<td>-</td>
</tr>
<tr>
<td>segfault_predict</td>
<td>numeric</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>segfault_train</td>
<td>numeric</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>sleep_train</td>
<td>list</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sleep_predict</td>
<td>list</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>threads</td>
<td>integer</td>
<td>-</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
<tr>
<td>warning_predict</td>
<td>numeric</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>warning_train</td>
<td>numeric</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>x</td>
<td>numeric</td>
<td>-</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>iter</td>
<td>integer</td>
<td>1</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
</tbody>
</table>

Super classes

```
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifDebug
```

Methods

**Public methods:**

- `LearnerClassifDebug$new()`
- `LearnerClassifDebug$clone()`

**Method new():** Creates a new instance of this R6 class.

**Usage:**
```
LearnerClassifDebug$new()
```

**Method clone():** The objects of this class are cloneable with this method.

**Usage:**
```
LearnerClassifDebug$clone(deep = FALSE)
```
**Arguments:**

- **deep**  Whether to make a deep clone.

**See Also**

- Package **mlr3learners** for a solid collection of essential learners.
- Package **mlr3extralearners** for more learners.
- **Dictionary of Learners: mlr_learners**
- `as.data.table(mlr_learners)` for a table of available Learners in the running session (depending on the loaded packages).
- **mlr3pipelines** to combine learners with pre- and postprocessing steps.
- Package **mlr3viz** for some generic visualizations.
- Extension packages for additional task types:
  - **mlr3proba** for probabilistic supervised regression and survival analysis.
  - **mlr3cluster** for unsupervised clustering.
- **mlr3tuning** for tuning of hyperparameters, **mlr3tuningspaces** for established default tuning spaces.

Other Learner: **LearnerClassif, LearnerRegr, Learner, mlr_learners_classif.featureless, mlr_learners_classif.rpart, mlr_learners_regr.debug, mlr_learners_regr.featureless, mlr_learners_regr.rpart, mlr_learners**

**Examples**

```r
learner = lrn("classif.debug")
learner$param_set$values = list(message_train = 1, save_tasks = TRUE)

this should signal a message
task = tsk("penguins")
learner$train(task)
learner$predict(task)

task_train and task_predict are the input tasks for train() and predict()
names(learner$model)
```

---

**mlr_learners_classif.featureless**

*Featureless Classification Learner*
Description

A simple LearnerClassif which only analyses the labels during train, ignoring all features. Hyperparameter method determines the mode of operation during prediction:

**mode:** Predicts the most frequent label. If there are two or more labels tied, randomly selects one per prediction.

**sample:** Randomly predict a label uniformly.

**weighted.sample:** Randomly predict a label, with probability estimated from the training distribution.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

```r
mlr_learners$get("classif.featureless")
lrn("classif.featureless")
```

Meta Information

- Task type: “classif”
- Predict Types: “response”, “prob”
- Required Packages: **mlr3**

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>character</td>
<td>mode</td>
<td>-</td>
<td>mode, sample, weighted.sample</td>
</tr>
</tbody>
</table>

Super classes

**mlr3::Learner** -> **mlr3::LearnerClassif** -> LearnerClassifFeatureless

Methods

**Public methods:**

- `LearnerClassifFeatureless$new()`
- `LearnerClassifFeatureless$importance()`
- `LearnerClassifFeatureless$selected_features()`
- `LearnerClassifFeatureless$clone()`

**Method new():** Creates a new instance of this R6 class.
Usage:
LearnerClassifFeatureless$new()

Method importance(): All features have a score of 0 for this learner.

Usage:
LearnerClassifFeatureless$importance()

Returns: Named numeric().

Method selected_features(): Selected features are always the empty set for this learner.

Usage:
LearnerClassifFeatureless$selected_features()

Returns: character(0).

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerClassifFeatureless$clone(deep = FALSE)

Arguments:
deepe Whether to make a deep clone.

See Also

• Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
• Package mlr3learners for a solid collection of essential learners.
• Package mlr3extralearners for more learners.
• Dictionary of Learners: mlr_learners
• as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
• mlr3pipelines to combine learners with pre- and postprocessing steps.
• Package mlr3viz for some generic visualizations.
• Extension packages for additional task types:
  – mlr3proba for probabilistic supervised regression and survival analysis.
  – mlr3cluster for unsupervised clustering.
• mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.

Other Learner: LearnerClassif, LearnerRegr, Learner, mlr_learners_classif.debug, mlr_learners_classif.rpart, mlr_learners_regr.debug, mlr_learners_regr.featureless, mlr_learners_regr.rpart, mlr_learners
mlr_learners_classif.rpart

*Classification Tree Learner*

**Description**

A **LearnerClassif** for a classification tree implemented in `rpart::rpart()` in package `rpart`. Parameter `xval` is set to 0 in order to save some computation time. Parameter `model` has been renamed to `keep_model`.

**Dictionary**

This Learner can be instantiated via the dictionary `mlr_learners` or with the associated sugar function `lrn()`:

```r
mlr_learners$get("classif.rpart")
lrn("classif.rpart")
```

**Meta Information**

- Task type: “classif”
- Predict Types: “response”, “prob”
- Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
- Required Packages: `mlr3`, `rpart`

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cp</code></td>
<td>numeric</td>
<td>0.01</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td><code>keep_model</code></td>
<td>logical</td>
<td>FALSE</td>
<td>-</td>
<td>TRUE, FALSE</td>
</tr>
<tr>
<td><code>maxcompete</code></td>
<td>integer</td>
<td>4</td>
<td>[0, ∞)</td>
<td>-</td>
</tr>
<tr>
<td><code>maxdepth</code></td>
<td>integer</td>
<td>30</td>
<td>[1, 30]</td>
<td>-</td>
</tr>
<tr>
<td><code>maxsurrogate</code></td>
<td>integer</td>
<td>5</td>
<td>[0, ∞)</td>
<td>-</td>
</tr>
<tr>
<td><code>minbucket</code></td>
<td>integer</td>
<td>-</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
<tr>
<td><code>mnsplit</code></td>
<td>integer</td>
<td>20</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
<tr>
<td><code>surrogatestyle</code></td>
<td>integer</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td><code>usesurrogate</code></td>
<td>integer</td>
<td>2</td>
<td>[0, 2]</td>
<td>-</td>
</tr>
<tr>
<td><code>xval</code></td>
<td>integer</td>
<td>10</td>
<td>[0, ∞)</td>
<td>-</td>
</tr>
</tbody>
</table>

**Super classes**

`mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRpart`
Methods

Public methods:

• `LearnerClassifRpart$new()`
• `LearnerClassifRpart$importance()`
• `LearnerClassifRpart$selected_features()`
• `LearnerClassifRpart$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:
`LearnerClassifRpart$new()`

Method `importance()`: The importance scores are extracted from the model slot `variable.importance`.

Usage:
`LearnerClassifRpart$importance()`

Returns: Named numeric().

Method `selected_features()`: Selected features are extracted from the model slot `frame$var`.

Usage:
`LearnerClassifRpart$selected_features()`

Returns: character().

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
`LearnerClassifRpart$clone(deep = FALSE)`

Arguments:
deep Whether to make a deep clone.

References


See Also

• Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
• Package `mlr3learners` for a solid collection of essential learners.
• Package `mlr3extralearners` for more learners.
• Dictionary of Learners: mlr_learners
• `as.data.table(mlr_learners)` for a table of available Learners in the running session (depending on the loaded packages).
• `mlr3pipelines` to combine learners with pre- and postprocessing steps.
• Package `mlr3viz` for some generic visualizations.
• Extension packages for additional task types:
- **mlr3proba** for probabilistic supervised regression and survival analysis.
- **mlr3cluster** for unsupervised clustering.

- **mlr3tuning** for tuning of hyperparameters, **mlr3tuningspaces** for established default tuning spaces.

Other Learner: LearnerClassif, LearnerRegr, Learner, mlr_learners_classif.debug, mlr_learners_classif.featureless, mlr_learners_regr.debug, mlr_learners_regr.featureless, mlr_learners_regr.rpart, mlr_learners

---

**mlr_learners_regr.debug**

*Regression Learner for Debugging*

**Description**

A simple **LearnerRegr** used primarily in the unit tests and for debugging purposes. If no hyperparameter is set, it simply constantly predicts the mean value of the training data. The following hyperparameters trigger the following actions:

- **predict_missing**: Ratio of predictions which will be NA.
- **predict_missing_type**: To encode missingness. “na” will insert NA values, “omit” will just return fewer predictions than requested.
- **save_tasks**: Saves input task in `model` slot during training and prediction.
- **threads**: Number of threads to use. Has no effect.
- **x**: Numeric tuning parameter. Has no effect.

**Dictionary**

This Learner can be instantiated via the dictionary **mlr_learners** or with the associated sugar function **lrn()**:

```r
mlr_learners$get("regr.debug")
lrn("regr.debug")
```

**Meta Information**

- Task type: “regr”
- Predict Types: “response”, “se”
- Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
- Required Packages: **mlr3**

**Parameters**

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>predict_missing</td>
<td>numeric</td>
<td>0</td>
<td>[0,1]</td>
<td>-</td>
</tr>
<tr>
<td>predict_missing_type</td>
<td>character</td>
<td>na</td>
<td>-</td>
<td>na, omit</td>
</tr>
<tr>
<td>save_tasks</td>
<td>logical</td>
<td>FALSE</td>
<td>-</td>
<td>TRUE, FALSE</td>
</tr>
<tr>
<td>threads</td>
<td>integer</td>
<td>-</td>
<td>[1,∞)</td>
<td>-</td>
</tr>
<tr>
<td>x</td>
<td>numeric</td>
<td>-</td>
<td>[0,1]</td>
<td>-</td>
</tr>
</tbody>
</table>
Super classes

`mlr3::Learner` -> `mlr3::LearnerRegr` -> `LearnerRegrDebug`

Methods

**Public methods:**

- `LearnerRegrDebug$new()`
- `LearnerRegrDebug$clone()`

**Method `new()`**: Creates a new instance of this R6 class.

*Usage:*

```
LearnerRegrDebug$new()
```

**Method `clone()`**: The objects of this class are cloneable with this method.

*Usage:*

```
LearnerRegrDebug$clone(deep = FALSE)
```

*Arguments:*

depth Whether to make a deep clone.

See Also

- Chapter in the [mlr3book](https://mlr3book.mlr-org.com/basics.html#learners)
- Package `mlr3learners` for a solid collection of essential learners.
- Package `mlr3extralearners` for more learners.
- Dictionary of Learners: `mlr_learners`
- `as.data.table(mlr_learners)` for a table of available Learners in the running session (depending on the loaded packages).
- `mlr3pipelines` to combine learners with pre- and postprocessing steps.
- Package `mlr3viz` for some generic visualizations.
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.
- `mlr3tuning` for tuning of hyperparameters, `mlr3tuningspaces` for established default tuning spaces.

Other Learner: LearnerClassif, LearnerRegr, Learner, mlr_learners_classif.debug, mlr_learners_classif.featureless, mlr_learners_classif.rpart, mlr_learners_regr.featureless, mlr_learners_regr.rpart, mlr_learners
Examples

```r
task = tsk("mtcars")
learner = lrn("regr.debug", save_tasks = TRUE)
learner$train(task, row_ids = 1:20)
prediction = learner$predict(task, row_ids = 21:32)

learner$model$task_train
learner$model$task_predict
```

---

**mlr_learners_regr.featureless**

*Featureless Regression Learner*

**Description**

A simple LearnerRegr which only analyses the response during train, ignoring all features. If hyperparameter robust is FALSE (default), constantly predicts mean(y) as response and sd(y) as standard error. If robust is TRUE, median() and mad() are used instead of mean() and sd(), respectively.

**Dictionary**

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

```r
mlr_learners$get("regr.featureless")
lrn("regr.featureless")
```

**Meta Information**

- Task type: "regr"
- Predict Types: "response", "se"
- Feature Types: "logical", "integer", "numeric", "character", "factor", "ordered", "POSIXct"
- Required Packages: mlr3, 'stats'

**Parameters**

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>robust</td>
<td>logical</td>
<td>TRUE</td>
<td>-</td>
<td>TRUE, FALSE</td>
</tr>
</tbody>
</table>

**Super classes**

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrFeatureless
Methods

Public methods:

- LearnerRegrFeatureless$new()
- LearnerRegrFeatureless$importance()
- LearnerRegrFeatureless$selected_features()
- LearnerRegrFeatureless$clone()

Method `new()`: Creates a new instance of this R6 class.

Usage:

```r
LearnerRegrFeatureless$new()
```

Method `importance()`: All features have a score of 0 for this learner.

Usage:

```r
LearnerRegrFeatureless$importance()
```

Returns: Named numeric().

Method `selected_features()`: Selected features are always the empty set for this learner.

Usage:

```r
LearnerRegrFeatureless$selected_features()
```

Returns: character(0).

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

```r
LearnerRegrFeatureless$clone(deep = FALSE)
```

Arguments:

deep Whether to make a deep clone.

See Also

- Package `mlr3learners` for a solid collection of essential learners.
- Package `mlr3extralearners` for more learners.
- Dictionary of Learners: `mlr_learners`
- as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
- `mlr3pipelines` to combine learners with pre- and postprocessing steps.
- Package `mlr3viz` for some generic visualizations.
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.
- `mlr3tuning` for tuning of hyperparameters, `mlr3tuningspaces` for established default tuning spaces.

Other Learner: `LearnerClassif,LearnerRegr,Learner,mlr_learners_classif.debug,mlr_learners_classif.featureless,mlr_learners_classif.rpart,mlr_learners_regr.debug,mlr_learners_regr.rpart,mlr_learners`
mlr_learners_regr.rpart

Regression Tree Learner

Description

Parameter `xval` is set to 0 in order to save some computation time. Parameter `model` has been renamed to `keep_model`.

Dictionary

This Learner can be instantiated via the dictionary `mlr_learners` or with the associated sugar function `lrn()`:

```r
mlr_learners$get("regr.rpart")
lrn("regr.rpart")
```

Meta Information

- Task type: “regr”
- Predict Types: “response”
- Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
- Required Packages: mlr3, rpart

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp</td>
<td>numeric</td>
<td>0.01</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>keep_model</td>
<td>logical</td>
<td>FALSE</td>
<td>-</td>
<td>TRUE, FALSE</td>
</tr>
<tr>
<td>maxcompete</td>
<td>integer</td>
<td>4</td>
<td>[0, \infty)</td>
<td>-</td>
</tr>
<tr>
<td>maxdepth</td>
<td>integer</td>
<td>30</td>
<td>[1, 30]</td>
<td>-</td>
</tr>
<tr>
<td>maxsurrogate</td>
<td>integer</td>
<td>5</td>
<td>[0, \infty)</td>
<td>-</td>
</tr>
<tr>
<td>minbucket</td>
<td>integer</td>
<td>-</td>
<td>[1, \infty)</td>
<td>-</td>
</tr>
<tr>
<td>minsplit</td>
<td>integer</td>
<td>20</td>
<td>[1, \infty)</td>
<td>-</td>
</tr>
<tr>
<td>surrogatestyle</td>
<td>integer</td>
<td>0</td>
<td>[0, 1]</td>
<td>-</td>
</tr>
<tr>
<td>usesurrogate</td>
<td>integer</td>
<td>2</td>
<td>[0, 2]</td>
<td>-</td>
</tr>
<tr>
<td>xval</td>
<td>integer</td>
<td>10</td>
<td>[0, \infty)</td>
<td>-</td>
</tr>
</tbody>
</table>

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRpart
Methods

Public methods:

• LearnerRegrRpart$new()
• LearnerRegrRpart$importance()
• LearnerRegrRpart$selected_features()
• LearnerRegrRpart$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
LearnerRegrRpart$new()

Method importance(): The importance scores are extracted from the model slot variable.importance.

Usage:
LearnerRegrRpart$importance()

Returns: Named numeric().

Method selected_features(): Selected features are extracted from the model slot frame$var.

Usage:
LearnerRegrRpart$selected_features()

Returns: character().

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerRegrRpart$clone(deep = FALSE)

Arguments:

depth: Whether to make a deep clone.

References


See Also

• Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
• Package mlr3learners for a solid collection of essential learners.
• Package mlr3exralearners for more learners.
• Dictionary of Learners: mlr_learners
• as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
• mlr3pipelines to combine learners with pre- and postprocessing steps.
• Package mlr3viz for some generic visualizations.
• Extension packages for additional task types:
- **mlr3proba** for probabilistic supervised regression and survival analysis.
- **mlr3cluster** for unsupervised clustering.
- **mlr3tuning** for tuning of hyperparameters, **mlr3tuningspaces** for established default tuning spaces.

Other Learner: LearnerClassif, LearnerRegr, Learner, mlr_learners_classif.debug, mlr_learners_classif.featureless, mlr_learners_classif.rpart, mlr_learners_regr.debug, mlr_learners_regr.featureless, mlr_learners

---

**mlr_measures**

**Dictionary of Performance Measures**

**Description**

A simple mlr3misc::Dictionary storing objects of class Measure. Each measure has an associated help page, see mlr_measures_[id].

This dictionary can get populated with additional measures by add-on packages. E.g., **mlr3proba** adds survival measures and **mlr3cluster** adds cluster analysis measures.

For a more convenient way to retrieve and construct measures, see msr()/msrs().

**Format**

R6::R6Class object inheriting from mlr3misc::Dictionary.

**Methods**

See mlr3misc::Dictionary.

**S3 methods**

- `as.data.table(dict)`
  
  mlr3misc::Dictionary -> data.table::data.table()

  Returns a data.table::data.table() with fields "key", "task_type", "predict_type", and "packages" as columns.

**See Also**

Sugar functions: msr(), msrs()

Implementation of most measures: **mlr3measures**

Other Dictionary: mlr_learners, mlr_resamplings, mlr_task_generators, mlr_tasks

Other Measure: MeasureClassif, MeasureRegr, MeasureSimilarity, Measure, mlr_measures_aic, mlr_measures_bic, mlr_measures_classif.costs, mlr_measures_debug, mlr_measures_elapsed_time, mlr_measures_oob_error, mlr_measures_selected_features
Examples

```r
as.data.table(mlr_measures)
mlr_measures$get("classif.ce")
msr("regr.mse")
```

---

### Description

Calculates the Akaike Information Criterion (AIC) which is a trade-off between goodness of fit (measured in terms of log-likelihood) and model complexity (measured in terms of number of included features). Internally, `stats::AIC()` is called with parameter `k` (defaulting to 2). Requires the learner property "loglik", NA is returned for unsupported learners.

### Dictionary

This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("aic")
msr("aic")
```

### Meta Information

- Task type: “NA”
- Range: \((-\infty, \infty)\)
- Minimize: TRUE
- Average: macro
- Required Prediction: “response”
- Required Packages: `mlr3`

### Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>integer</td>
<td>-</td>
<td>([0, \infty))</td>
<td>-</td>
</tr>
</tbody>
</table>

### Super class

`mlr3::Measure` -> MeasureAIC
Methods

Public methods:

• MeasureAIC$new()
• MeasureAIC$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureAIC$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureAIC$clone(deep = FALSE)

Arguments:
dee p Whether to make a deep clone.

See Also

• Chapter in the mlr3book: https://mlr3book.ml-r.org.com/basics.html#train-predict
• Package mlr3measures for the scoring functions. Dictionary of Measures: mlr_measures as.data.table(mlr_measures) for a table of available Measures in the running session (depending on the loaded packages).
• Extension packages for additional task types:
  – mlr3proba for probabilistic supervised regression and survival analysis.
  – mlr3cluster for unsupervised clustering.

Other Measure: MeasureClassif, MeasureRegr, MeasureSimilarity, Measure, mlr_measures_bic,
mlr_measures_classif.costs, mlr_measures_debug, mlr_measures_elapsed_time, mlr_measures_oob_error,
mlr_measures_selected_features, mlr_measures

---

mlr_measures_bic Bayesian Information Criterion Measure

Description

Calculates the Bayesian Information Criterion (BIC) which is a trade-off between goodness of fit (measured in terms of log-likelihood) and model complexity (measured in terms of number of included features). Internally, stats::BIC() is called. Requires the learner property "loglik", NA is returned for unsupported learners.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("bic")
msr("bic")
Meta Information

- Task type: “NA”
- Range: \((-\infty, \infty)\)
- Minimize: TRUE
- Average: macro
- Required Prediction: “response”
- Required Packages: \texttt{mlr3}

Parameters

Empty ParamSet

Super class

\texttt{mlr3::Measure} \rightarrow \texttt{MeasureBIC}

Methods

Public methods:

- \texttt{MeasureBIC$\texttt{new}()} \\
- \texttt{MeasureBIC$\texttt{clone}()}

Method \texttt{new}(): Creates a new instance of this \texttt{R6} class.

\texttt{Usage:}

\texttt{MeasureBIC$\texttt{new}()} \\

Method \texttt{clone}(): The objects of this class are cloneable with this method.

\texttt{Usage:}

\texttt{MeasureBIC$\texttt{clone}(\texttt{deep} = \texttt{FALSE})}

\texttt{Arguments:}

\texttt{deep} Whether to make a deep clone.

See Also

- Chapter in the \texttt{mlr3book}: \url{https://mlr3book.mlr-org.com/basics.html#train-predict}
- Package \texttt{mlr3measures} for the scoring functions. Dictionary of Measures: \texttt{mlr_measures}
  \texttt{as.data.table(mlr_measures)} for a table of available Measures in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - \texttt{mlr3proba} for probabilistic supervised regression and survival analysis.
  - \texttt{mlr3cluster} for unsupervised clustering.

Other Measure: \texttt{MeasureClassif, MeasureRegr, MeasureSimilarity, Measure, mlr_measures_aic, mlr_measures_classif.costs, mlr_measures_debug, mlr_measures_elapsed_time, mlr_measures_oob_error, mlr_measures_selected_features, mlr_measures}
Description

Classification measure defined as

\[ \frac{1}{n} \sum_{i=1}^{n} w_i (t_i = r_i) . \]

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r	mlr_measures$get("classif.acc")
msr("classif.acc")
```

Parameters

Empty ParamSet

Meta Information

- Type: "classif"
- Range: \([0, 1]\)
- Minimize: FALSE
- Required prediction: response

Note

The score function calls mlr3measures::acc() from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

**mlr_measures_classif.auc**

**Area Under the ROC Curve**

**Description**
Computes the area under the Receiver Operator Characteristic (ROC) curve. The AUC can be interpreted as the probability that a randomly chosen positive observation has a higher predicted probability than a randomly chosen negative observation.

**Details**
This measure is undefined if the true values are either all positive or all negative.

**Dictionary**
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.auc")
msr("classif.auc")
```

**Parameters**
Empty ParamSet

**Meta Information**
- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: prob

**Note**
The score function calls mlr3measures::auc() from package mlr3measures.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.
See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

mlr_measures_classif.bacc

**Balanced Accuracy**

**Description**

Computes the weighted balanced accuracy, suitable for imbalanced data sets. It is defined analogously to the definition in sklearn.

First, the sample weights $w$ are normalized per class:

$$\hat{w}_i = \frac{w_i}{\sum_j 1(y_j = y_i)w_i}.$$  

The balanced accuracy is calculated as

$$\frac{1}{\sum_i \hat{w}_i} \sum_i 1(r_i = t_i)\hat{w}_i.$$  

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.bacc")
msr("classif.bacc")
```
**mlr_measures_classif.bbrier**

**Parameters**

Empty ParamSet

**Meta Information**

- **Type**: "classif"
- **Range**: [0, 1]
- **Minimize**: FALSE
- **Required prediction**: response

**Note**

The score function calls `mlr3measures::bacc()` from package `mlr3measures`. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

**See Also**

Dictionary of Measures: `mlr_measures`
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


Other multiclass classification measures: `mlr_measures_classif.acc, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.logloss, mlr_measures_classif.mbrier`  

---

**mlr_measures_classif.bbrier**

*Binary Brier Score*

**Description**

Brier score for binary classification problems defined as

\[
\frac{1}{n} \sum_{i=1}^{n} w_i (I_i - p_i)^2.
\]

\(w_i\) are the sample weights, \(I_i\) is 1 if observation \(i\) belongs to the positive class, and 0 otherwise.

