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anova_filter

anova_filter

ANOVA filter

Description

Simple univariate filter using anova (Welch’s F-test) using the Rfast package for speed.

Usage

anova_filter(

Y,
X,

force_vars = NULL,

nfilter = NULL,

p_cutoff = 0.05,

rsg_cutoff = NULL,

type = c("index"”, "names"”, "full")

Arguments

y
X

force_vars

nfilter

p_cutoff
rsq_cutoff

type

Value

Response vector
Matrix of predictors

Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be passed to filterFUN.

Number of predictors to return. If NULL all predictors with p values < p_cutoff
are returned.

p value cut-off

2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on anova test. If 2 or more
predictors are collinear, the first ranked predictor by anova is retained, while the
other collinear predictors are removed. See collinear().

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p values.

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” full output from Rfast::ftests is returned.

Examples

data(iris)
dt <- iris[, 1:4]
y3 <- iris[, 5]

anova_filter(y3, dt) # returns index of filtered predictors
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anova_filter(y3, dt, type = "full”) # shows names of predictors
anova_filter(y3, dt, type = "name"”) # full results table

boot_filter Bootstrap for filter functions

Description

Randomly samples predictors and averages the ranking to give an ensemble measure of predictor
variable importance.

Usage
boot_filter(y, x, filterFUN, B = 50, nfilter = NULL, type = "index", ...)
Arguments
y Response vector
X Matrix of predictors
filterFUN Filter function, e.g. ttest_filter().
B Number of times to bootstrap
nfilter Number of predictors to return
type Type of vector returned. Default "index" returns indices, "full" returns full out-
put.
Optional arguments passed to the function specified by filterFUN
Value

Integer vector of indices of filtered parameters (type = "index") or if type = "full” a matrix of
rankings from each bootstrap is returned.

See Also

boot_ttest()
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boot_ttest Bootstrap univariate filters

Description

Randomly samples predictors and averages the ranking from filtering functions including ttest_filter(),
wilcoxon_filter(), anova_filter(), correl_filter() and Im_filter () to give an ensemble
measure of best predictors by repeated random sampling subjected to a statistical test.

Usage
boot_ttest(y, x, B =50, ...)
boot_wilcoxon(y, x, B = 50, ...)
boot_anova(y, x, B =50, ...)
boot_correl(y, x, B =50, ...)
boot_lm(y, x, B =50, ...)
Arguments
y Response vector
X Matrix of predictors
B Number of times to bootstrap
Optional arguments passed to the filter function
Value

Integer vector of indices of filtered parameters (type = "index"), or if type = "full”, a matrix of
rankings from each bootstrap is returned.

See Also

ttest_filter(), wilcoxon_filter(), anova_filter(), correl_filter(), Im_filter() and
boot_filter()
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boruta_filter

Boruta filter

Description

Filter using Boruta algorithm.

Usage

boruta_filter(

Y
X’

select = c("Confirmed”, "Tentative"),
type = c("index"”, "names"”, "full"),

Arguments

y

X

select

type

Details

Response vector
Matrix of predictors

Which type of features to retain. Options include "Confirmed" and/or "Tenta-
tive".

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a named vector of variable importance.

Other arguments passed to Boruta::Boruta

Boruta works differently from other filters in that it does not rank variables by variable importance,
but tries to determine relevant features and divides features into Rejected, Tentative or Confirmed.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” full output from Boruta is returned.
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boxplot_model

Boxplot model predictors

Description

Boxplots to show range of model predictors to identify exceptional predictors with excessively low

or high values.

Usage
boxplot_model(x, data, scheme = NULL, palette = "Dark 3", ...)
Arguments
X Either a "nestedcv" object or a character vector of predictors to be plotted
data matrix of predictors
scheme colour scheme
palette palette name (one of hcl.pals()) which is passed to hcl.colors
other arguments passed to boxplot.
Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

class_balance

Check class balance in training folds

Description

Check class balance in training folds
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Usage
class_balance(object)

## Default S3 method:
class_balance(object)

## S3 method for class 'nestcv.train'
class_balance(object)

Arguments

object Object of class nestedcv.glmnet, nestcv. train or outercv

Value

Invisibly a table of the response classes in the training folds

coef.nestcv.glmnet Extract coefficients from nestcv.glmnet object

Description

Extracts coefficients from the final fit of a "nestcv.glmnet" object.

Usage
## S3 method for class 'nestcv.glmnet'
coef(object, s = object$final_param["lambda"], ...)
Arguments
object Object of class "nestcv.glmnet”
s Value of penalty parameter lambda. Default is the mean of lambda values se-

lected across each outer fold.