Note that this (more common) definition of the Brier score is equivalent to the original definition of the multi-class Brier score (see `mbrier()`) divided by 2.
Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("classif.bbrier")
msr("classif.bbrier")

Parameters

Empty ParamSet

Meta Information

- Type: "binary"
- Range: [0, 1]
- Minimize: TRUE
- Required prediction: prob

Note

The score function calls mlr3measures::bbrier() from package mlr3measures.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


Classification Error

Description

Classification measure defined as
\[
\frac{1}{n} \sum_{i=1}^{n} w_i (t_i \neq r_i).
\]

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.ce")
msr("classif.ce")
```

Parameters

Empty ParamSet

Meta Information

- Type: "classif"
- Range: [0, 1]
- Minimize: TRUE
- Required prediction: response

Note

The score function calls mlr3measures::ce() from package mlr3measures.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Cost-sensitive Classification Measure

Description

Uses a cost matrix to create a classification measure. True labels must be arranged in columns, predicted labels must be arranged in rows. The cost matrix is stored as slot $costs.

For calculation of the score, the confusion matrix is multiplied element-wise with the cost matrix. The costs are then summed up (and potentially divided by the number of observations if normalize is set to TRUE (default)).

This measure requires the Task during scoring to ensure that the rows and columns of the cost matrix are in the same order as in the confusion matrix.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.costs")
msr("classif.costs")
```

Meta Information

- Task type: “classif”
- Range: \((-\infty, \infty)\)
- Minimize: TRUE
- Average: macro
- Required Prediction: “response”
- Required Packages: mlr3

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>normalize</td>
<td>logical</td>
<td>TRUE</td>
<td>-</td>
<td>TRUE, FALSE</td>
</tr>
</tbody>
</table>
Super classes

`mlr3::Measure` -> `mlr3::MeasureClassif` -> `MeasureClassifCosts`

Active bindings

`costs` (numeric matrix())

Matrix of costs (truth in columns, predicted response in rows).

Methods

Public methods:

• `MeasureClassifCosts$new()`
• `MeasureClassifCosts$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

`MeasureClassifCosts$new()`

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

`MeasureClassifCosts$clone(deep = FALSE)`

Arguments:

depth Whether to make a deep clone.

See Also

• Chapter in the `mlr3book`: https://mlr3book.ml-org.com/basics.html#train-predict

• Package `mlr3measures` for the scoring functions. Dictionary of Measures: `mlr_measures` as.data.table(`mlr_measures`) for a table of available Measures in the running session (depending on the loaded packages).

• Extension packages for additional task types:
  – `mlr3proba` for probabilistic supervised regression and survival analysis.
  – `mlr3cluster` for unsupervised clustering.

Other Measure: `MeasureClassif`, `MeasureRegr`, `MeasureSimilarity`, `Measure`, `mlr_measures_aic`, `mlr_measures_bic`, `mlr_measures_debug`, `mlr_measures_elapsed_time`, `mlr_measures_oob_error`, `mlr_measures_selected_features`, `mlr_measures`


Examples

```r
get a cost sensitive task
task = tsk("german_credit")

cost matrix as given on the UCI page of the german credit data set
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
costs = matrix(c(0, 5, 1, 0), nrow = 2)
dimnames(costs) = list(truth = task$class_names, predicted = task$class_names)
print(costs)

mlr3 needs truth in columns, predictions in rows
costs = t(costs)

create a cost measure which calculates the absolute costs
m = msr("classif.costs", id = "german_credit_costs", costs = costs, normalize = FALSE)

fit models and evaluate with the cost measure
learner = lrn("classif.rpart")
rr = resample(task, learner, rsmp("cv", folds = 3))
rr$aggregate(m)
```

---

**mmlr_measures_classif.dor**

*Diagnostic Odds Ratio*

---

**Description**

Binary classification measure defined as

\[
\frac{TP}{FP} \div \frac{FN}{TN}
\]

**Details**

This measure is undefined if FP = 0 or FN = 0.

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function `msr()`:

```r
mlr_measures$get("classif.dor")
msr("classif.dor")
```

**Parameters**

Empty ParamSet
Meta Information

- Type: "binary"
- Range: $[0, \infty)$
- Minimize: FALSE
- Required prediction: response

Note

The score function calls `mlr3measures::dor()` from package `mlr3measures`.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: `mlr_measures` as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

```
mlr_measures_classif.fbeta
F-beta Score
```

Description

Binary classification measure defined with $P$ as `precision()` and $R$ as `recall()` as

$$(1 + \beta^2) \frac{P \cdot R}{(\beta^2 P) + R}.$$ 

It measures the effectiveness of retrieval with respect to a user who attaches $\beta$ times as much importance to recall as precision. For $\beta = 1$, this measure is called "F1" score.
Details

This measure is undefined if

- TP = 0
- precision or recall is undefined, i.e. TP + FP = 0 or TP + FN = 0.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.fbeta")
msr("classif.fbeta")
```

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>integer</td>
<td>-</td>
<td>[0, ∞)</td>
<td>-</td>
</tr>
</tbody>
</table>

Meta Information

- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response

Note

The score function calls mlr3measures::fbeta() from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

**False Discovery Rate**

**Description**

Binary classification measure defined as

\[
\text{FDR} = \frac{FP}{TP + FP}
\]

**Details**

This measure is undefined if TP + FP = 0.

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.fdr")
msr("classif.fdr")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "binary"
- Range: [0, 1]
- Minimize: TRUE
- Required prediction: response

**Note**

The score function calls mlr3measures::fdr() from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.
See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


mlr_measures_classif.fn

False Negatives

Description

Classification measure counting the false negatives (type 2 error), i.e. the number of predictions indicating a negative class label while in fact it is positive. This is sometimes also called a "false alarm".

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("classif.fnr")
msr("classif.fnr")

Parameters

Empty ParamSet

Meta Information

- Type: "binary"
- Range: [0, ∞)
- Minimize: TRUE
- Required prediction: response
Note

The score function calls `mlr3measures::fn()` from package `mlr3measures`.

If the measure is undefined for the input, `NaN` is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: `mlr_measures` as `data.table(mlr_measures)` for a complete table of all (also dynamically created) `Measure` implementations.


---

`mlr_measures_classif.fnr`

*False Negative Rate*

**Description**

Binary classification measure defined as

\[
\frac{FN}{TP + FN}
\]

Also known as "miss rate".

**Details**

This measure is undefined if \( TP + FN = 0 \).

**Dictionary**

This `Measure` can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("classif.fnr")
msr("classif.fnr")
```
**mlr_measures_classif.fomr**

**False Omission Rate**

**Description**

Binary classification measure defined as

\[
\frac{FN}{FN + TN}
\]
**Details**

This measure is undefined if FN + TN = 0.

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
classif.fomr
msr(classif.fomr)
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "binary"
- Range: [0, 1]
- Minimize: TRUE
- Required prediction: response

**Note**

The score function calls `mlr3measures::fomr()` from package `mlr3measures`.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

**See Also**

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


**mlr_measures_classif.fp**

*False Positives*

**Description**

Classification measure counting the false positives (type 1 error), i.e. the number of predictions indicating a positive class label while in fact it is negative.

**Dictionary**

This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("classif.fp")
msr("classif.fp")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "binary"
- Range: \([0, \infty)\)
- Minimize: TRUE
- Required prediction: response

**Note**

The score function calls `mlr3measures::fp()` from package `mlr3measures`.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

**See Also**

Dictionary of Measures: `mlr_measures` as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

**mlr_measures_classif.fpr**

*False Positive Rate*

**Description**

Binary classification measure defined as

\[
\text{FP} \quad \text{FP} + \text{TN}
\]

Also know as fall out or probability of false alarm.

**Details**

This measure is undefined if FP + TN = 0.

**Dictionary**

This **Measure** can be instantiated via the **dictionary** `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("classif.fpr")
msr("classif.fpr")
```

**Parameters**

Empty **ParamSet**

**Meta Information**

- Type: "binary"
- Range: [0, 1]
- Minimize: `TRUE`
- Required prediction: `response`
**Note**

The score function calls `mlr3measures::fpr()` from package `mlr3measures`. If the measure is undefined for the input, `NaN` is returned. This can be customized by setting the field `na_value`.

**See Also**

Dictionary of Measures: `mlr_measures` as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_classif.logloss**

*Log Loss*

**Description**

Classification measure defined as

\[-\frac{1}{n} \sum_{i=1}^{n} w_i \log(p_i)\]

where \(p_i\) is the probability for the true class of observation \(i\).

**Dictionary**

This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

`mlr_measures$get("classif.logloss")`

`msr("classif.logloss")`
Parameters

Empty ParamSet

Meta Information

- Type: "classif"
- Range: [0, ∞)
- Minimize: TRUE
- Required prediction: prob

Note

The score function calls mlr3measures::logloss() from package mlr3measures. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


Description

Multiclass Brier Score

Brier score for multi-class classification problems with \( r \) labels defined as

\[
\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{r} (I_{ij} - p_{ij})^2.
\]

\( I_{ij} \) is 1 if observation \( i \) has true label \( j \), and 0 otherwise.

Note that there also is the more common definition of the Brier score for binary classification problems in bbrier().
Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.mbrier")
msr("classif.mbrier")
```

Parameters

Empty ParamSet

Meta Information

- **Type**: "classif"
- **Range**: [0, 2]
- **Minimize**: TRUE
- **Required prediction**: prob

Note

The score function calls `mlr3measures::mbrier()` from package `mlr3measures`. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: `mlr_measures` as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


Matthews Correlation Coefficient

Description

Binary classification measure defined as

\[
\frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}.
\]

Details

This above formula is undefined if any of the four sums in the denominator is 0. The denominator is then set to 1.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.mcc")
msr("classif.mcc")
```

Parameters

Empty ParamSet

Meta Information

- Type: "binary"
- Range: \([-1, 1]\]
- Minimize: FALSE
- Required prediction: response

Note

The score function calls `mlr3measures::mcc()` from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`. 

mlr_measures_classif.npv

**Negative Predictive Value**

**Description**

Binary classification measure defined as

\[
\text{NPV} = \frac{\text{TN}}{\text{FN} + \text{TN}}
\]

**Details**

This measure is undefined if \(\text{FN} + \text{TN} = 0\).

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function mstr():

```r
mlr_measures$get("classif.npv")
mstr("classif.npv")
```

**Parameters**

Empty ParamSet
Meta Information

- Type: "binary"
- Range: \([0, 1]\)
- Minimize: FALSE
- Required prediction: response

Note

The score function calls `mlr3measures::npv()` from package `mlr3measures`. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: `mlr_measures` as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_classif.ppv**

*Positive Predictive Value*

**Description**

Binary classification measure defined as

\[
\text{TP} \quad \text{TP + FP}
\]

Also know as "precision".
Details
This measure is undefined if TP + FP = 0.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.ppv")
msr("classif.ppv")
```

Parameters
Empty ParamSet

Meta Information
- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response

Note
The score function calls mlr3measures::ppv() from package mlr3measures.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


**mlr_measures_classif.prauc**

*Area Under the Precision-Recall Curve*

**Description**

Computes the area under the Precision-Recall curve (PRC). The PRC can be interpreted as the relationship between precision and recall (sensitivity), and is considered to be a more appropriate measure for unbalanced datasets than the ROC curve. The PRC is computed by integration of the piecewise function.

**Details**

This measure is undefined if the true values are either all positive or all negative.

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.prauc")
msr("classif.prauc")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: prob

**Note**

The score function calls `mlr3measures::prauc()` from package mlr3measures. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

**See Also**

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_classif.precision**

*Positive Predictive Value*

**Description**

Binary classification measure defined as

\[
\text{Positive Predictive Value} = \frac{TP}{TP + FP}
\]

Also know as "precision".

**Details**

This measure is undefined if TP + FP = 0.

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.precision")
msr("classif.precision")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response
Note
The score function calls `mlr3measures::precision()` from package `mlr3measures`.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the
field `na_value`.

See Also
Dictionary of Measures: `mlr_measures` as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure
implementations.
Other classification measures: `mlr_measures_classif.acc`, `mlr_measures_classif.auc`, `mlr_measures_classif.bacc`,
`mlr_measures_classif.bbrier`, `mlr_measures_classif.ce`, `mlr_measures_classif.costs`,
`mlr_measures_classif.dor`, `mlr_measures_classif.fbeta`, `mlr_measures_classif.fdr`, `mlr_measures_classif.fnr`,
`mlr_measures_classif.fn`, `mlr_measures_classif.fomr`, `mlr_measures_classif.fpr`, `mlr_measures_classif.fp`,
`mlr_measures_classif.logloss`, `mlr_measures_classif.mbrier`, `mlr_measures_classif.mcc`,
`mlr_measures_classif.npv`, `mlr_measures_classif.ppv`, `mlr_measures_classif.prauc`, `mlr_measures_classif.recall`,
`mlr_measures_classif.sensitivity`, `mlr_measures_classif.specificity`, `mlr_measures_classif.tnr`,
`mlr_measures_classif.fomr`, `mlr_measures_classif.tn`, `mlr_measures_classif.tpr`, `mlr_measures_classif.tp`
Other binary classification measures: `mlr_measures_classif.auc`, `mlr_measures_classif.bbrier`,
`mlr_measures_classif.dor`, `mlr_measures_classif.fbeta`, `mlr_measures_classif.fdr`, `mlr_measures_classif.fnr`,
`mlr_measures_classif.fn`, `mlr_measures_classif.fomr`, `mlr_measures_classif.fpr`, `mlr_measures_classif.fp`,
`mlr_measures_classif.mcc`, `mlr_measures_classif.npv`, `mlr_measures_classif.ppv`, `mlr_measures_classif.prauc`,
`mlr_measures_classif.recall`, `mlr_measures_classif.sensitivity`, `mlr_measures_classif.specificity`,
`mlr_measures_classif.tnr`, `mlr_measures_classif.tn`, `mlr_measures_classif.tpr`, `mlr_measures_classif.tp`

---

**mlr_measures_classif.recall**

*True Positive Rate*

**Description**
Binary classification measure defined as

\[
\frac{TP}{TP + FN}
\]

Also known as "recall" or "sensitivity".

**Details**
This measure is undefined if TP + FN = 0.

**Dictionary**
This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

`mlr_measures$get("classif.recall")`
`msr("classif.recall")`
mlr_measures_classif.sensitivity

Parameters

Empty ParamSet

Meta Information

- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response

Note

The score function calls mlr3measures::recall() from package mlr3measures.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other classification measures: mlr_measures_classif.acc, mlr_measures_classif.auc, mlr_measures_classif.bacc,
mlr_measures_classif.bbrier, mlr_measures_classif.ce, mlr_measures_classif.costs,
mlr_measures_classif.dor, mlr_measures_classif.fbeta, mlr_measures_classif.fdr, mlr_measures_classif.fmr,
mlr_measures_classif.fn, mlr_measures_classif.fomr, mlr_measures_classif.fpr, mlr_measures_classif.fp,
mlr_measures_classif.logloss, mlr_measures_classif.mbrier, mlr_measures_classif.mcc,
mlr_measures_classif.npv, mlr_measures_classif.pauc, mlr_measures_classif.pr, mlr_measures_classif.prp,
mlr_measures_classif.precision, mlr_measures_classif.sensitivity, mlr_measures_classif.specificity,
mlr_measures_classif.sensitivity, mlr_measures_classif.specificity, mlr_measures_classif.tn,
mlr_measures_classif.tn, mlr_measures_classif.tpr, mlr_measures_classif.tp

Other binary classification measures: mlr_measures_classif.acc, mlr_measures_classif.bacc,
mlr_measures_classif.bbrier, mlr_measures_classif.fbeta, mlr_measures_classif.fdr, mlr_measures_classif.fmr,
mlr_measures_classif.fn, mlr_measures_classif.fomr, mlr_measures_classif.fpr, mlr_measures_classif.fp,
mlr_measures_classif.mcc, mlr_measures_classif.npv, mlr_measures_classif.pauc, mlr_measures_classif.pr,
mlr_measures_classif.prp, mlr_measures_classif.precision, mlr_measures_classif.sensitivity, mlr_measures_classif.specificity,
mlr_measures_classif.sensitivity, mlr_measures_classif.specificity, mlr_measures_classif.tn,
mlr_measures_classif.tn, mlr_measures_classif.tpr, mlr_measures_classif.tp

mlr_measures_classif.sensitivity

True Positive Rate

Description

Binary classification measure defined as

\[
\frac{TP}{TP + FN}
\]

Also know as "recall" or "sensitivity".
Details
This measure is undefined if TP + FN = 0.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("classif.sensitivity")
msr("classif.sensitivity")

Parameters
Empty ParamSet

Meta Information
- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response

Note
The score function calls mlr3measures::sensitivity() from package mlr3measures.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


mlr_measures_classif.specificity

True Negative Rate

**Description**

Binary classification measure defined as

$$\frac{TN}{FP + TN}$$

Also know as "specificity".

**Details**

This measure is undefined if $FP + TN = 0$.

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function `msr()`:

```r
mlr_measures$get("classif.specificity")
msr("classif.specificity")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response

**Note**

The score function calls `mlr3measures::specificity()` from package mlr3measures.  
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`. 

Description

Classification measure counting the true negatives, i.e. the number of predictions correctly indicating a negative class label.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.tn")
msr("classif.tn")
```

Parameters

Empty ParamSet

Meta Information

- Type: "binary"
- Range: [0, \(\infty\)]
- Minimize: FALSE
- Required prediction: response
Note

The score function calls `mlr3measures::tn()` from package `mlr3measures`.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

mlr_measures_classif.tnr

True Negative Rate

Description

Binary classification measure defined as

\[ \frac{TN}{FP + TN} \]

Also know as "specificity".

Details

This measure is undefined if FP + TN = 0.
Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.tnr")
msr("classif.tnr")
```

Parameters

Empty ParamSet

Meta Information

- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response

Note

The score function calls `mlr3measures::tnr()` from package `mlr3measures`.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: `mlr_measures` as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


**Description**

Binary classification measure counting the true positives, i.e. the number of predictions correctly indicating a positive class label.

**Dictionary**

This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("classif.tp")
msr("classif.tp")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "binary"
- Range: \([0, \infty)\)
- Minimize: FALSE
- Required prediction: response

**Note**

The score function calls `mlr3measures::tp()` from package `mlr3measures`.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

**See Also**

Dictionary of Measures: `mlr_measures` as `data.table(mlr_measures)` for a complete table of all (also dynamically created) Measure implementations.

**mlr_measures_classif.tpr**

**True Positive Rate**

**Description**

Binary classification measure defined as

\[
\frac{TP}{TP + FN}
\]

Also know as "recall" or "sensitivity".

**Details**

This measure is undefined if TP + FN = 0.

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("classif.tpr")
msr("classif.tpr")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response
Note

The score function calls `mlr3measures::tpr()` from package `mlr3measures`.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: `mlr_measures`

`as.data.table(mlr_measures)` for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_debug**  
*Debug Measure*

**Description**

This measure returns the number of observations in the `Prediction` object. Its main purpose is debugging. The parameter `na_ratio (numeric(1))` controls the ratio of scores which randomly are set to NA, between 0 (default) and 1.

**Dictionary**

This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("debug")
msr("debug")
```
Meta Information

- Task type: “NA”
- Range: $[0, \infty)$
- Minimize: NA
- Average: macro
- Required Prediction: “response”
- Required Packages: `mlr3`

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>na_ratio</td>
<td>numeric</td>
<td>-</td>
<td>$[0, 1]$</td>
<td>-</td>
</tr>
</tbody>
</table>

Super class

`mlr3::Measure` -> `MeasureDebug`

Methods

**Public methods:**

- `MeasureDebug$new()`
- `MeasureDebug$clone()`

**Method `new()`**: Creates a new instance of this R6 class.

*Usage:*
`MeasureDebug$new()`

**Method `clone()`**: The objects of this class are cloneable with this method.

*Usage:*
`MeasureDebug$clone(deep = FALSE)`

*Arguments:*

deep Whether to make a deep clone.

See Also

- Package `mlr3measures` for the scoring functions. Dictionary of Measures: `mlr_measures` as.data.table(`mlr_measures`) for a table of available Measures in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
mlr_measures_elapsed_time

Description

Measures the elapsed time during train ("time_train"), predict ("time_predict"), or both ("time_both").

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("time_train")
mshr("time_train")
```

Meta Information

- Task type: "NA"
- Range: \([0, \infty)\)
- Minimize: TRUE
- Average: macro
- Required Prediction: "response"
- Required Packages: mlr3

Parameters

Empty ParamSet

Super class

mlr3::Measure -> MeasureElapsedTime
Public fields

stages (character())
    Which stages of the learner to measure? Usually set during construction.

Methods

Public methods:

• MeasureElapsedTime$new()
• MeasureElapsedTime$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureElapsedTime$new(id = "elapsed_time", stages)

Arguments:
id (character(1))
    Identifier for the new instance.
stages (character())
    Subset of ("train", "predict"). The runtime of provided stages will be summed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureElapsedTime$clone(deep = FALSE)

Arguments:
deep  Whether to make a deep clone.

See Also

• Package mlr3measures for the scoring functions. Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a table of available Measures in the running session (de-
pending on the loaded packages).
• Extension packages for additional task types:
    – mlr3proba for probabilistic supervised regression and survival analysis.
    – mlr3cluster for unsupervised clustering.

Other Measure: MeasureClassif, MeasureRegr, MeasureSimilarity, Measure, mlr_measures_aic,
mlr_measures_bic, mlr_measures_classif.costs, mlr_measures_debug, mlr_measures_oob_error,
mlr_measures_selected_features, mlr_measures
Out-of-bag Error Measure

Description

Returns the out-of-bag error of the Learner for learners that support it (learners with property "oob_error"). Returns NA for unsupported learners.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("oob_error")
msr("oob_error")
```

Meta Information

- Task type: “NA”
- Range: \((-\infty, \infty)\)
- Minimize: TRUE
- Average: macro
- Required Prediction: “response”
- Required Packages: mlr3

Parameters

Empty ParamSet

Super class

`mlr3::Measure` -> `MeasureOOBEError`

Methods

Public methods:

- `MeasureOOBEError$new()`
- `MeasureOOBEError$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

`MeasureOOBEError$new()`

Method `clone()`: The objects of this class are cloneable with this method.
Usage:
MeasureOOBError$clone(deep = FALSE)

Arguments:
deep  Whether to make a deep clone.

See Also

• Package mlr3measures for the scoring functions. Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a table of available Measures in the running session (de-
pending on the loaded packages).
• Extension packages for additional task types:
  – mlr3proba for probabilistic supervised regression and survival analysis.
  – mlr3cluster for unsupervised clustering.

Other Measure: MeasureClassif, MeasureRegr, MeasureSimilarity, Measure, mlr_measures_aic,
mlr_measures_bic, mlr_measures_classif.costs, mlr_measures_debug, mlr_measures_elapsed_time,
mlr_measures_selected_features, mlr_measures

Diagram

mlr_measures_regr.bias

Bias

Description

Regression measure defined as

\[ \frac{1}{n} \sum_{i=1}^{n} w_i (t_i - r_i). \]

Good predictions score close to 0.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

mlr_measures$get("regr.bias")
msr("regr.bias")

Parameters

Empty ParamSet
Meta Information

- Type: "regr"
- Range: \((-\infty, \infty)\)
- Minimize: NA
- Required prediction: response

Note

The score function calls `mlr3measures::bias()` from package **mlr3measures**.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: **mlr_measures**
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


**mlr_measures_regr.sse**

---

**mlr_measures_regr.ktau**

*Kendall’s tau*

Description

Regression measure defined as Kendall’s rank correlation coefficient between truth and response. Calls `stats::cor()` with method set to “kendall”.

Dictionary

This Measure can be instantiated via the dictionary **mlr_measures** or with the associated sugar function `msr()`:

```r
mlr_measures$get("regr.ktau")
msr("regr.ktau")
```

Parameters

Empty ParamSet
mlr_measures_regr.mae

Meta Information

- Type: "regr"
- Range: \([-1, 1]\]
- Minimize: FALSE
- Required prediction: response

Note

The score function calls \texttt{mlr3measures::ktau()} from package \texttt{mlr3measures}.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field \texttt{na_value}.

See Also

Dictionary of Measures: mlr_measures

\texttt{as.data.table(mlr_measures)} for a complete table of all (also dynamically created) \texttt{Measure} implementations.


---

\textbf{mlr_measures_regr.mae} \hspace{0.5cm} \textit{Mean Absolute Error}

Description

Regression measure defined as

\[
\frac{1}{n} \sum_{i=1}^{n} w_i |t_i - r_i|.
\]

Dictionary

This \texttt{Measure} can be instantiated via the dictionary \texttt{mlr_measures} or with the associated sugar function \texttt{msr()}:

\begin{verbatim}
mlr_measures$get("regr.mae")
msr("regr.mae")
\end{verbatim}

Parameters

Empty ParamSet
**Meta Information**

- Type: "regr"
- Range: \([0, \infty)\)
- Minimize: TRUE
- Required prediction: response

**Note**

The score function calls `mlr3measures::mae()` from package `mlr3measures`. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

**See Also**

Dictionary of Measures: `mlr_measures`

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

**mlr_measures_regr.maxae**

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "regr"
- Range: \([0, \infty)\)
- Minimize: TRUE
- Required prediction: response

**Note**

The score function calls `mlr3measures::mape()` from package `mlr3measures`.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

**See Also**

Dictionary of Measures: `mlr_measures`

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_regr.maxae**

*Max Absolute Error*

**Description**

Regression measure defined as

\[
\max(|t_i - r_i|).
\]

**Dictionary**

This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("regr.maxae")
msr("regr.maxae")
```
Parameters
Empty ParamSet

Meta Information
- Type: "regr"
- Range: $[0, \infty)$
- Minimize: TRUE
- Required prediction: response

Note
The score function calls `mlr3measures::maxae()` from package `mlr3measures`.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also
Dictionary of Measures: `mlr_measures`
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

---

**mlr_measures_regr.medae**

*Median Absolute Error*

Description
Regression measure defined as

$$ \text{median} \left| t_i - r_i \right|. $$

Dictionary
This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("regr.medae")
msr("regr.medae")
```
mlr_measures_regr.medse

Parameters

Empty ParamSet

Meta Information

- Type: "regr"
- Range: $[0, \infty)$
- Minimize: TRUE
- Required prediction: response

Note

The score function calls mlr3measures::medae() from package mlr3measures.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

mlr_measures_regr.medse

Median Squared Error

Description

Regression measure defined as

\[ \text{median} \left[ \left( t_i - r_i \right)^2 \right]. \]

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("regr.medse")
msr("regr.medse")
### Parameters

Empty ParamSet

### Meta Information

- **Type:** "regr"
- **Range:** $[0, \infty)$
- **Minimize:** TRUE
- **Required prediction:** response

### Note

The score function calls `mlr3measures::medse()` from package *mlr3measures*. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

### See Also

- Dictionary of Measures: *mlr_measures*
- `as.data.table(mlr_measures)` for a complete table of all (also dynamically created) Measure implementations.

### Description

Regression measure defined as

\[
\frac{1}{n} \sum_{i=1}^{n} (t_i - r_i)^2.
\]

### Dictionary

This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("regr.mse")
msr("regr.mse")
```
**mlr_measures_regr.msle**

**Parameters**

Empty ParamSet

**Meta Information**

- **Type:** "regr"
- **Range:** $[0, \infty)$
- **Minimize:** TRUE
- **Required prediction:** response

**Note**

The score function calls `mlr3measures::mse()` from package `mlr3measures`. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

**See Also**

Dictionary of Measures: `mlr_measures` as `data.table(mlr_measures)` for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---

**mlr_measures_regr.msle**

*Mean Squared Log Error*

**Description**

Regression measure defined as

$$\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2.$$  

**Details**

This measure is undefined if any element of $t$ or $r$ is less than or equal to $-1$. 

---
Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("regr.msle")
msr("regr.msle")

Parameters

Empty ParamSet

Meta Information

- Type: "regr"
- Range: \([0, \infty)\)
- Minimize: TRUE
- Required prediction: response

Note

The score function calls mlr3measures::msle() from package mlr3measures.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other regression measures:
- mlr_measures_regr.bias
- mlr_measures_regr.ktau
- mlr_measures_regr.mae
- mlr_measures_regr.mape
- mlr_measures_regr.maxae
- mlr_measures_regr.medae
- mlr_measures_regr.medse
- mlr_measures_regr.mse
- mlr_measures_regr.pbias
- mlr_measures_regr.rae
- mlr_measures_regr.rmse
- mlr_measures_regr.rmsle
- mlr_measures_regr.rrse
- mlr_measures_regr.rse
- mlr_measures_regr.rsq
- mlr_measures_regr.sae
- mlr_measures_regr.smape
- mlr_measures_regr.srho
- mlr_measures_regr.sse

---

\textit{mlr\_measures\_regr\_pbias}

\textit{Percent Bias}

Description

Regression measure defined as

\[
\frac{1}{n} \sum_{i=1}^{n} w_i \frac{(t_i - r_i)}{|t_i|}.
\]

Good predictions score close to 0.
Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("regr.pbias")
msr("regr.pbias")
```

Parameters

Empty ParamSet

Meta Information

- Type: "regr"
- Range: \((-\infty, \infty)\)
- Minimize: NA
- Required prediction: response

Note

The score function calls `mlr3measures::pbias()` from package mlr3measures. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_regr.rae  Relative Absolute Error**

Description

Regression measure defined as

\[
\frac{\sum_{i=1}^{n} |t_i - r_i|}{\sum_{i=1}^{n} |t_i - \bar{t}|}.
\]

Can be interpreted as absolute error of the predictions relative to a naive model predicting the mean.
Details

This measure is undefined for constant \( t \).

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("regr.rae")
msr("regr.rae")
```

Parameters

Empty ParamSet

Meta Information

- Type: "regr"
- Range: \([0, \infty)\)
- Minimize: TRUE
- Required prediction: response

Note

The score function calls `mlr3measures::rae()` from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

**mlr_measures_regr.rmse**

*Root Mean Squared Error*

**Description**

Regression measure defined as

\[ \sqrt{\frac{1}{n} \sum_{i=1}^{n} w_i (t_i - r_i)^2}. \]

**Dictionary**

This **Measure** can be instantiated via the dictionary **mlr_measures** or with the associated sugar function **msr()**:

```r
mlr_measures$get("regr.rmse")
msr("regr.rmse")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "regr"
- Range: \([0, \infty)\)
- Minimize: \(\text{TRUE}\)
- Required prediction: response

**Note**

The score function calls **mlr3measures::rmse()** from package **mlr3measures**.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field **na_value**.

**See Also**

Dictionary of Measures: **mlr_measures**

as.data.table(**mlr_measures**) for a complete table of all (also dynamically created) Measure implementations.

**mlr_measures_regr.rmsle**

*Root Mean Squared Log Error*

**Description**

Regression measure defined as

\[
\sqrt{\frac{1}{n} \sum_{i=1}^{n} w_i (\ln(1 + t_i) - \ln(1 + r_i))^2}.
\]

**Details**

This measure is undefined if any element of \( t \) or \( r \) is less than or equal to \(-1\).

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("regr.rmsle")
msr("regr.rmsle")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "regr"
- Range: \([0, \infty)\)
- Minimize: TRUE
- Required prediction: response

**Note**

The score function calls `mlr3measures::rmsle()` from package mlr3measures. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.
See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other regression measures: mlr_measures_regr.bias, mlr_measures_regr.ktau, mlr_measures_regr.mae,
mlr_measures_regr.mape, mlr_measures_regr.maxae, mlr_measures_regr.medae, mlr_measures_regr.medse,
mlr_measures_regr.mse, mlr_measures_regr.msle, mlr_measures_regr.pbias, mlr_measures_regr.rae,
mlr_measures_regr.rmse, mlr_measures_regr.rrse, mlr_measures_regr.rse, mlr_measures_regr.rsq,
mlr_measures_regr.sae, mlr_measures_regr.smape, mlr_measures_regr.srho, mlr_measures_regr.sse

---

**mlr_measures_regr.rrse**

*Root Relative Squared Error*

**Description**

Regression measure defined as

\[
\sqrt{\frac{\sum_{i=1}^{n} (t_i - r_i)^2}{\sum_{i=1}^{n} (t_i - \bar{t})^2}}.
\]

Can be interpreted as root of the squared error of the predictions relative to a naive model predicting the mean.

**Details**

This measure is undefined for constant \( t \).

**Dictionary**

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("regr.rrse")
msr("regr.rrse")
```

**Parameters**

Empty ParamSet

**Meta Information**

- Type: "regr"
- Range: \([0, \infty)\)
- Minimize: TRUE
- Required prediction: response
Note

The score function calls `mlr3measures::rrse()` from package `mlr3measures`. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: `mlr_measures` as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

`mlr_measures_regr.rse` Relative Squared Error

Description

Regression measure defined as

\[ \frac{\sum_{i=1}^{n} (t_i - r_i)^2}{\sum_{i=1}^{n} (t_i - \bar{t})^2}. \]

Can be interpreted as squared error of the predictions relative to a naive model predicting the mean.

Details

This measure is undefined for constant \( t \).

Dictionary

This `Measure` can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("regr.rse")
msr("regr.rse")
```

Parameters

Empty ParamSet
Meta Information

- Type: "regr"
- Range: $[0, \infty)$
- Minimize: TRUE
- Required prediction: response

Note

The score function calls \texttt{mlr3measures::rse()} from package \texttt{mlr3measures}.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field \texttt{na_value}.

See Also

Dictionary of Measures: \texttt{mlr_measures}

\texttt{as.data.table(mlr_measures)} for a complete table of all (also dynamically created) Measure implementations.

Other regression measures: \texttt{mlr_measures_regr.bias, mlr_measures_regr.ktau, mlr_measures_regr.mae, mlr_measures_regr.mape, mlr_measures_regr.maxae, mlr_measures_regr.medae, mlr_measures_regr.medse, mlr_measures_regr.mse, mlr_measures_regr.msle, mlr_measures_regr.pbias, mlr_measures_regr.rae, mlr_measures_regr.rmse, mlr_measures_regr.rmsle, mlr_measures_regr.rrse, mlr_measures_regr.rsq, mlr_measures_regr.sae, mlr_measures_regr.smape, mlr_measures_regr.srho, mlr_measures_regr.sse}
### mlr_measures_regr.sae

**Sum of Absolute Errors**

**Description**

Regression measure defined as

$$\sum_{i=1}^{n} |t_i - r_i|.$$  

**Dictionary**

This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("regr.sae")
msr("regr.sae")
```
Symmetric Mean Absolute Percent Error

Description

Regression measure defined as

\[
\frac{2}{n} \sum_{i=1}^{n} \frac{|t_i - r_i|}{|t_i| + |r_i|}
\]

Details

This measure is undefined if any \(|t| + |r| = 0\).
Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("regr.smape")
mkr("regr.smape")
```

Parameters

Empty ParamSet

Meta Information

- Type: "regr"
- Range: [0, 2]
- Minimize: TRUE
- Required prediction: response

Note

The score function calls mlr3measures::smape() from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_regr.srho**

*Spearman’s rho*

Description

Regression measures defined as Spearman’s rank correlation coefficient between truth and response. Calls stats::cor() with method set to "spearman".
Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("regr.srho")
msr("regr.srho")
```

Parameters

Empty ParamSet

Meta Information

- Type: "regr"
- Range: $[-1, 1]$
- Minimize: FALSE
- Required prediction: response

Note

The score function calls mlr3measures::srho() from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_regr.sse**  
**Sum of Squared Errors**

Description

Regression measure defined as

$$\sum_{i=1}^{n} (t_i - r_i)^2.$$
Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

```r
mlr_measures$get("regr.sse")
msr("regr.sse")
```

Parameters

Empty ParamSet

Meta Information

- Type: "regr"
- Range: \([0, \infty)\)
- Minimize: TRUE
- Required prediction: response

Note

The score function calls mlr3measures::sse() from package mlr3measures.
If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.


---

**mlr_measures_selected_features**

*Selected Features Measure*

Description

Measures the number of selected features by extracting it from learners with property "selected_features". If parameter normalize is set to TRUE, the relative number of features instead of the absolute number of features is returned. Note that the models must be stored to be able to extract this information. If the learner does not support the extraction of used features, NA is returned.

This measure requires the Task and the Learner for scoring.
Dictionary

This Measure can be instantiated via the dictionary \texttt{mlr\_measures} or with the associated sugar function \texttt{msr()}:

\begin{verbatim}
mlr\_measures\$get("selected\_features")
msr("selected\_features")
\end{verbatim}

Meta Information

- Task type: “NA”
- Range: \([0, \infty)\)
- Minimize: TRUE
- Average: macro
- Required Prediction: “response”
- Required Packages: \texttt{mlr3}

Parameters

\begin{verbatim}
\begin{array}{llllll}
  \text{Id} & \text{Type} & \text{Default} & \text{Range} & \text{Levels} \\
  \text{normalize} & \text{logical} & \text{FALSE} & - & \text{TRUE, FALSE}
\end{array}
\end{verbatim}

Super class

\texttt{mlr3::Measure} -> \texttt{MeasureSelectedFeatures}

Methods

Public methods:

- \texttt{MeasureSelectedFeatures\$new()}
- \texttt{MeasureSelectedFeatures\$clone()}

Method \texttt{new()}: Creates a new instance of this \texttt{R6} class.

Usage:

\texttt{MeasureSelectedFeatures\$new()}

Method \texttt{clone()}: The objects of this class are cloneable with this method.

Usage:

\texttt{MeasureSelectedFeatures\$clone(deep = FALSE)}

Arguments:

- \texttt{deep} Whether to make a deep clone.
See Also

- Package mlr3measures for the scoring functions. Dictionary of Measures: mlr_measures
  as.data.table(mlr_measures) for a table of available Measures in the running session (de-
  pending on the loaded packages).
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.

Other Measure: MeasureClassif, MeasureRegr, MeasureSimilarity, Measure, mlr_measures_aic,
mlr_measures_bic, mlr_measures_classif.costs, mlr_measures_debug, mlr_measures_elapsed_time,
mlr_measures_oob_error, mlr_measures

Examples

```r
task = tsk("german_credit")
learner = lrn("classif.rpart")
rr = resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE)

scores = rr$score(msr("selected_features"))
scores[, c("iteration", "selected_features")]
```

**mlr_measures_sim.jaccard**

*Jaccard Similarity Index*

Description

Measure to compare two or more sets w.r.t. their similarity. For two sets $A$ and $B$, it is defined as

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}.$$ 

If more than two sets are provided, the mean of all pairwise scores is calculated.

Details

This measure is undefined if two or more sets are empty.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

```r
mlr_measures$get("sim.jaccard")
msr("sim.jaccard")
```
Meta Information

- Type: "similarity"
- Range: [0, 1]
- Minimize: FALSE

Note

This measure requires learners with property "selected_features". The extracted feature sets are passed to `mlr3measures::jaccard()` from package `mlr3measures`. If the measure is undefined for the input, NaN is returned. This can be customized by setting the field `na_value`.

See Also

Dictionary of Measures: `mlr_measures`

`as.data.table(mlr_measures)` for a complete table of all (also dynamically created) Measure implementations.

Other similarity measures: `mlr_measures_sim.phi`

---

**mlr_measures_sim.phi  Phi Coefficient Similarity**

Description

Measure to compare two or more sets w.r.t. their similarity. It is defined as the Pearson correlation between the binary representation of two sets $A$ and $B$. The binary representation for $A$ is a logical vector of length $p$ with the i-th element being 1 if the corresponding element is in $A$, and 0 otherwise. If more than two sets are provided, the mean of all pairwise scores is calculated.

Details

This measure is undefined if one set contains none or all possible elements.

Dictionary

This Measure can be instantiated via the dictionary `mlr_measures` or with the associated sugar function `msr()`:

```r
mlr_measures$get("sim.phi")
msr("sim.phi")
```

Meta Information

- Type: "similarity"
- Range: $[-1, 1]$
- Minimize: FALSE
Note

This measure requires learners with property "selected_features". The extracted feature sets are passed to `mlr3measures::phi()` from package `mlr3measures`.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: `mlr_measures`

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other similarity measures: `mlr_measures_sim.jaccard`

---

**mlr_resamplings**  
*Dictionary of Resampling Strategies*

**Description**

A simple `mlr3misc::Dictionary` storing objects of class Resampling. Each resampling has an associated help page, see `mlr_resamplings_[id]`.

This dictionary can get populated with additional resampling strategies by add-on packages.

For a more convenient way to retrieve and construct resampling strategies, see `rsmp()`/`rsmps()`.

**Format**

R6::R6Class object inheriting from `mlr3misc::Dictionary`.

**Methods**

See `mlr3misc::Dictionary`.

**S3 methods**

- as.data.table(dict)
  
  `mlr3misc::Dictionary` -> `data.table::data.table()`
  
  Returns a `data.table::data.table()` with columns "key", "params", and "iters".

**See Also**

Sugar functions: `rsmp()`, `rsmps()`

Other Dictionary: `mlr_learners`, `mlr_measures`, `mlr_task_generators`, `mlr_tasks`

Other Resampling: `Resampling`, `mlr_resamplings_bootstrap`, `mlr_resamplings_custom_cv`, `mlr_resamplings_custom`, `mlr_resamplings_cv`, `mlr_resamplings_holdout`, `mlr_resamplings_insample`, `mlr_resamplings_loo`, `mlr_resamplings_repeated_cv`, `mlr_resamplings_subsampling`
Examples

as.data.table(mlr_resamplings)
mlr_resamplings$get("cv")
rsmp("subsampling")

Description

Splits data into bootstrap samples (sampling with replacement). Hyperparameters are the number of bootstrap iterations (repeats, default: 30) and the ratio of observations to draw per iteration (ratio, default: 1) for the training set.

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("bootstrap")
rsmp("bootstrap")

Parameters

- repeats (integer(1))
  Number of repetitions.
- ratio (numeric(1))
  Ratio of observations to put into the training set.

Super class

mlr3::Resampling -> ResamplingBootstrap

Active bindings

iters (integer(1))
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
- ResamplingBootstrap$new()
- ResamplingBootstrap$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ResamplingBootstrap$new()

**Method** `clone()`: The objects of this class are cloneable with this method.

**Usage:**
ResamplingBootstrap$clone(deep = FALSE)

**Arguments:**
deep Whether to make a deep clone.

**References**

**See Also**
- Chapter in the [mlr3book](https://mlr3book.mlr-org.com/basics.html#resampling)
- Package [mlr3spatiotempcv](https://mlr3spatiotempcv.mlr-org.com/) for spatio-temporal resamplings.
- Dictionary of Resamplings: [mlr_resamplings](https://mlr3.org/)
- `as.data.table(mlr_resamplings)` for a table of available Resamplings in the running session (depending on the loaded packages).
- [mlr3spatiotempcv](https://mlr3spatiotempcv.mlr-org.com/) for additional Resamplings for spatio-temporal tasks.

**Examples**

```r
Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

Instantiate Resampling
bootstrap = rsmp("bootstrap", repeats = 2, ratio = 1)
bootstrap$instance(task)

Individual sets:
bootstrap$train_set(1)
bootstrap$test_set(1)

Disjunct sets:
intersect(bootstrap$train_set(1), bootstrap$test_set(1))

Internal storage:
bootstrap$instance$M # Matrix of counts
```
mlr_resamplings_custom

Custom Resampling

Description
Splits data into training and test sets using manually provided indices.

Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("custom")
rsmp("custom")

Super class
mlr3::Resampling -> ResamplingCustom

Active bindings
iters (integer(1))
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods
Public methods:
• ResamplingCustom$new()
• ResamplingCustom$instantiate()
• ResamplingCustom$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
ResamplingCustom$new()

Method instantiate(): Instantiate this Resampling with custom splits into training and test set.
Usage:
ResamplingCustom$instantiate(task, train_sets, test_sets)
Arguments:
task Task
Mainly used to check if train_sets and test_sets are feasible.
train_sets (list of integer())
List with row ids for training, one list element per iteration. Must have the same length as test_sets.
test_sets (list of integer())
List with row ids for testing, one list element per iteration. Must have the same length as train_sets.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingCustom$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
• Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#resampling
• Package mlr3spatiotempcv for spatio-temporal resamplings.
• Dictionary of Resamplings: mlr_resamplings
• as.data.table(mlr_resamplings) for a table of available Resamplings in the running session (depending on the loaded packages).
• mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.

Examples

# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

# Instantiate Resampling
custom = rsmp("custom")
train_sets = list(1:5, 5:10)
test_sets = list(5:10, 1:5)
custom$instantiate(task, train_sets, test_sets)

custom$train_set(1)
custom$test_set(1)

mlr_resamplings_custom_cv

Custom Cross Validation

Description

Splits data into training and test sets in a cross-validation fashion based on a user-provided categorical vector. This vector can be passed during instantiation either via an arbitrary factor f with the same length as task$nrow, or via a single string col referring to a column in the task.

An alternative but equivalent approach using leave-one-out resampling is showcased in the examples of mlr_resamplings_loo.
Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("custom_cv")
rsmp("custom_cv")

Super class

mlr3::Resampling -> ResamplingCustomCV

Active bindings

iters (integer(1))
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:

• ResamplingCustomCV$new()
• ResamplingCustomCV$instantiate()
• ResamplingCustomCV$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
ResamplingCustomCV$new()

Method instantiate(): Instantiate this Resampling as cross validation with custom splits.
Usage:
ResamplingCustomCV$instantiate(task, f = NULL, col = NULL)

Arguments:

task  Task
Used to extract row ids.
f (factor() | character())
Vector of type factor or character with the same length as task$nrow. Row ids are split on this vector, each distinct value results in a fold. Empty factor levels are dropped and row ids corresponding to missing values are removed, c.f. split().
col (character())
Name of the task column to use for splitting. Alternative and mutually exclusive to providing the factor levels as a vector via parameter f.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ResamplingCustomCV$clone(deep = FALSE)

Arguments:
deep  Whether to make a deep clone.
See Also

- Package mlr3spatiotempcv for spatio-temporal resamplings.
- Dictionary of Resamplings: mlr_resamplings
- as.data.table(mlr_resamplings) for a table of available Resamplings in the running session (depending on the loaded packages).
- mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.

Other Resampling: Resampling, mlr_resamplings_bootstrap, mlr_resamplings_custom, mlr_resamplings_cv, mlr_resamplings_holdout, mlr_resamplings_insample, mlr_resamplings_loo, mlr_resamplings_repeated_cv, mlr_resamplings_subsampling, mlr_resamplings

Examples

```r
Create a task with 10 observations
(task = tsk("penguins"))
(task$filter(1:10)

Instantiate Resampling:
custom_cv = rsmp("custom_cv")
f = factor(c(rep(letters[1:3], each = 3), NA))
custom_cv$instantiate(task, f = f)
custom_cv$iters # 3 folds

Individual sets:
custom_cv$train_set(1)
custom_cv$test_set(1)

Disjunct sets:
intersect(custom_cv$train_set(1), custom_cv$test_set(1))
```

---

**mlr_resamplings_cv**  
*Cross-Validation Resampling*

**Description**

Splits data using a folds-folds (default: 10 folds) cross-validation.

**Dictionary**

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

```r
mlr_resamplings$get("cv")
rsmp("cv")
```
Parameters

- folds (integer(1))
  Number of folds.

Super class

`mlr3::Resampling` \rightarrow ResamplingCV

Active bindings

- iters (integer(1))
  Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:

- ResamplingCV$new()
- ResamplingCV$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

ResamplingCV$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:

ResamplingCV$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References


See Also

- Package `mlr3spatiotempcv` for spatio-temporal resamplings.
- Dictionary of Resamplings: `mlr_resamplings`
- as.data.table(mlr_resamplings) for a table of available `Resamplings` in the running session (depending on the loaded packages).
- `mlr3spatiotempcv` for additional `Resamplings` for spatio-temporal tasks.

Other Resampling: `Resampling`, `mlr_resamplings_bootstrap`, `mlr_resamplings_custom_cv`, `mlr_resamplings_custom`, `mlr_resamplings_holdout`, `mlr_resamplings_insample`, `mlr_resamplings_loo`, `mlr_resamplings_repeated_cv`, `mlr_resamplings_subsampling`, `mlr_resamplings`
Examples

```r
Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

Instantiate Resampling
cv = rsmp("cv", folds = 3)
cv$instantiate(task)

Individual sets:
cv$train_set(1)
cv$test_set(1)

Disjunct sets:
intersect(cv$train_set(1), cv$test_set(1))

Internal storage:
cv$instance # table
```

---

**mlr_resamplings_holdout**

*Holdout Resampling*

---

**Description**

Splits data into a training set and a test set. Parameter `ratio` determines the ratio of observation going into the training set (default: 2/3).

**Dictionary**

This Resampling can be instantiated via the dictionary `mlr_resamplings` or with the associated sugar function `rsmp()`:

```r
mlr_resamplings$get("holdout")
rsmp("holdout")
```

**Parameters**

- `ratio` (numeric(1))
  
  Ratio of observations to put into the training set.

**Super class**

`mlr3::Resampling` --> `ResamplingHoldout`

**Public fields**

- `iters` (integer(1))
  
  Returns the number of resampling iterations, depending on the values stored in the `param_set`. 
Methods

Public methods:

- `ResamplingHoldout$new()`
- `ResamplingHoldout$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

```
ResamplingHoldout$new()
```

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

```
ResamplingHoldout$clone(deep = FALSE)
```

Arguments:

deep Whether to make a deep clone.

References


See Also

- Package `mlr3spatiotempcv` for spatio-temporal resamplings.
- Dictionary of Resamplings: `mlr_resamplings`
- `as.data.table(mlr_resamplings)` for a table of available Resamplings in the running session (depending on the loaded packages).
- `mlr3spatiotempcv` for additional Resamplings for spatio-temporal tasks.

Other Resampling: `Resampling, mlr_resamplings_bootstrap, mlr_resamplings_custom_cv, mlr_resamplings_custom, mlr_resamplings_cv, mlr_resamplings_insample, mlr_resamplings_loo, mlr_resamplings_repeated_cv, mlr_resamplings_subsampling, mlr_resamplings`

Examples

```
Create a task with 10 observations
task = tsk("penguins")
`task$filter(1:10)

Instantiate Resampling
holdout = rsmp("holdout", ratio = 0.5)
holdout$instantiate(task)

Individual sets:
holdout$train_set(1)
holdout$test_set(1)
```
# Disjunct sets:
intersect(holdout$train_set(1), holdout$test_set(1))

# Internal storage:
holdout$instance # simple list

---

### mlr_resamplings_insample

**Insample Resampling**

### Description

Uses all observations as training and as test set.

### Dictionary

This Resampling can be instantiated via the dictionary `mlr_resamplings` or with the associated sugar function `rsmp()`:

```r
mlr_resamplings$get("insample")
rsmp("insample")
```

### Super class

`mlr3::Resampling` &gt; ResamplingInsample

### Public fields

- `iters` (`integer(1)`)
  - Returns the number of resampling iterations, depending on the values stored in the `param_set`.

### Methods

**Public methods:**

- `ResamplingInsample$new()`
- `ResamplingInsample$clone()`

**Method `new()`:** Creates a new instance of this `R6` class.

*Usage:*

`ResamplingInsample$new()`

**Method `clone()`:** The objects of this class are cloneable with this method.

*Usage:*

`ResamplingInsample$clone(deep = FALSE)`

*Arguments:*

- `deep` Whether to make a deep clone.
mlr_resamplings_loo

See Also

- Package mlr3spatiotempcv for spatio-temporal resamplings.
- Dictionary of Resamplings: mlr_resamplings
- as.data.table(mlr_resamplings) for a table of available Resamplings in the running session (depending on the loaded packages).
- mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.

Other Resampling: Resampling, mlr_resamplings_bootstrap, mlr_resamplings_custom_cv, mlr_resamplings_custom, mlr_resamplings_cv, mlr_resamplings_holdout, mlr_resamplings_loo, mlr_resamplings_repeated_cv, mlr_resamplings_subsampling, mlr_resamplings

Examples

```r
Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

Instantiate Resampling
insample = rsmp("insample")
insample$instantiate(task)

Train set equal to test set:
setequal(insample$train_set(1), insample$test_set(1))

Internal storage:
insample$instance # just row ids
```

mlr_resamplings_loo Leave-One-Out Cross-Validation

Description

Splits data using leave-one-observation-out. This is identical to cross-validation with the number of folds set to the number of observations.

If this resampling is combined with the grouping features of tasks, it is possible to create custom splits based on an arbitrary factor variable, see the examples.

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

```r
mlr_resamplings$get("loo")
rsmp("loo")
```
Super class

\texttt{mlr3::Resampling} -> \texttt{ResamplingLOO}

Active bindings

\texttt{iters (integer(1))}

Returns the number of resampling iterations which is the number of rows of the task provided to instantiate. Is \texttt{NA} if the resampling has not been instantiated.

Methods

Public methods:

- \texttt{ResamplingLOO$new()}
- \texttt{ResamplingLOO$clone()}

Method \texttt{new()}: Creates a new instance of this \texttt{R6} class.

Usage:

\texttt{ResamplingLOO$new()}

Method \texttt{clone()}: The objects of this class are cloneable with this method.

Usage:

\texttt{ResamplingLOO$clone(deep = FALSE)}

Arguments:

\texttt{deep} Whether to make a deep clone.

References

dation with Recommendations for Evolutionary Computation.” \textit{Evolutionary Computation}, \textbf{20}(2),
249–275. doi: 10.1162/evco_a_00069.

See Also

- Chapter in the \texttt{mlr3book}: \url{https://mlr3book.mlr-org.com/basics.html#resampling}
- Package \texttt{mlr3spatiotempcv} for spatio-temporal resamplings.
- Dictionary of Resamplings: \texttt{mlr_resamplings}
- \texttt{as.data.table(mlr_resamplings)} for a table of available Resamplings in the running ses-
sion (depending on the loaded packages).
- \texttt{mlr3spatiotempcv} for additional Resamplings for spatio-temporal tasks.

Other Resampling: \texttt{Resampling, mlr_resamplings_bootstrap, mlr_resamplings_custom_cv, mlr_resamplings_custom, mlr_resamplings_cv, mlr_resamplings_holdout, mlr_resamplings_insample, mlr_resamplings_repeated_cv, mlr_resamplings_subsampling, mlr_resamplings}
**Examples**

```r
Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

Instantiate Resampling
loo = rsmp("loo")
loo$instantiate(task)

Individual sets:
loo$train_set(1)
loo$test_set(1)

Disjunct sets:
intersect(loo$train_set(1), loo$test_set(1))

Internal storage:
loo$instance # vector

Combine with group feature of tasks:
task = tsk("penguins")
task$set_col_roles("island", add_to = "group")
loo$instantiate(task)
loo$iters # one fold for each level of "island"
```

---

**mlr_resamplings_repeated_cv**

*Repeated Cross-Validation Resampling*

**Description**

Splits data repeats (default: 10) times using a folds-fold (default: 10) cross-validation. The iteration counter translates to repeats blocks of folds cross-validations, i.e., the first folds iterations belong to a single cross-validation. Iteration numbers can be translated into folds or repeats with provided methods.

**Dictionary**

This Resampling can be instantiated via the dictionary `mlr_resamplings` or with the associated sugar function `rsmp()`:

```r
mlr_resamplings$get("repeated_cv")
rsmp("repeated_cv")
```

**Parameters**

- `repeats` (integer(1))
  Number of repetitions.
- `folds` (integer(1))
  Number of folds.
Super class

`mlr3::Resampling` -> `ResamplingRepeatedCV`

Active bindings

`iters (integer(1))`

Returns the number of resampling iterations, depending on the values stored in the `param_set`.

Methods

Public methods:

- `ResamplingRepeatedCV$new()`
- `ResamplingRepeatedCV$folds()`
- `ResamplingRepeatedCV$repeats()`
- `ResamplingRepeatedCV$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

```
ResamplingRepeatedCV$new()
```

Method `folds()`: Translates iteration numbers to fold numbers.

Usage:

```
ResamplingRepeatedCV$folds(iters)
```

Arguments:

`iters (integer())`

Iteration number.

Returns: integer() of fold numbers.

Method `repeats()`: Translates iteration numbers to repetition numbers.

Usage:

```
ResamplingRepeatedCV$repeats(iters)
```

Arguments:

`iters (integer())`

Iteration number.

Returns: integer() of repetition numbers.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

```
ResamplingRepeatedCV$clone(deep = FALSE)
```

Arguments:

`deep` Whether to make a deep clone.
Subsampling Resampling

**Description**

Splits data repeats (default: 30) times into training and test set with a ratio of ratio (default: 2/3) observations going into the training set.

---

**References**


---

**See Also**

- Package `mlr3spatiotempcv` for spatio-temporal resamplings.
- Dictionary of Resamplings: `mlr_resamplings`
- `as.data.table(mlr_resamplings)` for a table of available Resamplings in the running session (depending on the loaded packages).
- `mlr3spatiotempcv` for additional Resamplings for spatio-temporal tasks.

Other Resampling: Resampling, `mlr_resamplings_bootstrap`, `mlr_resamplings_custom_cv`, `mlr_resamplings_custom`, `mlr_resamplings_cv`, `mlr_resamplings_holdout`, `mlr_resamplings_insample`, `mlr_resamplings_loo`, `mlr_resamplings_subsampling`, `mlr_resamplings`

---

**Examples**

```r
Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

Instantiate Resampling
repeated_cv = rsmp("repeated_cv", repeats = 2, folds = 3)
repeated_cv$instance(task)
repeated_cv$iters
repeated_cv$folds(1:6)
repeated_cv$repeats(1:6)

Individual sets:
repeated_cv$train_set(1)
repeated_cv$test_set(1)

Disjunct sets:
intersect(repeated_cv$train_set(1), repeated_cv$test_set(1))

Internal storage:
repeated_cv$instance # table
```

---
Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

```r
mlr_resamplings$get("holdout")
rsmp("holdout")
```

Parameters

- **repeats (integer(1))**
  - Number of repetitions.
- **ratio (numeric(1))**
  - Ratio of observations to put into the training set.

Super class

```r
mlr3::Resampling -> ResamplingSubsampling
```

Active bindings

```r
iters (integer(1))
```

Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:

- `ResamplingSubsampling$new()`
- `ResamplingSubsampling$clone()`

Method `new()`: Creates a new instance of this R6 class.

```r
Usage:
ResamplingSubsampling$new()
```

Method `clone()`: The objects of this class are cloneable with this method.

```r
Usage:
ResamplingSubsampling$clone(deep = FALSE)
```

Arguments:

- `deep` Whether to make a deep clone.

References

### mlr_sugar

**Syntactic Sugar for Object Construction**

**Description**

Functions to retrieve objects, set hyperparameters and assign to fields in one go. Relies on `mlr3misc::dictionary_sugar_get()` to extract objects from the respective `mlr3misc::Dictionary`:

- `tsk()` for a Task from `mlr_tasks`.
- `tsks()` for a list of Tasks from `mlr_tasks`.
- `tgen()` for a TaskGenerator from `mlr_task_generators`.
- `tgens()` for a list of TaskGenerators from `mlr_task_generators`.
- `lrn()` for a Learner from `mlr_learners`.
- `lrns()` for a list of Learners from `mlr_learners`.

**See Also**

- Package `mlr3spatiotempcv` for spatio-temporal resamplings.
- Dictionary of Resamplings: `mlr_resamplings`
- `as.data.table(mlr_resamplings)` for a table of available Resamplings in the running session (depending on the loaded packages).
- `mlr3spatiotempcv` for additional Resamplings for spatio-temporal tasks.

Other Resampling: `Resampling, mlr_resamplings_bootstrap, mlr_resamplings_custom_cv, mlr_resamplings_custom, mlr_resamplings_cv, mlr_resamplings_holdout, mlr_resamplings_insample, mlr_resamplings_loo, mlr_resamplings_repeated_cv, mlr_resamplings`

**Examples**

```r
Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

Instantiate Resampling
subsampling = rsmp("subsampling", repeats = 2, ratio = 0.5)
subsampling$instantiate(task)

Individual sets:
subsampling$train_set(1)
subsampling$test_set(1)

Disjunct sets:
intersect(subsampling$train_set(1), subsampling$test_set(1))

Internal storage:
subsampling$instance$train # list of index vectors
```
• `rsmp()` for a `Resampling` from `mlr_resamplings`.
• `rsmps()` for a list of `Resamplings` from `mlr_resamplings`.
• `msr()` for a `Measure` from `mlr_measures`.
• `msrs()` for a list of `Measures` from `mlr_measures`.

Usage

```r
tsk(.key, ...)
tsk(.keys, ...)
tgen(.key, ...)
tgens(.keys, ...)
lrn(.key, ...)
lrns(.keys, ...)
rsmp(.key, ...)
rsmps(.keys, ...)
msr(.key, ...)
msrs(.keys, ...)
```

Arguments

- `.key` (character(1))
  Key passed to the respective `dictionary` to retrieve the object.
- `...` (named list())
  Named arguments passed to the constructor, to be set as parameters in the `paradox::ParamSet`, or to be set as public field. See `mlr3misc::dictionary_sugar_get()` for more details.
- `.keys` (character())
  Keys passed to the respective `dictionary` to retrieve multiple objects.

Value

`R6::R6Class` object of the respective type, or a list of `R6::R6Class` objects for the plural versions.

Examples

```r
penguins task with new id
tsk("penguins", id = "penguins2")

classification tree with different hyperparameters
```
# and predict type set to predict probabilities
lrn("classif.rpart", cp = 0.1, predict_type = "prob")

# multiple learners with predict type 'prob'
lrns(c("classif.featureless", "classif.rpart"), predict_type = "prob")

---

**mlr_tasks**

**Dictionary of Tasks**

**Description**

A simple `mlr3misc::Dictionary` storing objects of class `Task`. Each task has an associated help page, see `mlr_tasks_[id]`.

This dictionary can get populated with additional tasks by add-on packages, e.g. `mlr3data`, `mlr3proba` or `mlr3cluster`. `mlr3oml` allows to interact with OpenML.

For a more convenient way to retrieve and construct tasks, see `tsk()`/`tsks()`.

**Format**

`R6::R6Class` object inheriting from `mlr3misc::Dictionary`.

**Methods**

See `mlr3misc::Dictionary`.

**S3 methods**

- `as.data.table(dict)`
  
  `mlr3misc::Dictionary` -> `data.table::data.table()`

  Returns a `data.table::data.table()` with columns "key", "task_type", "measures", "nrow", "ncol" and the number of features of type "lgl", "int", "dbl", "chr", "fct" and "ord" as columns.

**See Also**

Sugar functions: `tsk()`, `tsks()`

Extension Packages: `mlr3data`

Other Dictionary: `mlr_learners`, `mlr_measures`, `mlr_resamplings`, `mlr_task_generators`

Other Task: `TaskClassif`, `TaskRegr`, `TaskSupervised`, `TaskUnsupervised`, `Task`, `mlr_tasks_boston_housing`, `mlr_tasks_breast_cancer`, `mlr_tasks_german_credit`, `mlr_tasks_iris`, `mlr_tasks_mtcars`, `mlr_tasks_penguins`, `mlr_tasks_pima`, `mlr_tasks_sonar`, `mlr_tasks_spam`, `mlr_tasks_wine`, `mlr_tasks_zoo`
Examples

```r
as.data.table(mlr_tasks)
task = mlr_tasks$get("penguins") # same as tsk("penguins")
head(task$data())

Add a new task, based on a subset of penguins:
data = palmerpenguins::penguins
data$species = factor(ifelse(data$species == "Adelie", "1", "0"))
task = TaskClassif$new("penguins.binary", data, target = "species", positive = "1")

add to dictionary
mlr_tasks$add("penguins.binary", task)

list available tasks
mlr_tasks$keys()

retrieve from dictionary
mlr_tasks$get("penguins.binary")

remove task again
mlr_tasks$remove("penguins.binary")
```

---

**mlr_tasks_boston_housing**

*Boston Housing Regression Task*

**Description**

A regression task for the `mlbench::BostonHousing2` data set.

**Format**

`R6::R6Class` inheriting from `TaskRegr`.

**Construction**

```r
mlr_tasks$get("boston_housing")
```

**Meta Information**

- Task type: "regr"
- Dimensions: 506x19
- Properties: -
- Has Missings: FALSE
- Target: "medv"
mlr_tasks_breast_cancer

Wisconsin Breast Cancer Classification Task

Description
A classification task for the mlbench::BreastCancer data set.

- Column "Id" has been removed.
- Column names have been converted to snake_case.
- Positive class is set to "malignant".
- 16 incomplete cases have been removed from the data set.
- All factor features have been converted to ordered factors.

Format
R6::R6Class inheriting from TaskClassif.

Dictionary
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk():

mlr_tasks$get("breast_cancer")
tsk("breast_cancer")
**Meta Information**

- Task type: “classif”
- Dimensions: 683x10
- Properties: “twoclass”
- Has Missings: FALSE
- Target: “class”

**See Also**

- Package mlr3data for more toy tasks.
- Package mlr3oml for downloading tasks from https://openml.org.
- Package mlr3viz for some generic visualizations.
- Dictionary of Tasks: mlr_tasks
- as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending on the loaded packages).
- mlr3select and mlr3filters for feature selection and feature filtering.
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.

Other Task: TaskClassif, TaskRegr, TaskSupervised, TaskUnsupervised, Task, mlr_tasks_boston_housing, mlr_tasks_german_credit, mlr_tasks_iris, mlr_tasks_mtcars, mlr_tasks_penguins, mlr_tasks_pima, mlr_tasks_sonar, mlr_tasks_spam, mlr_tasks_wine, mlr_tasks_zoo, mlr_tasks

---

**German Credit Classification Task**

**Description**

A classification task for the German credit data set. The aim is to predict creditworthiness, labeled as "good" and "bad". Positive class is set to label "good".

See example for the creation of a MeasureClassifCosts as described misclassification costs.

**Format**

R6::R6Class inheriting from TaskClassif.
Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk():

```r
mlr_tasks$get("german_credit")
tsk("german_credit")
```

Meta Information

- Task type: “classif”
- Dimensions: 1000x21
- Properties: “twoclass”
- Has Missings: FALSE
- Target: “credit_risk”

Source

Data set originally published on UCI. This is the preprocessed version taken from package rchallenge with factors instead of dummy variables, and corrected as proposed by Ulrike Grömping.

Donor: Professor Dr. Hans Hofmann
Institut für Statistik und Ökonometrie
Universität Hamburg
FB Wirtschaftswissenschaften
Von-Melle-Park 5
2000 Hamburg 13

References


See Also

- Package mlr3data for more toy tasks.
- Package mlr3oml for downloading tasks from [https://openml.org](https://openml.org).
- Package mlr3viz for some generic visualizations.
- Dictionary of Tasks: mlr_tasks
- `as.data.table(mlr_tasks)` for a table of available Tasks in the running session (depending on the loaded packages).
• **mlr3select** and **mlr3filters** for feature selection and feature filtering.
• Extension packages for additional task types:
  – **mlr3proba** for probabilistic supervised regression and survival analysis.
  – **mlr3cluster** for unsupervised clustering.


---

### mlr_tasks_iris

#### Iris Classification Task

**Description**

A classification task for the popular datasets::iris data set.

**Format**

**R6::R6Class** inheriting from **TaskClassif**.

**Dictionary**

This **Task** can be instantiated via the **dictionary** **mlr_tasks** or with the associated sugar function **tsk()**:

```r
mlr_tasks$get("iris")
tsk("iris")
```

**Meta Information**

- Task type: “classif”
- Dimensions: 150x5
- Properties: “multiclass”
- Has Missings: FALSE
- Target: “Species”

---

Examples

```r
task = tsk("german_credit")
costs = matrix(c(0, 1, 5, 0), nrow = 2)
dimnames(costs) = list(predicted = task$class_names, truth = task$class_names)
measure = msr("classif.costs", id = "german_credit_costs", costs = costs)
print(measure)
```
mlr_tasks_mtcars

Source


See Also

- Package mlr3data for more toy tasks.
- Package mlr3oml for downloading tasks from https://openml.org.
- Package mlr3viz for some generic visualizations.
- Dictionary of Tasks: mlr_tasks
- as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending on the loaded packages).
- mlr3select and mlr3filters for feature selection and feature filtering.
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.

Other Task: TaskClassif, TaskRegr, TaskSupervised, TaskUnsupervised, Task, mlr_tasks_boston_housing, mlr_tasks_breast_cancer, mlr_tasks_german_credit, mlr_tasks_mtcars, mlr_tasks_penguins, mlr_tasks_pima, mlr_tasks_sonar, mlr_tasks_spam, mlr_tasks_wine, mlr_tasks_zoo, mlr_tasks

mlr_tasks_mtcars  Motor Trend Regression Task

Description

A regression task for the datasets::mtcars data set. Target variable is mpg (Miles/(US) gallon). Rownames are stored as variable ".rownames with column role "model".

Format

R6::R6Class inheriting from TaskRegr.

Construction

mlr_tasks$get("mtcars")
tsk("mtcars")
Meta Information

- Task type: “regr”
- Dimensions: 32x11
- Properties: -
- Has Missings: FALSE
- Target: “mpg”

See Also

- Package mlr3data for more toy tasks.
- Package mlr3oml for downloading tasks from https://openml.org.
- Package mlr3viz for some generic visualizations.
- Dictionary of Tasks: mlr_tasks
  - `as.data.table(mlr_tasks)` for a table of available Tasks in the running session (depending on the loaded packages).
  - `mlr3fselect` and `mlr3filters` for feature selection and feature filtering.
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.


---

mlr_tasks_penguins Palmer Penguins Data Set

Description

Classification data to predict the species of penguins from the palmerpenguins package, see palmerpenguins::penguins. A better alternative to the iris data set.

Format

R6::R6Class inheriting from TaskClassif.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk():

```r
mlr_tasks$get("penguins")
tsk("penguins")
```
Meta Information

- Task type: “classif”
- Dimensions: 344x8
- Properties: “multiclass”
- Has Missings: TRUE
- Target: “species”

Pre-processing

- The unit of measurement have been removed from the column names. Lengths are given in millimeters (mm), weight in gram (g).

Source

palmerpenguins

References


https://github.com/allisonhorst/palmerpenguins

See Also

- Package mlr3data for more toy tasks.
- Package mlr3oml for downloading tasks from https://openml.org.
- Package mlr3viz for some generic visualizations.
- Dictionary of Tasks: mlr_tasks
- as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending on the loaded packages).
- mlr3fselect and mlr3filters for feature selection and feature filtering.
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.

Other Task: TaskClassif, TaskRegr, TaskSupervised, TaskUnsupervised, Task, mlr_tasks_boston_housing, mlr_tasks_breast_cancer, mlr_tasks_german_credit, mlr_tasks_iris, mlr_tasks_mtcars, mlr_tasks_pima, mlr_tasks_sonar, mlr_tasks_spam, mlr_tasks_wine, mlr_tasks_zoo, mlr_tasks
**Description**

A classification task for the `mlbench::PimaIndiansDiabetes2` data set. Positive class is set to "pos".

**Format**

`R6::R6Class` inheriting from `TaskClassif`.

**Dictionary**

This `Task` can be instantiated via the dictionary `mlr_tasks` or with the associated sugar function `tsk()`:

```r
mlr_tasks$get("pima")
tsks("pima")
```

**Meta Information**

- Task type: "classif"
- Dimensions: 768x9
- Properties: "twoclass"
- Has Missings: TRUE
- Target: "diabetes"
- Features: "age", "glucose", "insulin", "mass", "pedigree", "pregnant", "pressure", "triceps"

**See Also**

- Package `mlr3data` for more toy tasks.
- Package `mlr3oml` for downloading tasks from [https://openml.org](https://openml.org).
- Package `mlr3viz` for some generic visualizations.
- Dictionary of `Tasks`: `mlr_tasks`
- as.data.table(mlr_tasks) for a table of available `Tasks` in the running session (depending on the loaded packages).
- `mlr3select` and `mlr3filters` for feature selection and feature filtering.
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.

Other Task: `TaskClassif, TaskRegr, TaskSupervised, TaskUnsupervised, Task, mlr_tasks_boston_housing, mlr_tasks_breast_cancer, mlr_tasks_german_credit, mlr_tasks_iris, mlr_tasks_mtcars, mlr_tasks_penguins, mlr_tasks_spam, mlr_tasks_spam, mlr_tasks_wine, mlr_tasks_zoo, mlr_tasks`
**Description**

A classification task for the `mlbench::Sonar` data set. Positive class is set to "M" (Mine).

**Format**

`R6::R6Class` inheriting from `TaskClassif`.

**Dictionary**

This `Task` can be instantiated via the dictionary `mlr_tasks` or with the associated sugar function `tsk()`:

```r
mlr_tasks$get("sonar")
tsk("sonar")
```

**Meta Information**

- Task type: "classif"
- Dimensions: 208x61
- Properties: "twoclass"
- Has Missings: `FALSE`
- Target: "Class"

**See Also**

- Package `mlr3data` for more toy tasks.
- Package `mlr3oml` for downloading tasks from `https://openml.org`.
- Package `mlr3viz` for some generic visualizations.
- Dictionary of Tasks: `mlr_tasks`
- `as.data.table(mlr_tasks)` for a table of available `Tasks` in the running session (depending on the loaded packages).
- `mlr3fsselect` and `mlr3filters` for feature selection and feature filtering.
- Extension packages for additional task types:
Spam Classification Task

Description

Spam data set from the UCI machine learning repository (http://archive.ics.uci.edu/ml/datasets/spambase). Data set collected at Hewlett-Packard Labs to classify emails as spam or non-spam. 57 variables indicate the frequency of certain words and characters in the e-mail. The positive class is set to “spam”.

Format

R6::R6Class inheriting from TaskClassif.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk():

mlr_tasks$get("spam")
tsk("spam")

Meta Information

- Task type: “classif”
- Dimensions: 4601x58
- Properties: “twoclass”
- Has Missings: FALSE
- Target: “type”
Wine Classification Task

Description

Wine data set from the UCI machine learning repository (https://archive.ics.uci.edu/ml/datasets/wine). Results of a chemical analysis of three types of wines grown in the same region in Italy but derived from three different cultivars.

Format

R6::R6Class inheriting from TaskClassif.
Dictionary

This Task can be instantiated via the dictionary `mlr_tasks` or with the associated sugar function `tsk()`:

```r
mlr_tasks$get("wine")
tsks("wine")
```

Meta Information

- Task type: "classif"
- Dimensions: 178x14
- Properties: "multiclass"
- Has Missings: FALSE
- Target: "type"

Source


Donor: Stefan Aeberhard, email: stefan@coral.cs.jcu.edu.au

References


See Also

- Package `mlr3data` for more toy tasks.
- Package `mlr3oml` for downloading tasks from https://openml.org.
- Package `mlr3viz` for some generic visualizations.
- Dictionary of Tasks: `mlr_tasks` as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending on the loaded packages).
- `mlr3fselect` and `mlr3filters` for feature selection and feature filtering.
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.

Other Task: TaskClassif, TaskRegr, TaskSupervised, TaskUnsupervised, Task.ml_tasks_boston_housing, mlr_tasks_breast_cancer, mlr_tasks_german_credit, mlr_tasks_iris, mlr_tasks_mtcars, mlr_tasks_penguins, mlr_tasks_pima, mlr_tasks_sonar, mlr_tasks_spam, mlr_tasks_zoo, mlr_tasks
Description

A classification task for the mlbench::Zoo data set. Rownames are stored as variable "..rownames" with column role "name".

Format

R6::R6Class inheriting from TaskClassif.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk():

mlr_tasks$get("zoo")
tsk("zoo")

Meta Information

- Task type: "classif"
- Dimensions: 101x17
- Properties: "multiclass"
- Has Missings: FALSE
- Target: "type"

See Also

- Package mlr3data for more toy tasks.
- Package mlr3oml for downloading tasks from https://openml.org.
- Package mlr3viz for some generic visualizations.
- Dictionary of Tasks: mlr_tasks
- as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending on the loaded packages).
- mlr3fselect and mlr3filters for feature selection and feature filtering.
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.
Dictionary of Task Generators

Description

A simple mlr3misc::Dictionary storing objects of class TaskGenerator. Each task generator has an associated help page, see mlr_task_generators_[id].

This dictionary can get populated with additional task generators by add-on packages.

For a more convenient way to retrieve and construct task generators, see tgen()/tgens().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

S3 methods

* as.data.table(dict)
  mlr3misc::Dictionary -> data.table::data.table()
  Returns a data.table::data.table() with fields "key" and "packages" as columns.

See Also

Sugar functions: tgen(), tgens()

Other Dictionary: mlr_learners, mlr_measures, mlr_resamplings, mlr_tasks

Other TaskGenerator: TaskGenerator, mlr_task_generators_2dnormals, mlr_task_generators_cassini, mlr_task_generators_circle, mlr_task_generators_friedman1, mlr_task_generators_moons, mlr_task_generators_simplex, mlr_task_generators_smiley, mlr_task_generators_spirals, mlr_task_generators_xor

Examples

mlr_task_generators$get("smiley")
tgen("2dnormals")
Description

A TaskGenerator for the 2d normals task in `mlbench::mlbench.2dnormals()`.

Dictionary

This TaskGenerator can be instantiated via the dictionary `mlr_task_generators` or with the associated sugar function `tgen()`:

```r
mlr_task_generators$get("2dnormals")
tgen("2dnormals")
```

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>cl</td>
<td>integer</td>
<td>-</td>
<td>[2, ∞)</td>
<td>-</td>
</tr>
<tr>
<td>r</td>
<td>numeric</td>
<td>-</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
<tr>
<td>sd</td>
<td>numeric</td>
<td>-</td>
<td>[0, ∞)</td>
<td>-</td>
</tr>
</tbody>
</table>

Super class

`mlr3::TaskGenerator` -> `TaskGenerator2DNormals`

Methods

Public methods:

- `TaskGenerator2DNormals$new()`
- `TaskGenerator2DNormals$plot()`
- `TaskGenerator2DNormals$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

```r
TaskGenerator2DNormals$new()
```

Method `plot()`: Creates a simple plot of generated data.

Usage:

```r
TaskGenerator2DNormals$plot(n = 200L, pch = 19L, ...)
```

Arguments:
**n** (integer(1))
   Number of samples to draw for the plot. Default is 200.

**pch** (integer(1))
   Point char. Passed to `plot()`.

... (any)
   Additional arguments passed to `plot()`.

**Method** `clone()`: The objects of this class are cloneable with this method.

**Usage:**

```r
TaskGenerator2DNormals$clone(deep = FALSE)
```

**Arguments:**

depth  Whether to make a deep clone.

**See Also**

- Dictionary of `TaskGenerators`: `mlr_task_generators`
- `as.data.table(mlr_task_generators)` for a table of available `TaskGenerators` in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.

**Other TaskGenerator:** `TaskGenerator, mlr_task_generators_cassini, mlr_task_generators_circle, mlr_task_generators_friedman1, mlr_task_generators_moons, mlr_task_generators_simplex, mlr_task_generators_smiley, mlr_task_generators_spirals, mlr_task_generators_xor, mlr_task_generators`

**Examples**

```r
generator = tgen("2dnormals")
plot(generator, n = 200)

task = generator$generate(200)
str(task$data())
```

---

**mlr_task_generators_cassini**

*Cassini Classification Task Generator*

**Description**

A `TaskGenerator` for the cassini task in `mlbench::mlbench.cassini()`. 
Dictionary

This TaskGenerator can be instantiated via the dictionary `mlr_task_generators` or with the associated sugar function `tgen()`:

```r
mlr_task_generators$get("cassini")
tgen("cassini")
```

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>relsize1</td>
<td>integer</td>
<td>2</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
<tr>
<td>relsize2</td>
<td>integer</td>
<td>2</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
<tr>
<td>relsize3</td>
<td>integer</td>
<td>1</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
</tbody>
</table>

Super class

```
mlr3::TaskGenerator -> TaskGeneratorCassini
```

Methods

Public methods:

- `TaskGeneratorCassini$new()`
- `TaskGeneratorCassini$plot()`
- `TaskGeneratorCassini$clone()`

Method `new()`: Creates a new instance of this R6 class.

```
Usage:
TaskGeneratorCassini$new()
```

Method `plot()`: Creates a simple plot of generated data.

```
Usage:
TaskGeneratorCassini$plot(n = 200L, pch = 19L, ...)
```

Arguments:

- `n` (integer(1))
  - Number of samples to draw for the plot. Default is 200.
- `pch` (integer(1))
  - Point char. Passed to `plot()`.
- `...` (any)
  - Additional arguments passed to `plot()`.

Method `clone()`: The objects of this class are cloneable with this method.

```
Usage:
TaskGeneratorCassini$clone(deep = FALSE)
```

Arguments:

- `deep` Whether to make a deep clone.
See Also

- Dictionary of TaskGenerators: `mlr_task_generators`
- `as.data.table(mlr_task_generators)` for a table of available TaskGenerators in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.

Other TaskGenerator: `TaskGenerator,mlr_task_generators_2dnormals,mlr_task_generators_circle, mlr_task_generators_friedman1,mlr_task_generators_moons,mlr_task_generators_simplex, mlr_task_generators_smiley,mlr_task_generators_spirals,mlr_task_generators_xor, mlr_task_generators`

Examples

generator = tgen("cassini")
plot(generator, n = 200)

task = generator$generate(200)
str(task$data())

---

`mlr_task_generators_circle`

*Circle Classification Task Generator*

Description

A TaskGenerator for the circle binary classification task in `mlbench::mlbench.circle()`. Creates a large circle containing a smaller circle.

Dictionary

This TaskGenerator can be instantiated via the dictionary `mlr_task_generators` or with the associated sugar function `tgen()`:

```
mlr_task_generators$get("circle")
tgen("circle")
```

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>integer</td>
<td>2</td>
<td>[2, ∞)</td>
<td>-</td>
</tr>
</tbody>
</table>
Super class

\texttt{mlr3::TaskGenerator} -> TaskGeneratorCircle

Methods

Public methods:

\begin{itemize}
  \item TaskGeneratorCircle$new() \\
  \item TaskGeneratorCircle$plot() \\
  \item TaskGeneratorCircle$clone()
\end{itemize}

Method \texttt{new()}: Creates a new instance of this \texttt{R6} class.

\textit{Usage:}

\begin{verbatim}
TaskGeneratorCircle$new()
\end{verbatim}

Method \texttt{plot()}: Creates a simple plot of generated data.

\textit{Usage:}

\begin{verbatim}
TaskGeneratorCircle$plot(n = 200L, pch = 19L, ...)
\end{verbatim}

\textit{Arguments:}

- \texttt{n} (integer(1))
  - Number of samples to draw for the plot. Default is 200.
- \texttt{pch} (integer(1))
  - Point char. Passed to \texttt{plot()}. \\
- \texttt{...} (any)
  - Additional arguments passed to \texttt{plot()}. \\

Method \texttt{clone()}: The objects of this class are cloneable with this method.

\textit{Usage:}

\begin{verbatim}
TaskGeneratorCircle$clone(deep = FALSE)
\end{verbatim}

\textit{Arguments:}

- \texttt{deep} Whether to make a deep clone.

See Also

- Dictionary of TaskGenerators: \texttt{mlr_task_generators}
- \texttt{as.data.table(mlr_task_generators)} for a table of available TaskGenerators in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - \texttt{mlr3proba} for probabilistic supervised regression and survival analysis.
  - \texttt{mlr3cluster} for unsupervised clustering.

Other TaskGenerator: TaskGenerator, mlr_task_generators_2dnormals, mlr_task_generators_cassini, mlr_task_generators_friedman1, mlr_task_generators_moons, mlr_task_generators_simplex, mlr_task_generators_smiley, mlr_task_generators_spirals, mlr_task_generators_xor, mlr_task_generators
Examples

```r
generator = tgen("circle")
plot(generator, n = 200)

task = generator$generate(200)
str(task$data())
```

Description

A TaskGenerator for the friedman1 task in mlbench::mlbench.friedman1().

Dictionary

This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen():

```r
mlr_task_generators$get("friedman1")
tgen("friedman1")
```

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd</td>
<td>numeric</td>
<td>1</td>
<td>$[0, \infty)$</td>
<td>-</td>
</tr>
</tbody>
</table>

Super class

`mlr3::TaskGenerator` -> `TaskGeneratorFriedman1`

Methods

Public methods:
- `TaskGeneratorFriedman1$new()`
- `TaskGeneratorFriedman1$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:
```
TaskGeneratorFriedman1$new()
```

Method `clone()`: The objects of this class are cloneable with this method.
Usage:
TaskGeneratorFriedman1$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

See Also
- Dictionary of TaskGenerators: mlr_task_generators
- as.data.table(mlr_task_generators) for a table of available TaskGenerators in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.

Other TaskGenerator: TaskGenerator, mlr_task_generators_2dnormals, mlr_task_generators_cassini, mlr_task_generators_circle, mlr_task_generators_moons, mlr_task_generators_simplex, mlr_task_generators_smiley, mlr_task_generators_spirals, mlr_task_generators_xor, mlr_task_generators

Examples

generator = tgen("friedman1")
task = generator$generate(200)
str(task$data())

mlr_task_generators_moons

Moons Classification Task Generator

Description
A TaskGenerator creating two interleaving half circles ("moons") as binary classification problem.

Dictionary
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen():

mlr_task_generators$get("moons")
tgen("moons")

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigma</td>
<td>numeric</td>
<td>1</td>
<td>[0, ∞)</td>
<td>-</td>
</tr>
</tbody>
</table>
Super class

`mlr3::TaskGenerator` -> `TaskGeneratorMoons`

Methods

Public methods:

- `TaskGeneratorMoons$new()`
- `TaskGeneratorMoons$plot()`
- `TaskGeneratorMoons$clone()`

**Method `new()`**: Creates a new instance of this R6 class.

*Usage:*

`TaskGeneratorMoons$new()`

**Method `plot()`**: Creates a simple plot of generated data.

*Usage:*

`TaskGeneratorMoons$plot(n = 200L, pch = 19L, ...)`

*Arguments:*

- `n` (integer(1))
  - Number of samples to draw for the plot. Default is 200.
- `pch` (integer(1))
  - Point char. Passed to `plot()`.
- `...` (any)
  - Additional arguments passed to `plot()`.

**Method `clone()`**: The objects of this class are cloneable with this method.

*Usage:*

`TaskGeneratorMoons$clone(deep = FALSE)`

*Arguments:*

- `deep` Whether to make a deep clone.

See Also

- Dictionary of TaskGenerators: `mlr_task_generators`
- `as.data.table(mlr_task_generators)` for a table of available TaskGenerators in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.

Other TaskGenerator: `TaskGenerator, mlr_task_generators_2dnormals, mlr_task_generators_cassini, mlr_task_generators_circle, mlr_task_generators_friedman1, mlr_task_generators_simplex, mlr_task_generators_smiley, mlr_task_generators_spirals, mlr_task_generators_xor, mlr_task_generators`
Examples

generator = tgen("moons")
plot(generator, n = 200)

task = generator$generate(200)
str(task$data())

Description

A TaskGenerator for the simplex task in mlbench::mlbench.simplex().
Note that the generator implemented in mlbench returns fewer samples than requested.

Dictionary

This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen():

mlr_task_generators$get("simplex")
tgen("simplex")

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>center</td>
<td>logical</td>
<td>TRUE</td>
<td></td>
<td>TRUE, FALSE</td>
</tr>
<tr>
<td>d</td>
<td>integer</td>
<td>3</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
<tr>
<td>sd</td>
<td>numeric</td>
<td>0.1</td>
<td>[0, ∞)</td>
<td>-</td>
</tr>
<tr>
<td>sides</td>
<td>integer</td>
<td>1</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
</tbody>
</table>

Super class

mlr3::TaskGenerator -> TaskGeneratorSimplex

Methods

- **Public methods:**
  - TaskGeneratorSimplex$new()
  - TaskGeneratorSimplex$plot()
  - TaskGeneratorSimplex$clone()
Method `new()`: Creates a new instance of this R6 class.

Usage:
TaskGeneratorSimplex$new()

Method `plot()`: Creates a simple plot of generated data.

Usage:
TaskGeneratorSimplex$plot(n = 200L, pch = 19L, ...)

Arguments:
- `n` (integer(1))
  Number of samples to draw for the plot. Default is 200.
- `pch` (integer(1))
  Point char. Passed to `plot()`.
- `...` (any)
  Additional arguments passed to `plot()`.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
TaskGeneratorSimplex$clone(deep = FALSE)

Arguments:
- `deep` Whether to make a deep clone.

See Also
- Dictionary of TaskGenerators: `mlr_task_generators`
- `as.data.table(mlr_task_generators)` for a table of available TaskGenerators in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.

Other TaskGenerator: TaskGenerator, mlr_task_generators_2dnormals, mlr_task_generators_cassini, mlr_task_generators_circle, mlr_task_generators_friedman1, mlr_task_generators_moons, mlr_task_generators_smiley, mlr_task_generators_spirals, mlr_task_generators_xor, mlr_task_generators

Examples

```r
generator = tgen("simplex")
plot(generator, n = 200)

task = generator$generate(200)
str(task$data())
```
Description

A TaskGenerator for the smiley task in \texttt{mlbench::mlbench.smiley()}.  

Dictionary

This TaskGenerator can be instantiated via the dictionary \texttt{mlr_task_generators} or with the associated sugar function \texttt{tgen()}:  

\begin{verbatim}
mlr_task_generators$get("smiley")
tgen("smiley")
\end{verbatim}

Parameters

\begin{verbatim}
\begin{array}{lllll}
\text{Id} & \text{Type} & \text{Default} & \text{Range} & \text{Levels} \\
\hline
sd1 & \text{numeric} & - & [0, \infty) & - \\
sd2 & \text{numeric} & - & [0, \infty) & - \\
\end{array}
\end{verbatim}

Super class

\texttt{mlr3::TaskGenerator} \rightarrow \texttt{TaskGeneratorSmiley}

Methods

Public methods:

- \texttt{TaskGeneratorSmiley$new()}
- \texttt{TaskGeneratorSmiley$plot()}
- \texttt{TaskGeneratorSmiley$clone()}

Method \texttt{new()}: Creates a new instance of this \texttt{R6} class.

Usage:

\begin{verbatim}
TaskGeneratorSmiley$new()
\end{verbatim}

Method \texttt{plot()}: Creates a simple plot of generated data.

Usage:

\begin{verbatim}
TaskGeneratorSmiley$plot(n = 200L, pch = 19L, ...)
\end{verbatim}

Arguments:
mlr_task_generators_spirals

Spiral Classification Task Generator

Description

A TaskGenerator for the spirals task in mlbench::mlbench.spirals().

n (integer(1))
Number of samples to draw for the plot. Default is 200.

pch (integer(1))
Point char. Passed to plot().

... (any)
Additional arguments passed to plot().

Method clone(): The objects of this class are cloneable with this method.

Usage:
TaskGeneratorSmiley$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

- Dictionary of TaskGenerators: mlr_task_generators
- as.data.table(mlr_task_generators) for a table of available TaskGenerators in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.

Other TaskGenerator: TaskGenerator, mlr_task_generators_2dnormals, mlr_task_generators_cassini, mlr_task_generators_circle, mlr_task_generators_friedman1, mlr_task_generators_moons, mlr_task_generators_simplex, mlr_task_generators_spirals, mlr_task_generators_xor, mlr_task_generators

Examples

generator = tgen("smiley")
plot(generator, n = 200)

task = generator$generate(200)
str(task$data())
Dictionary

This TaskGenerator can be instantiated via the dictionary `mlr_task_generators` or with the associated sugar function `tgen()`:

```r
mlr_task_generators$get("spirals")
tgen("spirals")
```

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>cycles</td>
<td>integer</td>
<td>1</td>
<td>[1, ∞)</td>
<td>-</td>
</tr>
<tr>
<td>sd</td>
<td>numeric</td>
<td>0</td>
<td>[0, ∞)</td>
<td>-</td>
</tr>
</tbody>
</table>

Super class

`mlr3::TaskGenerator` -> `TaskGeneratorSpirals`

Methods

Public methods:
- `TaskGeneratorSpirals$new()`
- `TaskGeneratorSpirals$plot()`
- `TaskGeneratorSpirals$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:
```r
TaskGeneratorSpirals$new()
```

Method `plot()`: Creates a simple plot of generated data.

Usage:
```r
TaskGeneratorSpirals$plot(n = 200L, pch = 19L, ...)
```

Arguments:
- `n` (integer(1))
  - Number of samples to draw for the plot. Default is 200.
- `pch` (integer(1))
  - Point char. Passed to `plot()`.
- `...` (any)
  - Additional arguments passed to `plot()`.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
```r
TaskGeneratorSpirals$clone(deep = FALSE)
```

Arguments:
- `deep` Whether to make a deep clone.
See Also

- Dictionary of TaskGenerators: mlr_task_generators
- as.data.table(mlr_task_generators) for a table of available TaskGenerators in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.

Other TaskGenerator: TaskGenerator, mlr_task_generators_2dnormals, mlr_task_generators_cassini, mlr_task_generators_circle, mlr_task_generators_friedman1, mlr_task_generators_moons, mlr_task_generators_simplex, mlr_task_generators_smiley, mlr_task_generators_xor, mlr_task_generators

Examples

```r
generator = tgen("spirals")
plot(generator, n = 200)

task = generator$generate(200)
str(task$data())
```

---

mldr_task_generators_xor

**XOR Classification Task Generator**

Description

A TaskGenerator for the xor task in mlbench::mlbench.xor().

Dictionary

This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen():

```r
mlr_task_generators$get("xor")
tgen("xor")
```

Parameters

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>integer</td>
<td>1</td>
<td>[1,∞)</td>
<td>-</td>
</tr>
</tbody>
</table>
Super class

\texttt{mlr3::TaskGenerator} \rightarrow \texttt{TaskGeneratorXor}

Methods

Public methods:

- \texttt{TaskGeneratorXor\$new()}
- \texttt{TaskGeneratorXor\$plot()}
- \texttt{TaskGeneratorXor\$clone()}

Method \texttt{new()}: Creates a new instance of this \texttt{R6} class.

\texttt{Usage:}

\texttt{TaskGeneratorXor\$new()}

Method \texttt{plot()}: Creates a simple plot of generated data.

\texttt{Usage:}

\texttt{TaskGeneratorXor\$plot(n = 200L, pch = 19L, ...)}

\texttt{Arguments:}

- \texttt{n (integer(1))}
  
  Number of samples to draw for the plot. Default is 200.

- \texttt{pch (integer(1))}
  
  Point char. Passed to \texttt{plot()}.  

- \texttt{... (any)}
  
  Additional arguments passed to \texttt{plot()}.  

Method \texttt{clone()}: The objects of this class are cloneable with this method.

\texttt{Usage:}

\texttt{TaskGeneratorXor\$clone(deep = FALSE)}

\texttt{Arguments:}

- \texttt{deep} Whether to make a deep clone.

See Also

- Dictionary of TaskGenerators: \texttt{mlr_task_generators}

- \texttt{as.data.table(mlr_task_generators)} for a table of available TaskGenerators in the running session (depending on the loaded packages).

- Extension packages for additional task types:
  
  - \texttt{mlr3proba} for probabilistic supervised regression and survival analysis.
  
  - \texttt{mlr3cluster} for unsupervised clustering.

Other TaskGenerator: \texttt{TaskGenerator,mlr_task_generators_2dnormals,mlr_task_generators_cassini,mlr_task_generators_circle,mlr_task_generators_friedman1,mlr_task_generators_moons,mlr_task_generators_simplex,mlr_task_generators_smiley,mlr_task_generators_spirals,mlr_task_generators}
import numpy as np

generator = tgen("xor")
plot(generator, n = 200)

task = generator$generate(200)
str(task$data())

---

**partition**

*Manually Partition into Training and Test Set*

**Description**

Creates a split of the row ids of a Task into a training set and a test set while optionally stratifying on the target column.

For more complex partitions, see the example.

**Usage**

partition(task, ratio = 0.67, stratify = TRUE, ...)

```r
S3 method for class 'TaskRegr'
partition(task, ratio = 0.67, stratify = TRUE, bins = 3L, ...)

S3 method for class 'TaskClassif'
partition(task, ratio = 0.67, stratify = TRUE, ...)
```

**Arguments**

- **task** *(Task)*
  Task to operate on.

- **ratio** *(numeric(1))*
  Ratio of observations to put into the training set.

- **stratify** *(logical(1))*
  If TRUE, stratify on the target variable. For regression tasks, the target variable is first cut into bins bins. See Task$add_strata().

- **...** *(any)*
  Additional arguments, currently not used.

- **bins** *(integer(1))*
  Number of bins to cut the target variable into for stratification.
Examples

# regression task
task = tsk("boston_housing")

# roughly equal size split while stratifying on the binned response
split = partition(task, ratio = 0.5)
data = data.frame(
y = c(task$truth(split$train), task$truth(split$test)),
split = rep(c("train", "predict"), lengths(split))
)
boxplot(y ~ split, data = data)

# classification task
task = tsk("pima")
split = partition(task)

# roughly same distribution of the target label
prop.table(table(task$truth()))
prop.table(table(task$truth(split$train)))
prop.table(table(task$truth(split$test)))

# splitting into 3 disjunct sets, using ResamplingCV and stratification
task = tsk("iris")
task$set_col_roles(task$target_names, add_to = "stratum")
r = rsmp("cv", folds = 3)$instantiate(task)

sets = lapply(1:3, r$train_set)
lengths(sets)
prop.table(table(task$truth(sets[[1]])))

predict.Learner

### Predict Method for Learners

**Description**

Extends the generic `stats::predict()` with a method for Learner. Note that this function is intended as glue code to be used in third party packages. We recommend to work with the Learner directly, i.e. calling learner$predict() or learner$predict_newdata() directly.

Performs the following steps:

- Sets additional hyperparameters passed to this function.
- Creates a Prediction object by calling learner$predict_newdata().
- Returns (subset of) Prediction.

**Usage**

```r
S3 method for class 'Learner'
predict(object, newdata, predict_type = NULL, ...)
```
Arguments

- **object** *(Learner)*
  Any Learner.

- **newdata** *(data.frame())*
  New data to predict on.

- **predict_type** *(character(1))*
  The predict type to return. Set to `<Prediction>` to retrieve the complete Prediction object. If set to `NULL` (default), the first predict type for the respective class of the Learner as stored in `mlr_reflections` is used.

- **...** *(any)*
  Hyperparameters to pass down to the Learner.

Examples

```r
task = tsk("spam")
learner = lrn("classif.rpart", predict_type = "prob")
learner$train(task)
predict(learner, task$data(1:3), predict_type = "response")
predict(learner, task$data(1:3), predict_type = "prob")
predict(learner, task$data(1:3), predict_type = "<Prediction>")
```

Description

This is the abstract base class for task objects like PredictionClassif or PredictionRegr. Prediction objects store the following information:

1. The row ids of the test set
2. The corresponding true (observed) response.
3. The corresponding predicted response.
4. Additional predictions based on the class and predict_type. E.g., the class probabilities for classification or the estimated standard error for regression.

Note that this object is usually constructed via a derived classes, e.g. PredictionClassif or PredictionRegr.

S3 Methods

- `as.data.table(rr)`
  `Prediction` -> `data.table::data.table()`
  Converts the data to `data.table::data.table()`.
• `c(..., keep_duplicates = TRUE)`
  
  `(Prediction, Prediction, ...) -> Prediction`

  Combines multiple Predictions to a single Prediction. If `keep_duplicates` is FALSE and there are duplicated row ids, the data of the former passed objects get overwritten by the data of the later passed objects.

Public fields

- **data** (named list())
  
  Internal data structure.

- **task_type** (character(1))
  
  Required type of the Task.

- **task_properties** (character())
  
  Required properties of the Task.

- **predict_types** (character())
  
  Set of predict types this object stores.

- **man** (character(1))
  
  String in the format `[pkg]::[topic]` pointing to a manual page for this object. Defaults to NA, but can be set by child classes.

Active bindings

- **row_ids** (integer())
  
  Vector of row ids for which predictions are stored.

- **truth** (any)
  
  True (observed) outcome.

- **missing** (integer())
  
  Returns row_ids for which the predictions are missing or incomplete.

Methods

Public methods:

- `Prediction$format()`
- `Prediction$print()`
- `Prediction$help()`
- `Prediction$score()`
- `Prediction$filter()`
- `Prediction$clone()`

Method **format()**: Helper for print outputs.

  Usage:
  
  ```r
 Prediction$format()
  ```

Method **print()**: Printer.

  Usage:
  
  ```r
 Prediction$print(...)
  ```
Arguments:

... (ignored).

Method help(): Opens the corresponding help page referenced by field $man.

Usage:
Prediction$help()

Method score(): Calculates the performance for all provided measures Task and Learner may be NULL for most measures, but some measures need to extract information from these objects. Note that the predict_sets of the measures are ignored by this method, instead all predictions are used.

Usage:
Prediction$score(
  measures = NULL,
  task = NULL,
  learner = NULL,
  train_set = NULL
)

Arguments:

measures (Measure | list of Measure)
  Measure(s) to calculate.
task (Task).
learner (Learner).
train_set (integer()).

Returns: Prediction.

Method filter(): Filters the Prediction, keeping only predictions for the provided row_ids. This changes the object in-place, you need to create a clone to preserve the original Prediction.

Usage:
Prediction$filter(row_ids)

Arguments:

row_ids integer()
  Row indices.

Returns: self, modified.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Prediction$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
PredictionClassif

Description

This object wraps the predictions returned by a learner of class LearnerClassif, i.e. the predicted response and class probabilities.

If the response is not provided during construction, but class probabilities are, the response is calculated from the probabilities: the class label with the highest probability is chosen. In case of ties, a label is selected randomly.

Thresholding

If probabilities are stored, it is possible to change the threshold which determines the predicted class label. Usually, the label of the class with the highest predicted probability is selected. For binary classification problems, such an threshold defaults to 0.5. For cost-sensitive or imbalanced classification problems, manually adjusting the threshold can increase the predictive performance.

- For binary problems only a single threshold value can be set. If the probability exceeds the threshold, the positive class is predicted. If the probability equals the threshold, the label is selected randomly.
- For binary and multi-class problems, a named numeric vector of thresholds can be set. The length and names must correspond to the number of classes and class names, respectively. To determine the class label, the probabilities are divided by the threshold. This results in a ratio $> 1$ if the probability exceeds the threshold, and a ratio $< 1$ otherwise. Note that it is possible that either none or multiple ratios are greater than 1 at the same time. Anyway, the class label with maximum ratio is selected. In case of ties in the ratio, one of the tied class labels is selected randomly.

Note that there are the following edge cases for threshold equal to 0 which are handled specially:

1. With threshold 0 the resulting ratio gets $\infty$ and thus gets always selected. If there are multiple ratios with value $\infty$, one is selected according to ties_method (randomly per default).
2. If additionally the predicted probability is also 0, the ratio $0/0$ results in NaN values. These are simply replaced by 0 and thus will never get selected.

See Also

- Package mlr3viz for some generic visualizations.
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.

Other Prediction: PredictionClassif, PredictionRegr
Super class

\texttt{mlr3::Prediction} -> \texttt{PredictionClassif}

Active bindings

- \texttt{response (factor())}
  Access to the stored predicted class labels.
- \texttt{prob (matrix())}
  Access to the stored probabilities.
- \texttt{confusion (matrix())}
  Confusion matrix, as resulting from the comparison of truth and response. Truth is in columns, predicted response is in rows.

Methods

Public methods:
- \texttt{PredictionClassif$new()}
- \texttt{PredictionClassif$set_threshold()}

Method \texttt{new()}: Creates a new instance of this R6 class.

Usage:

\begin{verbatim}
PredictionClassif$new(
  task = NULL,
  row_ids = task$row_ids,
  truth = task$truth(),
  response = NULL,
  prob = NULL,
  check = TRUE
)
\end{verbatim}

Arguments:

- \texttt{task (TaskClassif)}
  Task, used to extract defaults for row_ids and truth.
- \texttt{row_ids (integer())}
  Row ids of the predicted observations, i.e. the row ids of the test set.
- \texttt{truth (factor())}
  True (observed) labels. See the note on manual construction.
- \texttt{response (character() | factor())}
  Vector of predicted class labels. One element for each observation in the test set. Character vectors are automatically converted to factors. See the note on manual construction.
- \texttt{prob (matrix())}
  Numeric matrix of posterior class probabilities with one column for each class and one row for each observation in the test set. Columns must be named with class labels, row names are automatically removed. If prob is provided, but response is not, the class labels are calculated from the probabilities using \texttt{max.col()} with \texttt{ties.method} set to "random".
- \texttt{check (logical(1))}
  If TRUE, performs some argument checks and predict type conversions.
**Method** set_threshold(): Sets the prediction response based on the provided threshold. See the section on thresholding for more information.

**Usage:**

```r
PredictionClassif$set_threshold(threshold, ties_method = "random")
```

**Arguments:**

- `threshold` (numeric()).
- `ties_method` (character(1))
  - One of "random", "first" or "last" (c.f. `max.col()`) to determine how to deal with tied probabilities.

**Returns:** Returns the object itself, but modified by reference. You need to explicitly `$clone()` the object beforehand if you want to keeps the object in its previous state.

**Note**

If this object is constructed manually, make sure that the factor levels for truth have the same levels as the task, in the same order. In case of binary classification tasks, the positive class label must be the first level.

**See Also**

- Package `mlr3viz` for some generic visualizations.
- Extension packages for additional task types:
  - `mlr3proba` for probabilistic supervised regression and survival analysis.
  - `mlr3cluster` for unsupervised clustering.

**Other Prediction:** `PredictionRegr`, `Prediction`

**Examples**

```r
taxt = tsk("penguins")
learner = lrn("classif.rpart", predict_type = "prob")
learner$train(task)
p = learner$predict(task)
p$predict_types
head(as.data.table(p))

confusion matrix
p$confusion

change threshold
th = c(0.05, 0.9, 0.05)
names(th) = task$gen_class_names

new predictions
p$set_threshold(th)$response
p$score(measures = msr("classif.ce"))
```
Objects of type `PredictionData` serve as an intermediate representation for objects of type `Prediction`. It is an internal data structure, implemented to optimize runtime and solve some issues emerging while serializing R6 objects. End-users typically do not need to worry about the details, package developers are advised to continue reading for some technical information.

Unlike most other `mlr3` objects, `PredictionData` relies on the S3 class system. The following operations must be supported to extend `mlr3` for new task types:

- `as_prediction_data()` converts objects to class `PredictionData`, e.g. objects of type `Prediction`.
- `as_prediction()` converts objects to class `Prediction`, e.g. objects of type `PredictionData`.
- `check_prediction_data()` is called on the return value of the predict method of a `Learner` to perform assertions and type conversions. Returns an update object of class `PredictionData`.
- `is_missing_prediction_data()` is used for the fallback learner (see `Learner`) to impute missing predictions. Returns vector with row ids which need imputation.

### Usage

```r
check_prediction_data(pdata)

is_missing_prediction_data(pdata)

filter_prediction_data(pdata, row_ids)
```

```r
S3 method for class 'PredictionDataClassif'
check_prediction_data(pdata)

S3 method for class 'PredictionDataClassif'
is_missing_prediction_data(pdata)

S3 method for class 'PredictionDataClassif'
c(..., keep_duplicates = TRUE)

S3 method for class 'PredictionDataRegr'
check_prediction_data(pdata)

S3 method for class 'PredictionDataRegr'
is_missing_prediction_data(pdata)

S3 method for class 'PredictionDataRegr'
c(..., keep_duplicates = TRUE)
```
Arguments

- **pdata** (PredictionData)
  Named list inheriting from "PredictionData".
- **row_ids** integer()
  Row indices.
- **...** (one or more PredictionData objects).
- **keep_duplicates** (logical(1)) If TRUE, the combined PredictionData object is filtered for duplicated row ids (starting from last).

---

**Description**

This object wraps the predictions returned by a learner of class LearnerRegr, i.e. the predicted response and standard error. Additionally, probability distributions implemented in distr6 are supported.

**Super class**

mlr3::Prediction -> PredictionRegr

**Active bindings**

- **response** (numeric())
  Access the stored predicted response.
- **se** (numeric())
  Access the stored standard error.
- **distr** (distr6::VectorDistribution)
  Access the stored vector distribution. Requires package distr6.

**Methods**

**Public methods:**

- **PredictionRegr$new()**

**Method** `new()`: Creates a new instance of this R6 class.

**Usage:**

```r
PredictionRegr$new(
 task = NULL,
 row_ids = task$row_ids,
 truth = task$truth(),
 response = NULL,
 se = NULL,
```
Arguments:

- **task** (*TaskRegr*)
  Task, used to extract defaults for `row_ids` and `truth`.

- **row_ids** (*integer()*)
  Row ids of the predicted observations, i.e. the row ids of the test set.

- **truth** (*numeric()*)
  True (observed) response.

- **response** (*numeric()*)
  Vector of numeric response values. One element for each observation in the test set.

- **se** (*numeric()*)
  Numeric vector of predicted standard errors. One element for each observation in the test set.

- **distr** (*distr6::VectorDistribution*)
  `VectorDistribution` from `distr6`. Each individual distribution in the vector represents the random variable 'survival time' for an individual observation.

- **check** (*logical(1)*)
  If TRUE, performs some argument checks and predict type conversions.

See Also

- Package *mlr3viz* for some generic visualizations.
- Extension packages for additional task types:
  - *mlr3proba* for probabilistic supervised regression and survival analysis.
  - *mlr3cluster* for unsupervised clustering.

Other Prediction: *PredictionClassif, Prediction*

Examples

```r
task = tsk("boston_housing")
learner = lrn("regr.featureless", predict_type = "se")
p = learner$train(task)$predict(task)
p$predict_types
head(as.data.table(p))
```

<table>
<thead>
<tr>
<th>resample</th>
<th>Resample a Learner on a Task</th>
</tr>
</thead>
</table>

Description

Runs a resampling (possibly in parallel): Repeatedly apply Learner learner on a training set of Task task to train a model, then use the trained model to predict observations of a test set. Training and test sets are defined by the Resampling resampling.
Usage

resample(
    task,  
    learner,  
    resampling,  
    store_models = FALSE,  
    store_backends = TRUE,  
    encapsulate = NA_character_,  
    allow_hotstart = FALSE
)

Arguments

task (Task).

learner (Learner).

resampling (Resampling).

store_models (logical(1))
    Store the fitted model in the resulting object= Set to TRUE if you want to further analyse the models or want to extract information like variable importance.

store_backends (logical(1))
    Keep the DataBackend of the Task in the ResampleResult? Set to TRUE if your performance measures require a Task, or to analyse results more conveniently. Set to FALSE to reduce the file size and memory footprint after serialization. The current default is TRUE, but this eventually will be changed in a future release.

encapsulate (character(1))
    If not NA, enables encapsulation by setting the field Learner$encapsulate to one of the supported values: "none" (disable encapsulation), "evaluate" (execute via evaluate) and "callr" (start in external session via callr). If NA, encapsulation is not changed, i.e. the settings of the individual learner are active. Additionally, if encapsulation is set to "evaluate" or "callr", the fallback learner is set to the featureless learner if the learner does not already have a fallback configured.

allow_hotstart (logical(1))
    Determines if learner(s) are hot started with trained models in $hotstart_stack. See also HotstartStack.

Value

ResampleResult.

Parallelization

This function can be parallelized with the future package. One job is one resampling iteration, and all jobs are send to an apply function from future.apply in a single batch. To select a parallel backend, use future::plan().
Progress Bars

This function supports progress bars via the package **progressr**. Simply wrap the function call in `progressr::with_progress()` to enable them. Alternatively, call `progressr::handlers()` with `global = TRUE` to enable progress bars globally. We recommend the **progress** package as backend which can be enabled with `progressr::handlers("progress")`.

Logging

The **mlr3** uses the **lgr** package for logging. **lgr** supports multiple log levels which can be queried with `getOption("lgr.log_levels")`.

To suppress output and reduce verbosity, you can lower the log from the default level "info" to "warn":

```r
lgr::get_logger("mlr3")$set_threshold("warn")
```

To get additional log output for debugging, increase the log level to "debug" or "trace":

```r
lgr::get_logger("mlr3")$set_threshold("debug")
```

To log to a file or a data base, see the documentation of `lgr::lgr-package`.

Note

The fitted models are discarded after the predictions have been computed in order to reduce memory consumption. If you need access to the models for later analysis, set `store_models` to `TRUE`.

See Also

- `as_benchmark_result()` to convert to a `BenchmarkResult`
- Package **mlr3viz** for some generic visualizations.

Other resample: **ResampleResult**

Examples

```r
task = tsk("penguins")
learner = lrn("classif.rpart")
resampling = rsmp("cv")

Explicitly instantiate the resampling for this task for reproduciblity
set.seed(123)
resampling$instantiate(task)

rr = resample(task, learner, resampling)
print(rr)

Retrieve performance
rr$score(msr("classif.ce"))
rr$aggregate(msr("classif.ce"))
```
```r
merged prediction objects of all resampling iterations
pred = rr$prediction()
pred$confusion

Repeat resampling with featureless learner
rr_featureless = resample(task, lrn("classif.featureless"), resampling)

Convert results to BenchmarkResult, then combine them
bmr1 = as_benchmark_result(rr)
bmr2 = as_benchmark_result(rr_featureless)
print(bmr1$combine(bmr2))
```

---

**ResampleResult**

*Container for Results of resample()*

**Description**

This is the result container object returned by `resample()`.

Note that all stored objects are accessed by reference. Do not modify any object without cloning it first.

*ResampleResults* can be visualized via *mlr3viz’s* `autoplot()` function.

**S3 Methods**

- `as.data.table(rr, reassemble_learners = TRUE, convert_predictions = TRUE, predict_sets = "test")`
  
  `ResampleResult -> data.table::data.table()`
  
  Returns a tabular view of the internal data.

- `c(...)`

  `(ResampleResult, ...) -> BenchmarkResult`

  Combines multiple objects convertible to `BenchmarkResult` into a new `BenchmarkResult`.

**Active bindings**

- `data (ResultData)`

  Internal data storage object of type `ResultData`. This field is deprecated and will be removed in the next release. Use `as.table.table(BenchmarkResult)` instead.

- `task_type (character(1))`

  Task type of objects in the `ResampleResult`, e.g. "classif" or "regr". This is NA for empty `ResampleResults`.

- `uhash (character(1))`

  Unique hash for this object.

- `iters (integer(1))`

  Number of resampling iterations stored in the `ResampleResult`. 
task (Task)
The task resample() operated on.

learner (Learner)
Learner prototype resample() operated on. For a list of trained learners, see methods $learners().

resampling (Resampling)
Instantiated Resampling object which stores the splits into training and test.

learners (list of Learner)
List of trained learners, sorted by resampling iteration.

warnings (data.table::data.table())
A table with all warning messages. Column names are "iteration" and "msg". Note that there can be multiple rows per resampling iteration if multiple warnings have been recorded.

errrors (data.table::data.table())
A table with all error messages. Column names are "iteration" and "msg". Note that there can be multiple rows per resampling iteration if multiple errors have been recorded.

Methods

Public methods:
- ResampleResult$new()
- ResampleResult$format()
- ResampleResult$print()
- ResampleResult$help()
- ResampleResult$prediction()
- ResampleResult$predictions()
- ResampleResult$score()
- ResampleResult$aggregate()
- ResampleResult$filter()
- ResampleResult$discard()
- ResampleResult$clone()

Method new(): Creates a new instance of this R6 class. An alternative construction method is provided by as_resample_result().

Usage:
ResampleResult$new(data = ResultData$new(), view = NULL)

Arguments:
data (ResultData | data.table())
An object of type ResultData, either extracted from another ResampleResult, another BenchmarkResult, or manually constructed with as_result_data().

view (character())
Single uhash of the ResultData to operate on. Used internally for optimizations.

Method format(): Helper for print outputs.

Usage:
ResampleResult

ResampleResult$format()

**Method** print(): Printer.

**Usage:**
ResampleResult$print(...)

**Arguments:**
... (ignored).

**Method** help(): Opens the corresponding help page referenced by field $man.

**Usage:**
ResampleResult$help()

**Method** prediction(): Combined Prediction of all individual resampling iterations, and all provided predict sets. Note that performance measures do not operate on this object, but instead on each prediction object separately and then combine the performance scores with the aggregate function of the respective Measure.

**Usage:**
ResampleResult$prediction(predict_sets = "test")

**Arguments:**
predict_sets (character())

**Returns:** Prediction. Subset of {"train", "test"}.

**Method** predictions(): List of prediction objects, sorted by resampling iteration. If multiple sets are given, these are combined to a single one for each iteration.

**Usage:**
ResampleResult$predictions(predict_sets = "test")

**Arguments:**
predict_sets (character())

Subet of {"train", "test"}.

**Returns:** List of Prediction objects, one per element in predict_sets.

**Method** score(): Returns a table with one row for each resampling iteration, including all involved objects: Task, Learner, Resampling, iteration number (integer(1)), and Prediction. Additionally, a column with the individual (per resampling iteration) performance is added for each Measure in measures, named with the id of the respective measure id. If measures is NULL, measures defaults to the return value of default_measures().

**Usage:**
ResampleResult$score(
  measures = NULL,
  ids = TRUE,
  conditions = FALSE,
  predict_sets = "test"
)
Arguments:
measures \text{(Measure | list of Measure)}
Measure(s) to calculate.
ids (logical(1))
If \text{ids} is \text{TRUE}, extra columns with the ids of objects ("task_id", "learner_id", "resampling_id") are added to the returned table. These allow to subset more conveniently.
conditions (logical(1))
Adds condition messages ("warnings", "errors") as extra list columns of character vectors to the returned table
predict_sets (character())
Vector of predict sets (\text{"train", "test"}) to construct the \textbf{Prediction} objects from. Default is "test".

Returns: data.table::data.table().

Method \texttt{aggregate}(): Calculates and aggregates performance values for all provided measures, according to the respective aggregation function in \texttt{Measure}. If \text{measures} is \text{NULL}, \text{measures} defaults to the return value of \texttt{default_measures()}.

Usage:
ResampleResult$aggregate(measures = NULL)

Arguments:
measures \text{(Measure | list of Measure)}
Measure(s) to calculate.

Returns: Named numeric().

Method \texttt{filter}(): Subsets the \textbf{ResampleResult}, reducing it to only keep the iterations specified in \texttt{iters}.

Usage:
ResampleResult$filter(iters)

Arguments:
iters (integer())
Resampling iterations to keep.

Returns: Returns the object itself, but modified by reference. You need to explicitly $\texttt{clone()} the object beforehand if you want to keep the object in its previous state.

Method \texttt{discard}(): Shrinks the \textbf{ResampleResult} by discarding parts of the internally stored data. Note that certain operations might stop work, e.g. extracting importance values from learners or calculating measures requiring the task’s data.

Usage:
ResampleResult$discard(backends = FALSE, models = FALSE)

Arguments:
backends (logical(1))
If \text{TRUE}, the \texttt{DataBackend} is removed from all stored \texttt{Tasks}.
models (logical(1))
If \text{TRUE}, the stored model is removed from all \texttt{Learners}.
**Returns**: Returns the object itself, but modified by reference. You need to explicitly \$clone() the object beforehand if you want to keep the object in its previous state.

**Method** `clone()`: The objects of this class are cloneable with this method.

**Usage**:
ResampleResult\$clone(deep = FALSE)

**Arguments**:
depth Whether to make a deep clone.

**See Also**
- `as_benchmark_result()` to convert to a BenchmarkResult.
- Package mlr3viz for some generic visualizations.

**Examples**
```r
task = tsk("penguins")
learner = lrn("classif.rpart")
resampling = rsm("cv", folds = 3)
rr = resample(task, learner, resampling)
print(rr)

rr\$aggregate(msr("classif.acc"))
rr\$prediction()
rr\$prediction()\$confusion
rr\$warnings
rr\$errors
```

<table>
<thead>
<tr>
<th><strong>Resampling</strong></th>
<th><strong>Resampling Class</strong></th>
</tr>
</thead>
</table>

**Description**

This is the abstract base class for resampling objects like ResamplingCV and ResamplingBootstrap. The objects of this class define how a task is partitioned for resampling (e.g., in `resample()` or `benchmark()`), using a set of hyperparameters such as the number of folds in cross-validation.

Resampling objects can be instantiated on a Task, which applies the strategy on the task and manifests in a fixed partition of row_ids of the Task.

Predefined resamplings are stored in the dictionary mlr_resamplings, e.g. cv or bootstrap.
Stratification

All derived classes support stratified sampling. The stratification variables are assumed to be discrete and must be stored in the Task with column role "stratum". In case of multiple stratification variables, each combination of the values of the stratification variables forms a strata.

First, the observations are divided into subpopulations based one or multiple stratification variables (assumed to be discrete), c.f. task$strata.

Second, the sampling is performed in each of the k subpopulations separately. Each subgroup is divided into iter training sets and iter test sets by the derived Resampling. These sets are merged based on their iteration number: all training sets from all subpopulations with iteration 1 are combined, then all training sets with iteration 2, and so on. Same is done for all test sets. The merged sets can be accessed via $train_set(i) and $test_set(i), respectively. Note that this procedure can lead to set sizes that are slightly different from those without stratification.

Grouping / Blocking

All derived classes support grouping of observations. The grouping variable is assumed to be discrete and must be stored in the Task with column role "group".

Observations in the same group are treated like a "block" of observations which must be kept together. These observations either all go together into the training set or together into the test set.

The sampling is performed by the derived Resampling on the grouping variable. Next, the grouping information is replaced with the respective row ids to generate training and test sets. The sets can be accessed via $train_set(i) and $test_set(i), respectively.

Public fields

id (character(1))
  Identifier of the object. Used in tables, plot and text output.

param_set (paradox::ParamSet)
  Set of hyperparameters.

instance (any)
  During instantiate(), the instance is stored in this slot in an arbitrary format. Note that if a grouping variable is present in the Task, a Resampling may operate on the group ids internally instead of the row ids (which may lead to confusion).
  It is advised to not work directly with the instance, but instead only use the getters $train_set() and $test_set().

task_hash (character(1))
  The hash of the Task which was passed to r$instantiate().

task_nrow (integer(1))
  The number of observations of the Task which was passed to r$instantiate().

duplicated_ids (logical(1))
  If TRUE, duplicated rows can occur within a single training set or within a single test set. E.g., this is TRUE for Bootstrap, and FALSE for cross-validation. Only used internally.

man (character(1))
  String in the format [pkg]:[topic] pointing to a manual page for this object. Defaults to NA, but can be set by child classes.
Active bindings

  is_instantiated (logical(1))
  Is TRUE if the resampling has been instantiated.

  hash (character(1))
  Hash (unique identifier) for this object.

Methods

Public methods:

  • Resampling$new()
  • Resampling$format()
  • Resampling$print()
  • Resampling$help()
  • Resampling$instantiate()
  • Resampling$train_set()
  • Resampling$test_set()
  • Resampling$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Resampling$new(
  id,
  param_set = ps(),
  duplicated_ids = FALSE,
  man = NA_character_
)

Arguments:
  id (character(1))
    Identifier for the new instance.
  param_set (paradox::ParamSet)
    Set of hyperparameters.
  duplicated_ids (logical(1))
    Set to TRUE if this resampling strategy may have duplicated row ids in a single training set
    or test set.
    Note that this object is typically constructed via a derived classes, e.g. ResamplingCV or
    ResamplingHoldout.
  man (character(1))
    String in the format [pkg]::[topic] pointing to a manual page for this object. The referenced
    help package can be opened via method $help().

Method format(): Helper for print outputs.

Usage:
Resampling$format()

Method print(): Printer.
Usage:
Resampling$print(...)

Arguments:
... (ignored).

Method help(): Opens the corresponding help page referenced by field $man.

Usage:
Resampling$help()

Method instantiate(): Materializes fixed training and test splits for a given task and stores them in r$instance in an arbitrary format.

Usage:
Resampling$instantiate(task)

Arguments:
task (Task)
  Task used for instantiation.

Returns: Returns the object itself, but modified by reference. You need to explicitly $clone() the object beforehand if you want to keep the object in its previous state.

Method train_set(): Returns the row ids of the i-th training set.

Usage:
Resampling$train_set(i)

Arguments:
i (integer(1))
  Iteration.

Returns: (integer()) of row ids.

Method test_set(): Returns the row ids of the i-th test set.

Usage:
Resampling$test_set(i)

Arguments:
i (integer(1))
  Iteration.

Returns: (integer()) of row ids.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Resampling$clone(deep = FALSE)

Arguments:
deep  Whether to make a deep clone.
Resampling

See Also

- Chapter in the mlrbook: https://mlrbook.mlr-org.com/basics.html#resampling
- Package mlr3spatiotempcv for spatio-temporal resamplings.
- Dictionary of Resamplings: mlr_resamplings
- as.data.table(mlr_resamplings) for a table of available Resamplings in the running session (depending on the loaded packages).
- mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.

Other Resampling: mlr_resamplings_bootstrap, mlr_resamplings_custom_cv, mlr_resamplings_custom, mlr_resamplings_cv, mlr_resamplings_holdout, mlr_resamplings_insample, mlr_resamplings_loo, mlr_resamplings_repeated_cv, mlr_resamplings_subsampling, mlr_resamplings

Examples

```r
r = rsmp("subsampling")

Default parametrization
r$param_set$values

Do only 3 repeats on 10% of the data
r$param_set$values = list(ratio = 0.1, repeats = 3)
r$param_set$values

Instantiate on penguins task
task = tsk("penguins")
r$instantiate(task)

Extract train/test sets
train_set = r$train_set(1)
print(train_set)
intersect(train_set, r$test_set(1))

Another example: 10-fold CV
r = rsmp("cv")$instantiate(task)
r$train_set(1)

Stratification
task = tsk("pima")
prop.table(table(task$truth())) # moderately unbalanced
taskcol_rolesstratum = task$target_names

r = rsmp("subsampling")
r$instantiate(task)
prop.table(table(task$truth(r$train_set(1)))) # roughly same proportion
```
**set_threads**

**Set the Number of Threads**

**Description**

Control the parallelism via threading while calling external packages from `mlr3`.

For example, the random forest implementation in package `ranger` (connected via `mlr3learners`) supports threading via OpenMP. The number of threads to use can be set via hyperparameter `num.threads`, and defaults to 1. By calling `set_threads(x, 4)` with `x` being a ranger learner, the hyperparameter is changed so that 4 cores are used.

If the object `x` does not support threading, `x` is returned as-is. If applied to a list, recurses through all list elements.

Note that threading is incompatible with other parallelization techniques such as forking via the `future::plan future::multicore`. For this reason all learners connected to `mlr3` have threading disabled in their defaults.

**Usage**

```r
set_threads(x, n = availableCores())
```

```r
Default S3 method:
set_threads(x, n = availableCores())
```

```r
S3 method for class 'R6'
set_threads(x, n = availableCores())
```

```r
S3 method for class 'list'
set_threads(x, n = availableCores())
```

**Arguments**

- **x**
  - (any)
  - Object to set threads for, e.g. a Learner. This object is modified in-place.

- **n**
  - (integer(1))
  - Number of threads to use. Defaults to `parallelly::availableCores()`.

**Value**

Same object as input `x` (changed in-place), with possibly updated parameter values.
Task

<table>
<thead>
<tr>
<th>Task</th>
<th>Task Class</th>
</tr>
</thead>
</table>

**Description**

This is the abstract base class for TaskSupervised and TaskUnsupervised. TaskClassif and TaskRegr inherit from TaskSupervised. More supervised tasks are implemented in mlr3proba, unsupervised cluster tasks in package mlr3cluster.

Tasks serve two purposes:

1. Tasks wrap a DataBackend, an object to transparently interface different data storage types.
2. Tasks store meta-information, such as the role of the individual columns in the DataBackend. For example, for a classification task a single column must be marked as target column, and others as features.

Predefined (toy) tasks are stored in the dictionary mlr_tasks, e.g. penguins or boston_housing. More toy tasks can be found in the dictionary after loading mlr3data.

**S3 methods**

- `as.data.table(t)`
  Task -> data.table::data.table()
  Returns the complete data as data.table::data.table().

**Task mutators**

The following methods change the task in-place:

- Any modification of the lists $col_roles or $row_roles. This provides a different "view" on the data without altering the data itself.
- Modification of column or row roles via $set_col_roles() or $set_row_roles(), respectively.
- $filter() and $select() subset the set of active rows or features in $row_roles or $col_roles, respectively. This provides a different "view" on the data without altering the data itself.
- `rbind()` and `cbind()` change the task in-place by binding rows or columns to the data, but without modifying the original DataBackend. Instead, the methods first create a new DataBackendDataTable from the provided new data, and then merge both backends into an abstract DataBackend which merges the results on-demand.
- `rename()` wraps the DataBackend of the Task in an additional DataBackend which deals with the renaming. Also updates $col_roles and $col_info.
- `set_levels()` updates the field col_info().

**Public fields**

- `id` (character(1))
  Identifier of the object. Used in tables, plot and text output.
task_type (character(1))
Task type, e.g. "classif" or "regr".
For a complete list of possible task types (depending on the loaded packages), see `mlr_reflections$task_types$type`.

backend (DataBackend)
Abstract interface to the data of the task.

col_info (data.table::data.table())
Table with with 4 columns:
- "id" (character()) stores the name of the column.
- "type" (character()) holds the storage type of the variable, e.g. integer, numeric or character. See `mlr_reflections$task_feature_types` for a complete list of allowed types.
- "levels" (list()) stores a vector of distinct values (levels) for ordered and unordered factor variables.
- "label" (character()) stores a vector of prettier, formatted column names.
- "fix_factor_levels" (logical()) stores flags which determine if the levels of the respective variable need to be reordered after querying the data from the DataBackend.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. Defaults to NA, but can be set by child classes.

extra_args (named list())
Additional arguments set during construction. Required for `convert_task()`.

Active bindings

hash (character(1))
Hash (unique identifier) for this object.

row_ids (integer())
Returns the row ids of the DataBackend for observations with role "use".

row_names (data.table::data.table())
Returns a table with two columns:
- "row_id" (integer()), and
- "row_name" (character()).

feature_names (character())
Returns all column names with role == "feature".
Note that this vector determines the default order of columns for `task$data(cols = NULL,...)`.
However, it is recommended to not rely on the order of columns, but instead always address columns by their name. The default order is not well defined after some operations, e.g. after `task$cbind()` or after processing via `mlr3pipelines`.

target_names (character())
Returns all column names with role "target".

properties (character())
Set of task properties. Possible properties are are stored in `mlr_reflections$task_properties`.
The following properties are currently standardized and understood by tasks in `mlr3`:
- "strata": The task is resampled using one or more stratification variables (role "stratum").
- "groups": The task comes with grouping/blocking information (role "group").
• "weights": The task comes with observation weights (role "weight").
Note that above listed properties are calculated from the $col_roles and may not be set explicit-
ily.

row_roles (named list())
Each row (observation) can have an arbitrary number of roles in the learning task:
• "use": Use in train / predict / resampling.
• "validation": Observations are hold back unless explicitly requested. Can be used as
truly independent test set.
row_roles is a named list whose elements are named by row role and each element is an
integer() vector of row ids. To alter the roles, just modify the list, e.g. with R’s set functions
(intersect(), setdiff(), union(),....).

col_roles (named list())
Each column can be in one or more of the following groups to fulfill different roles:
• "feature": Regular feature used in the model fitting process.
• "target": Target variable. Most tasks only accept a single target column.
• "name": Row names / observation labels. To be used in plots. Can be queried with
$row_names. Not more than a single column can be associated with this role.
• "order": Data returned by $data() is ordered by this column (or these columns). Columns
must be sortable with order().
• "group": During resampling, observations with the same value of the variable with role
"group" are marked as "belonging together". For each resampling iteration, observations
of the same group will be exclusively assigned to be either in the training set or in the test
set. Not more than a single column can be associated with this role.
• "stratum": Stratification variables. Multiple discrete columns may have this role.
• "weight": Observation weights. Not more than one numeric column may have this role.
col_roles is a named list whose elements are named by column role and each element is a
character() vector of column names. To alter the roles, just modify the list, e.g. with R’s
set functions (intersect(), setdiff(), union(),....). The method $set_col_roles provides
a convenient alternative to assign columns to roles.

nrow (integer(1))
Returns the total number of rows with role "use".

ncol (integer(1))
Returns the total number of columns with role "target" or "feature".

feature_types (data.table::data.table())
Returns a table with columns id and type where id are the column names of "active" features
of the task and type is the storage type.

data_formats character()
Vector of supported data output formats. A specific format can be chosen in the $data()
method.

strata (data.table::data.table())
If the task has columns designated with role "stratum", returns a table with one subpopulation
per row and two columns:
• N (integer()) with the number of observations in the subpopulation, and
• row_id (list of integer()) as list column with the row ids in the respective subpopulation. Returns NULL if there are is no stratification variable. See Resampling for more information on stratification.

groups (data.table::data.table())
If the task has a column with designated role "group", a table with two columns:
• row_id (integer()), and
• grouping variable group (vector()).
Returns NULL if there are is no grouping column. See Resampling for more information on grouping.

order (data.table::data.table())
If the task has at least one column with designated role "order", a table with two columns:
• row_id (integer()), and
• ordering vector order (integer()).
Returns NULL if there are is no order column.

weights (data.table::data.table())
If the task has a column with designated role "weight", a table with two columns:
• row_id (integer()), and
• observation weights weight (numeric()).
Returns NULL if there are is no weight column.

labels (named character())
Retrieve labels (prettier formatted names) from columns. Internally queries the column label of the table in field col_info. Columns ids referenced by the name of the vector, the labels are the actual string values.
Assigning to this column update the task by reference. You have to provide a character vector of labels, named with column ids. To remove a label, set it to NA. Alternatively, you can provide a data.frame() with the two columns "id" and "label".

col_hashes (named character)
Hash (unique identifier) for all columns except the primary_key: A character vector, named by the columns that each element refers to.
Columns of different Tasks or DataBackends that have agreeing col_hashes always represent the same data, given that the same rows are selected. The reverse is not necessarily true: There can be columns with the same content that have different col_hashes.

Methods
Public methods:
• Task$new()
• Task$help()
• Task$format()
• Task$print()
• Task$data()
• Task$formula()
• Task/head()
Task

- Task$levels()
- Task$missings()
- Task$filter()
- Task$select()
- Task$rbind()
- Task$cbind()
- Task$rename()
- Task$set_row_roles()
- Task$set_col_roles()
- Task$set_levels()
- Task$droplevels()
- Task$add_strata()
- Task$clone()

**Method** new(): Creates a new instance of this R6 class.
Note that this object is typically constructed via a derived classes, e.g. TaskClassif or TaskRegr.

*Usage:*
Task$new(id, task_type, backend, extra_args = list())

*Arguments:*
id (character(1))
  Identifier for the new instance.
task_type (character(1))
  Type of task, e.g. "regr" or "classif". Must be an element of mlr_reflections$task_types$type.
backend (DataBackend)
  Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend().
  E.g., a data.frame() will be converted to a DataBackendDataTable.
extra_args (named list())
  Named list of constructor arguments, required for converting task types via convert_task().

**Method** help(): Opens the corresponding help page referenced by field $man.

*Usage:*
Task$help()

**Method** format(): Helper for print outputs.

*Usage:*
Task$format()

**Method** print(): Printer.

*Usage:*
Task$print(...)
Method data(): Returns a slice of the data from the DataBackend in the data format specified by data_format. Rows default to observations with role "use", and columns default to features with roles "target" or "feature". If rows or cols are specified which do not exist in the DataBackend, an exception is raised.

Rows and columns are returned in the order specified via the arguments rows and cols. If rows is NULL, rows are returned in the order of task$row_ids. If cols is NULL, the column order defaults to c(task$target_names, task$feature_names). Note that it is recommended to not rely on the order of columns, and instead always address columns with their respective column name.

Usage:
Task$data(
  rows = NULL,
  cols = NULL,
  data_format = "data.table",
  ordered = FALSE
)

Arguments:
rows integer()
  Row indices.
cols character()
  Column names.
data_format (character(1))
  Desired data format, e.g. "data.table" or "Matrix".
ordered (logical(1))
  If TRUE, data is ordered according to the columns with column role "order".

Returns: Depending on the DataBackend, but usually a data.table::data.table().

Method formula(): Constructs a formula(), e.g. [target] ~ [feature_1] + [feature_2] + ... + [feature_k], using the features provided in argument rhs (defaults to all columns with role "feature", symbolized by ".").

Note that it is currently not possible to change the formula. However, mlr3pipelines provides a pipe operator interfacing stats::model.matrix() for this purpose: "modelmatrix".

Usage:
Task$formula(rhs = ".")

Arguments:
rhs (character(1))
  Right hand side of the formula. Defaults to "." (all features of the task).

Returns: formula().

Method head(): Get the first n observations with role "use" of all columns with role "target" or "feature".

Usage:
Task$head(n = 6L)

Arguments:
n (integer(1)).
Task

Returns: `data.table::data.table()` with n rows.

**Method levels():** Returns the distinct values for columns referenced in `cols` with storage type "factor" or "ordered". Argument `cols` defaults to all such columns with role "target" or "feature".

Note that this function ignores the row roles, it returns all levels available in the DataBackend. To update the stored level information, e.g. after subsetting a task with `$filter()`, call `$droplevels()`.

*Usage:*

```r
Task$levels(cols = NULL)
```

*Arguments:*

- `cols` character()
  - Column names.

*Returns: named list().*

**Method missings():** Returns the number of missing observations for columns referenced in `cols`. Considers only active rows with row role "use". Argument `cols` defaults to all columns with role "target" or "feature".

*Usage:*

```r
Task$missings(cols = NULL)
```

*Arguments:*

- `cols` character()
  - Column names.

*Returns: Named integer().*

**Method filter():** Subsets the task, keeping only the rows specified via row ids `rows`.

This operation mutates the task in-place. See the section on task mutators for more information.

*Usage:*

```r
Task$filter(rows)
```

*Arguments:*

- `rows` integer()
  - Row indices.

*Returns: Returns the object itself, but modified by reference. You need to explicitly `$clone()` the object beforehand if you want to keep the object in its previous state.*

**Method select():** Subsets the task, keeping only the features specified via column names `cols`.

Note that you cannot deselect the target column, for obvious reasons.

This operation mutates the task in-place. See the section on task mutators for more information.

*Usage:*

```r
Task$select(cols)
```

*Arguments:*

- `cols` character()
  - Column names.
Returns: Returns the object itself, but modified by reference. You need to explicitly $clone() the object beforehand if you want to keep the object in its previous state.

Method rbind(): Adds additional rows to the DataBackend stored in $backend. New row ids are automatically created, unless data has a column whose name matches the primary key of the DataBackend (task$backend$primary_key). In case of name clashes of row ids, rows in data have higher precedence and virtually overwrite the rows in the DataBackend.

All columns with the roles "target", "feature", "weight", "group", "stratum", and "order" must be present in data. Columns only present in data but not in the DataBackend of task will be discarded.

This operation mutates the task in-place. See the section on task mutators for more information.

Usage:
Task$rbind(data)

Arguments:
data (data.frame()).

Returns: Returns the object itself, but modified by reference. You need to explicitly $clone() the object beforehand if you want to keep the object in its previous state.

Method cbind(): Adds additional columns to the DataBackend stored in $backend.

The row ids must be provided as column in data (with column name matching the primary key name of the DataBackend). If this column is missing, it is assumed that the rows are exactly in the order of $row_ids. In case of name clashes of column names in data and DataBackend, columns in data have higher precedence and virtually overwrite the columns in the DataBackend.

This operation mutates the task in-place. See the section on task mutators for more information.

Usage:
Task$cbind(data)

Arguments:
data (data.frame()).

Method rename(): Renames columns by mapping column names in old to new column names in new (element-wise).

This operation mutates the task in-place. See the section on task mutators for more information.

Usage:
Task$rename(old, new)

Arguments:
old (character())
Old names.
new (character())
New names.

Returns: Returns the object itself, but modified by reference. You need to explicitly $clone() the object beforehand if you want to keep the object in its previous state.

Method set_row_roles(): Modifies the roles in $row_roles in-place.

Usage:
Task$set_row_roles(rows, roles = NULL, add_to = NULL, remove_from = NULL)

Arguments:
rows (integer())
   Row ids for which to change the roles for.
roles (character())
   Exclusively set rows to the specified roles (remove from other roles).
add_to (character())
   Add rows with row ids rows to roles specified in add_to. Rows keep their previous roles.
remove_from (character())
   Remove rows with row ids rows from roles specified in remove_from. Other row roles are preserved.

Details: Roles are first set exclusively (argument roles), then added (argument add_to) and finally removed (argument remove_from) from different roles.

Returns: Returns the object itself, but modified by reference. You need to explicitly $clone() the object beforehand if you want to keeps the object in its previous state.

Method set_col_roles(): Modifies the roles in $col_roles in-place.

Usage:
Task$set_col_roles(cols, roles = NULL, add_to = NULL, remove_from = NULL)

Arguments:
cols (character())
   Column names for which to change the roles for.
roles (character())
   Exclusively set columns to the specified roles (remove from other roles).
add_to (character())
   Add columns with column names cols to roles specified in add_to. Columns keep their previous roles.
remove_from (character())
   Remove columns with column names cols from roles specified in remove_from. Other column roles are preserved.

Details: Roles are first set exclusively (argument roles), then added (argument add_to) and finally removed (argument remove_from) from different roles.

Returns: Returns the object itself, but modified by reference. You need to explicitly $clone() the object beforehand if you want to keeps the object in its previous state.

Method set_levels(): Set levels for columns of type factor and ordered in field col_info. You can add, remove or reorder the levels, affecting the data returned by $data(), $head() and $levels(). If you just want to remove unused levels, use $droplevels() instead. Note that factor levels which are present in the data but not listed in the task as valid levels are converted to missing values.

Usage:
Task$set_levels(levels)

Arguments:
levels (named list() of character())
  List of character vectors of new levels, named by column names.

Returns: Modified self.

Method droplevels(): Updates the cache of stored factor levels, removing all levels not present in the current set of active rows. cols defaults to all columns with storage type "factor" or "ordered".

Usage:
Task$droplevels(cols = NULL)

Arguments:
  cols character()
    Column names.

Returns: Modified self.

Method add_strata(): Cuts numeric variables into new factors columns which are added to the task with role "stratum". This ensures that all training and test splits contain observations from all bins. The columns are named "..stratum_[col_name]".

Usage:
Task$add_strata(cols, bins = 3L)

Arguments:
  cols (character())
    Names of columns to operate on.
  bins (integer())
    Number of bins to cut into (passed to cut() as breaks). Replicated to have the same length as cols.

Returns: self (invisibly).

Method clone(): The objects of this class are cloneable with this method.

Usage:
Task$clone(deep = FALSE)

Arguments:
  deep Whether to make a deep clone.

See Also
- Package mlr3data for more toy tasks.
- Package mlr3oml for downloading tasks from https://openml.org.
- Package mlr3viz for some generic visualizations.
- Dictionary of Tasks: mlr_tasks
- as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending on the loaded packages).
- mlr3fsselect and mlr3filters for feature selection and feature filtering.
• Extension packages for additional task types:
  – mlr3proba for probabilistic supervised regression and survival analysis.
  – mlr3cluster for unsupervised clustering.


Examples

# We use the inherited class TaskClassif here,
# because the base class Task is not intended for direct use
task = TaskClassif$new("penguins", palmerpenguins::penguins, target = "species")

task$nrow
task$ncol
task$feature_names
task$formula()

# de-select "year"
task$select(setdiff(task$feature_names, "year"))

task$feature_names

# Add new column "foo"
task$cbind(data.frame(foo = 1:344))
task$head()

---

**TaskClassif**  
*Classification Task*

Description

This task specializes Task and TaskSupervised for classification problems. The target column is assumed to be a factor or ordered factor. The task_type is set to "classif".

Additional task properties include:

• "twoclass": The task is a binary classification problem.
• "multiclass": The task is a multiclass classification problem.

Predefined tasks are stored in the dictionary mlr_tasks.

Super classes

mlr3::Task -> mlr3::TaskSupervised -> TaskClassif
Active bindings

class_names (character())
Returns all class labels of the target column.

persistent (character(1))
Stores the positive class for binary classification tasks, and NA for multiclass tasks. To switch
the positive class, assign a level to this field.

negative (character(1))
Stores the negative class for binary classification tasks, and NA for multiclass tasks.

Methods

Public methods:
• TaskClassif$new()
• TaskClassif$truth()
• TaskClassif$droplevels()
• TaskClassif$clone()

Method new(): Creates a new instance of this R6 class. The function as_task_classif() provides an alternative way to construct classification tasks.

Usage:
TaskClassif$new(id, backend, target, positive = NULL, extra_args = list())

Arguments:
id (character(1))
Identifier for the new instance.

backend (DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend().
E.g., a data.frame() will be converted to a DataBackendDataTable.

target (character(1))
Name of the target column.

positive (character(1))
Only for binary classification: Name of the positive class. The levels of the target columns
are reordered accordingly, so that the first element of $class_names is the positive class, and
the second element is the negative class.

extra_args (named list())
Named list of constructor arguments, required for converting task types via convert_task().

Method truth(): True response for specified row_ids. Format depends on the task type. Defaults to all rows with role "use".

Usage:
TaskClassif$truth(rows = NULL)

Arguments:
rows integer()
Row indices.

Returns: factor().
**Method** droplevels(): Updates the cache of stored factor levels, removing all levels not present in the current set of active rows. cols defaults to all columns with storage type "factor" or "ordered". Also updates the task property "twoclass"/"multiclass".

*Usage:*
TaskClassif$droplevels(cols = NULL)

*Arguments:*
- cols character()
  - Column names.

*Returns:* Modified self.

**Method** clone(): The objects of this class are cloneable with this method.

*Usage:*
TaskClassif$clone(deep = FALSE)

*Arguments:*
- deep Whether to make a deep clone.

**See Also**
- Package mlr3data for more toy tasks.
- Package mlr3oml for downloading tasks from [https://openml.org](https://openml.org).
- Package mlr3viz for some generic visualizations.
- Dictionary of Tasks: mlr_tasks
- as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending on the loaded packages).
- mlr3select and mlr3filters for feature selection and feature filtering.
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.

Other Task: TaskRegr, TaskSupervised, TaskUnsupervised, Task, mlr_tasks_boston_housing, mlr_tasks_breast_cancer, mlr_tasks_german_credit, mlr_tasks_iris, mlr_tasks_mtcars, mlr_tasks_penguins, mlr_tasks_pima, mlr_tasks_sonar, mlr_tasks_spam, mlr_tasks_wine, mlr_tasks_zoo, mlr_tasks

**Examples**

data("Sonar", package = "mlbench")
task = as_task_classif(Sonar, target = "Class", positive = "M")

task$task_type
task$formula()
task$truth()
task$class_names
task$positive
task$data(rows = 1:3, cols = task$feature_names[1:2])
TaskGenerator

TaskGenerator Class

Description

Creates a Task of arbitrary size. Predefined task generators are stored in the dictionary mlr_task_generators, e.g. xor.

Public fields

- **id**: character(1)
  - Identifier of the object. Used in tables, plot and text output.
- **task_type**: character(1)
  - Task type, e.g. "classif" or "regr".
  - For a complete list of possible task types (depending on the loaded packages), see mlr_reflections$task_types$type.
- **param_set**: paradox::ParamSet
  - Set of hyperparameters.
- **packages**: character(1)
  - Set of required packages. These packages are loaded, but not attached.
- **man**: character(1)
  - String in the format [pkg]::[topic] pointing to a manual page for this object. Defaults to NA, but can be set by child classes.

Methods

Public methods:

- TaskGenerator$new()
- TaskGenerator$format()
- TaskGenerator$print()
- TaskGenerator$generate()
- TaskGenerator$clone()

Method **new()**: Creates a new instance of this R6 class.

Usage:

```
TaskGenerator$new(
 id,
 task_type,
 packages = character(),
 param_set = ps(),
 man = NA_character_
)
```

Arguments:

- **id**: character(1)
  - Identifier for the new instance.
task_type (character(1))
    Type of task, e.g. "regr" or "classif". Must be an element of mlr_reflections$task_types$type.
packages (character())
    Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
param_set (paradox::ParamSet)
    Set of hyperparameters.
man (character(1))
    String in the format [pkg]:[topic] pointing to a manual page for this object. The referenced help package can be opened via method $help().

**Method** format(): Helper for print outputs.

*Usage:*
TaskGenerator$format()

**Method** print(): Printer.

*Usage:*
TaskGenerator$print(...)

*Arguments:*
... (ignored).

**Method** generate(): Creates a task of type task_type with n observations, possibly using additional settings stored in param_set.

*Usage:*
TaskGenerator$generate(n)

*Arguments:*
n (integer(1))
    Number of rows to generate.

*Returns:* Task.

**Method** clone(): The objects of this class are cloneable with this method.

*Usage:*
TaskGenerator$clone(deep = FALSE)

*Arguments:*
deep  Whether to make a deep clone.

**See Also**
- Dictionary of TaskGenerators: mlr_task_generators
- as.data.table(mlr_task_generators) for a table of available TaskGenerators in the running session (depending on the loaded packages).
- Extension packages for additional task types:
  - mlr3proba for probabilistic supervised regression and survival analysis.
  - mlr3cluster for unsupervised clustering.
TaskRegr

Regression Task

Description

This task specializes Task and TaskSupervised for regression problems. The target column is assumed to be numeric. The task_type is set to "regr".

Predefined tasks are stored in the dictionary mlr_tasks.

Super classes

mlr3::Task -> mlr3::TaskSupervised -> TaskRegr

Methods

Public methods:

• TaskRegr$new()
• TaskRegr$truth()
• TaskRegr$clone()

Method new(): Creates a new instance of this R6 class. The function as_task_regr() provides an alternative way to construct regression tasks.

Usage:
TaskRegr$new(id, backend, target, extra_args = list())

Arguments:

id (character(1))
  Identifier for the new instance.
backend (DataBackend)
  Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend(). E.g., a data.frame() will be converted to a DataBackendDataTable.
target (character(1))
  Name of the target column.
extra_args (named list())
  Named list of constructor arguments, required for converting task types via convert_task().

Method truth(): True response for specified row_ids. Format depends on the task type. Defaults to all rows with role "use".

Usage:
TaskRegr$truth(rows = NULL)
Arguments:
rows integer()
   Row indices.
Returns: numeric().

Method clone(): The objects of this class are cloneable with this method.

Usage:
TaskRegr\$clone(deep = FALSE)
Arguments:
deeep Whether to make a deep clone.

See Also
- Package mlr3data for more toy tasks.
- Package mlr3oml for downloading tasks from https://openml.org.
- Package mlr3viz for some generic visualizations.
- Dictionary of Tasks: mlr_tasks
- as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending on the loaded packages).
- mlr3select and mlr3filters for feature selection and feature filtering.
- Extension packages for additional task types:
   - mlr3proba for probabilistic supervised regression and survival analysis.
   - mlr3cluster for unsupervised clustering.

Other Task: TaskClassif, TaskSupervised, TaskUnsupervised, Task, mlr_tasks_boston_housing,
mlr_tasks_breast_cancer, mlr_tasks_german_credit, mlr_tasks_iris, mlr_tasks_mtcars,
mlr_tasks_penguins, mlr_tasks_pima, mlr_tasks_sonar, mlr_tasks_spam, mlr_tasks_wine,
mlr_tasks_zoo, mlr_tasks

Examples

```r
task = as_task_regr(palmerpenguins::penguins, target = "bill_length_mm")
task$task_type
task$formula()
task$truth()
task$data(rows = 1:3, cols = task$feature_names[1:2])
```
Index

* DataBackend
  - as_data_backend.Matrix, 8
  - DataBackend, 33
  - DataBackendDataTable, 35
  - DataBackendMatrix, 37
* Dictionary
  - mlr_learners, 68
  - mlr_measures, 82
  - mlr_resamplings, 152
  - mlr_task_generators, 186
  - mlr_tasks, 171
* Learner
  - Learner, 44
  - LearnerClassif, 51
  - LearnerRegr, 54
  - mlr_learners, 68
  - mlr_learners_classif.debug, 69
  - mlr_learners_classif.featureless, 71
  - mlr_learners_classif.rpart, 74
  - mlr_learners_regr.debug, 76
  - mlr_learners_regr.featureless, 78
  - mlr_learners_regr.rpart, 80
* Measure
  - Measure, 56
  - MeasureClassif, 61
  - MeasureRegr, 63
  - MeasureSimilarity, 65
  - mlr_measures, 82
  - mlr_measures_aic, 83
  - mlr_measures_bic, 84
  - mlr_measures_classif.costs, 92
  - mlr_measures_debug, 122
  - mlr_measures_elapsed_time, 124
  - mlr_measures_oob_error, 126
  - mlr_measures_selected_features, 148
* Prediction
  - Prediction, 204
  - PredictionClassif, 207
  - PredictionRegr, 211
* Resampling
  - mlr_resamplings, 152
  - mlr_resamplings_bootstrap, 153
  - mlr_resamplings_custom, 155
  - mlr_resamplings_custom_cv, 156
  - mlr_resamplings_cv, 158
  - mlr_resamplings_holdout, 160
  - mlr_resamplings_insample, 162
  - mlr_resamplings_loo, 163
  - mlr_resamplings_repeated_cv, 165
  - mlr_resamplings_subsampling, 167
  - Resampling, 219
* TaskGenerator
  - mlr_task_generators, 186
  - mlr_task_generators_2dnormals, 187
  - mlr_task_generators_cassini, 188
  - mlr_task_generators_circle, 190
  - mlr_task_generators_friedman1, 192
  - mlr_task_generators_moons, 193
  - mlr_task_generators_simplex, 195
  - mlr_task_generators_smiley, 197
  - mlr_task_generators_spirals, 198
  - mlr_task_generators_xor, 200
  - TaskGenerator, 238
* Task
  - mlr_tasks, 171
  - mlr_tasks_boston_housing, 172
  - mlr_tasks_breast_cancer, 173
  - mlr_tasks_german_credit, 174
  - mlr_tasks_iris, 176
  - mlr_tasks_mtcars, 177
  - mlr_tasks_penguins, 178
  - mlr_tasks_pima, 180
  - mlr_tasks_sonar, 181
  - mlr_tasks_spam, 182
  - mlr_tasks_wine, 183
  - mlr_tasks_zoo, 185

242
 Task, 225
 TaskClassif, 235
 TaskRegr, 240

* benchmark
 benchmark, 22
 benchmark_grid, 31
 BenchmarkResult, 25

* binary classification measures
 mlr_measures_classif.auc, 87
 mlr_measures_classif.bbrier, 89
 mlr_measures_classif.dor, 94
 mlr_measures_classif.fbeta, 95
 mlr_measures_classif.fdr, 97
 mlr_measures_classif.fn, 98
 mlr_measures_classif.fnr, 99
 mlr_measures_classif.fomr, 100
 mlr_measures_classif.fp, 102
 mlr_measures_classif.fpr, 103
 mlr_measures_classif.mcc, 107
 mlr_measures_classif.npv, 108
 mlr_measures_classif.ppv, 109
 mlr_measures_classif.prauc, 111
 mlr_measures_classif.precision, 112
 mlr_measures_classif.recall, 113
 mlr_measures_classif.sensitivity, 114
 mlr_measures_classif.specificity, 116
 mlr_measures_classif.tn, 117
 mlr_measures_classif.tnr, 118
 mlr_measures_classif.tp, 120
 mlr_measures_classif.tpr, 121

* datasets
 mlr_learners, 68
 mlr_measures, 82
 mlr_resamplings, 152
 mlr_task_generators, 186
 mlr_tasks, 171

* multiclass classification measures
 mlr_measures_classif.acc, 86
 mlr_measures_classif.bacc, 88
 mlr_measures_classif.ce, 91
 mlr_measures_classif.costs, 92
 mlr_measures_classif.logloss, 104
 mlr_measures_classif.mbrier, 105
 mlr_measures_classif.mcc, 107
 mlr_measures_classif.npv, 108
 mlr_measures_classif.ppv, 109
 mlr_measures_classif.prauc, 111

* regression measures
 mlr_measures_regr.bias, 127
 mlr_measures_regr.ktau, 128
 mlr_measures_regr.mae, 129
 mlr_measures_regr.mape, 130
 mlr_measures_regr.maxae, 131
 mlr_measures_regr.medae, 132
 mlr_measures_regr.medse, 133
 mlr_measures_regr.mse, 134
 mlr_measures_regr.msle, 135
 mlr_measures_regr.pbias, 136
 mlr_measures_regr.rae, 137
 mlr_measures_regr.rmse, 139
 mlr_measures_regr.rmsle, 140
 mlr_measures_regr.rrse, 141
 mlr_measures_regr.rse, 142
 mlr_measures_regr.rsq, 143
 mlr_measures_regr.sae, 144
INDEX

distr6::VectorDistribution, 54, 211, 212
expand.grid(), 31
extract_pkgs(install_pkgs), 43
filter_prediction_data
(PredictionData), 210
formula(), 230
future::multicore, 224
future::nbrofWorkers(), 46
future::plan, 224
future::plan(), 23, 46, 213
HotstartStack, 22, 41, 47, 213
install_pkgs, 43
intersect(), 227
iris data set, 178
is_missing_prediction_data
(PredictionData), 210
LearnerClassif, 44, 48, 51, 51, 56, 68, 69, 71–74, 76, 77, 79, 82, 207
LearnerClassifDebug
(mlr_learners_classif.debug), 69
LearnerClassifFeatureless
(mlr_learners_classif.featureless), 71
LearnerClassifRpart
(mlr_learners_classif.rpart), 74
LearnerRegr, 44, 48, 51, 53, 54, 68, 71, 73, 76–79, 82, 211
LearnerRegrDebug
(mlr_learners_regr.debug), 76
LearnerRegrFeatureless
(mlr_learners_regr.featureless), 78
LearnerRegrRpart
(mlr_learners_regr.rpart), 80
lgr::lgr-package
Matrix::Matrix(), 34, 38
Matrix::sparseMatrix(), 59
max.col(), 208, 209
mbrier(), 89
mean(), 59, 62, 64, 66, 78
Measure, 10, 11, 27, 28, 40, 43, 46, 56, 57, 61, 63, 65, 67, 82–122, 124–152, 170, 206, 217, 218
MeasureAIC (mlr_measures_aic), 83
MeasureBIC (mlr_measures_bic), 84
MeasureClassif, 46, 56, 60, 61, 65, 67, 82, 84, 85, 93, 124, 125, 127, 150
MeasureClassifCosts, 174
MeasureClassifCosts
(mlr_measures_classif.costs), 92
MeasureDebug (mlr_measures_debug), 122
MeasureElapsedTime
(mlr_measures_elapsed_time), 124
MeasureOOBError
(mlr_measures_oob_error), 126
MeasureRegr, 56, 58, 60, 63, 67, 82, 84, 85, 93, 124, 125, 127, 150
MeasureSelectedFeatures
(mlr_measures_selected_features), 148
MeasureSimilarity, 60, 63, 65, 67, 82, 84, 85, 93, 124, 125, 127, 150
median(), 78
mlbench::BostonHousing2, 172
mlbench::BreastCancer, 173
mlbench::mlbench.2d normals(), 187
mlbench::mlbench.cassini(), 188
mlbench::mlbench.circle(), 190
mlbench::mlbench.friedman1(), 192
mlbench::mlbench.simplex(), 195
mlbench::mlbench.smiley(), 197
mlbench::mlbench.spirals(), 198
mlbench::mlbench.xor(), 200
mlbench::PimaIndiansDiabetes2, 180
mlbench::Zoo, 181
mlbench::Sonar, 185
mlr3 (mlr3-package), 6
mlr3-package, 6
mlr3::DataBackend, 35, 37
mlr3::Learner, 51, 54, 70, 72, 74, 77, 78, 80
mlr3::LearnerClassif, 70, 72, 74
mlr3::LearnerRegr, 77, 78, 80
mlr3::Measure, 61, 63, 65, 83, 85, 93, 123, 124, 126, 149
mlr3::MeasureClassif, 93
mlr3::Prediction, 208, 211
mlr3::Resampling, 153, 155, 157, 159, 160, 162, 164, 166, 168
mlr3::Task, 235, 240
mlr3::TaskGenerator, 187, 189, 191, 192, 194, 195, 197, 199, 201
mlr3::TaskSupervised, 235, 240
mlr3measures::acc(), 86
mlr3measures::auc(), 87
mlr3measures::bacc(), 89
mlr3measures::bbrier(), 90
mlr3measures::bias(), 128
mlr3measures::ce(), 91
mlr3measures::dor(), 95
mlr3measures::fbeta(), 96
mlr3measures::fdr(), 97
mlr3measures::fn(), 99
mlr3measures::fpr(), 100
mlr3measures::fomr(), 101
mlr3measures::fp(), 102
mlr3measures::fpr(), 104
mlr3measures::jaccard(), 151
mlr3measures::ktau(), 129
mlr3measures::logloss(), 105
mlr3measures::mae(), 130
mlr3measures::mape(), 131
mlr3measures::maxae(), 132
mlr3measures::mbrier(), 106
mlr3measures::mcc(), 107
mlr3measures::medae(), 133
mlr3measures::medase(), 134
mlr3measures::mse(), 135
mlr3measures::msle(), 136
mlr3measures::npv(), 109
mlr3measures::pbbrier(), 137
mlr3measures::phi(), 152
mlr3measures::ppv(), 110
mlr3measures::prauc(), 111
mlr3measures::precision(), 113
mlr3measures::rae(), 138
mlr3measures::recall(), 114
mlr3measures::rmse(), 139
mlr3measures::rmsle(), 140
mlr3measures::rrse(), 142
mlr3measures::rse(), 143
mlr3measures::rsq(), 144
mlr3measures::sae(), 145
mlr3measures::sensitivity(), 115
mlr3measures::smape(), 146
mlr3measures::specificity(), 116
mlr3measures::srho(), 147
mlr3measures::sse(), 148
mlr3measures::tn(), 118
mlr3measures::tnr(), 119
mlr3measures::tp(), 120
mlr3measures::tpr(), 122
mlr3misc::Dictionary, 68, 82, 152, 169, 171, 186
mlr3misc::dictionary_sugar_get(), 169, 170
mlr3misc::encapsulate(), 46, 47
mlr3misc::insert_named(), 45
mlr3misc::unnest(), 28
mlr_learners, 45, 51, 53–56, 68, 69, 71–82, 152, 169, 171, 186
mlr_learners_classif.debug, 51, 53, 56, 68, 69, 73, 76, 77, 79, 82
mlr_learners_classif.rpart, 51, 53, 56, 68, 71, 73, 74, 77, 79, 82
mlr_learners_regr.debug, 51, 53, 56, 68, 71, 73, 76, 79, 82
mlr_learners_regr.featureless, 51, 53, 56, 68, 71, 73, 76, 77, 78, 82
mlr_learners_regr.rpart, 51, 53, 56, 68, 71, 73, 76, 77, 79, 80
mlr_measures, 56, 60, 61, 63, 65, 67, 68, 82, 83–152, 170, 171, 186
mlr_measures_time_both
mlr_measures_regr.bias
mlr_measures_regr.ktau
mlr_measures_regr.mae
mlr_measures_regr.mape
mlr_measures_regr.mse
mlr_measures_regr.medae
mlr_measures_regr.maxae
mlr_measures_regr.mae
mlr_measures_regr.ktau
mlr_measures_regr.bias
mlr_measures_time_train
mlr_measures_time_predict
mlr_reflections
mlr_reflections$learner_predict_types
mlr_reflections$learner_properties
mlr_reflections$task_properties
mlr_reflections$task_feature_types
mlr_reflections$measure_properties
mlr_reflections$default_measures
mlr_measures_elapsed_time
mlr_resamplings
mlr_resamplings_bootstrap
mlr_resamplings_custom
mlr_resamplings_custom_cv
mlr_resamplings_cv
mlr_resamplings_insample
mlr_resamplings_repeated_cv
mlr_resamplings_subsampling
ResamplingRepeatedCV
ResamplingLOO
ResamplingInsample
ResamplingCV
ResamplingHoldout
ResamplingCustomCV
ResamplingCustom
ResamplingBootstrap
ResamplingBootstrapped
Resampling
ResamplingResult
ResamplingBootstrap
ResamplingCustom
ResamplingCustomCV
ResamplingCV
ResamplingCV(mlr_resamplings_cv), 158
ResamplingHoldout
ResamplingInsample
ResamplingLOO(mlr_resamplings_loo), 163
ResamplingRepeatedCV
Resamplings
ResamplingSubsampling
ResultData
rsmp
rsmp
rse()
rsmps()
rsmps
rsmp(mlr_sugar), 169
rsmp(), 152, 153, 155, 157, 158, 160, 162, 163, 165, 168
rsmps(mlr_sugar), 169
rsmps(), 152
sd(), 78
set_threads, 224
setdiff(), 227
split(), 157
stats::AIC(), 83
stats::BIC(), 84
stats::cor(), 128, 146
stats::logLik(), 45
stats::model.matrix(), 230
stats::predict(), 203
TaskGenerator, 43, 169, 186–201, 238
TaskGenerator2DNormals
(mlr_task_generators_2dnormals), 187
TaskGeneratorCassini
(mlr_task_generators_cassini), 188
TaskGeneratorCircle
(mlr_task_generators_circle), 190
TaskGeneratorFriedman1
(mlr_task_generators_friedman1), 192
TaskGeneratorMoons
(mlr_task_generators_moons), 193
TaskGenerators, 188, 190, 191, 193, 194, 196, 198, 200, 201, 239
TaskGeneratorSimplex
(mlr_task_generators_simplex), 195
INDEX

TaskGeneratorSmiley
   (mlr_task_generators_smiley), 197
TaskGeneratorSpirals
   (mlr_task_generators_spirals), 198
TaskGeneratorXor
   (mlr_task_generators_xor), 200
Tasks, 173–175, 177–181, 183–185, 234, 237, 241
tgen (mlr_sugar), 169
tgen(), 186, 187, 189, 190, 192, 193, 195, 197, 199, 200
tgens (mlr_sugar), 169
tgens(), 186
time_train, 56
 tsk (mlr_sugar), 169
tsk(), 171, 173, 175, 176, 178, 180–182, 184, 185
tsks (mlr_sugar), 169
tsks(), 171
union(), 227
VectorDistribution, 212
xor, 238