Other arguments passed to coef.glmnet

Value

Vector or list of coefficients ordered with the intercept first, followed by highest absolute value to
lowest.



collinear 9

collinear Filter to reduce collinearity in predictors

Description

This function identifies predictors with 2 above a given cut-off and produces an index of predictors
to be removed. The function takes a matrix or data.frame of predictors, and the columns need to
be ordered in terms of importance - first column of any pair that are correlated is retained and
subsequent columns which correlate above the cut-off are flagged for removal.

Usage
collinear(x, rsg_cutoff = 0.9, verbose = FALSE)

Arguments
X A matrix or data.frame of values. The order of columns is used to determine
which columns to retain, so the columns in x should be sorted with the most
important columns first.
rsg_cutoff Value of cut-off for r-squared
verbose Boolean whether to print details
Value

Integer vector of the indices of columns in x to remove due to collinearity

combo_filter Combo filter

Description

Filter combining univariate (t-test or anova) filtering and reliefF filtering in equal measure.

Usage
combo_filter(y, x, nfilter, type = c("index", "names"”, "full"”), ...)
Arguments
y Response vector
X Matrix of predictors
nfilter Number of predictors to return, using 1/2 from ttest_filter or anova_filter
and 1/2 from relieff_filter. Since unique is applied, the final number re-
turned may be less than nfilter.
type Type of vector returned. Default "index" returns indices, "names" returns pre-

dictor names, "full" returns full output.
Optional arguments passed via relieff_filter to CORElearn::attrEval
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Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” a list containing full outputs from either
ttest_filter or anova_filter and relieff _filter is returned.

correls2 Correlation between a vector and a matrix

Description

Fast Pearson/Spearman correlation where y is vector, x is matrix, adapted from stats::cor.test.

Usage
correls2(y, x, method = "pearson”, use = "complete.obs")
Arguments
y Numerical vector
X Matrix
method Type of correlation, either "pearson” or "spearman".
use Optional character string giving a method for computing covariances in the pres-
ence of missing values. See cor
Details

For speed, p-values for Spearman’s test are computed by asymptotic t approximation, equivalent to
cor.test with exact = FALSE.

Value

Matrix with columns containing the correlation statistic, either Pearson r or Spearman rho, and
p-values for each column of x correlated against vector y
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correl_filter

Correlation filter

Description

Filter using correlation (Pearson or Spearman) for ranking variables.

Usage

correl_filter(

Y,
X,

force_vars = NULL,

nfilter =

NULL,

p_cutoff = 0.05,
method = "pearson”,
type = c("index"”, "names"”, "full"),

Arguments

y

X

force_vars

nfilter

p_cutoff

method

type

Value

Response vector
Matrix of predictors

Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be passed to filterFUN.

Number of predictors to return. If NULL all predictors with p values < p_cutoff
are returned.

p value cut-off
Type of correlation, either "pearson” or "spearman".

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p-values.

Further arguments passed to correls

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” full output from correls is returned.
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cva.glmnet Cross-validation of alpha for glmnet

Description

Performs k-fold cross-validation for glmnet, including alpha mixing parameter.

Usage

cva.glmnet(x, y, nfolds = 10, alphaSet = seq(@.1, 1, 0.1), ...)
Arguments

X Matrix of predictors

y Response vector

nfolds Number of folds (default 10)

alphaSet Sequence of alpha values to cross-validate

Other arguments passed to cv.glmnet

Value

Object of S3 class "cva.glmnet", which is a list of the cv.glmnet objects for each value of alpha and
alphaSet.

fits List of fitted cv.glmnet objects

alphaSet Sequence of alpha values used

alpha_cvm The mean cross-validated error - a vector of length length(alphaSet).
best_alpha Value of alpha giving lowest alpha_cvm.

which_alpha Index of alphaSet with lowest alpha_cvm

Author(s)

Myles Lewis

See Also

cv.glmnet, glmnet
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glmnet_coefs glmnet coefficients

Description

Convenience function for retrieving coefficients from a cv.glmnet model at a specified lambda.
Sparsity is removed and non-intercept coefficients are ranked by absolute value.

Usage
glmnet_coefs(fit, s, ...)
Arguments
fit A cv.glmnet fitted model object.
S Value of lambda. See coef.glmnet and predict.cv.glmnet
Other arguments passed to coef.glmnet
Value

Vector or list of coefficients ordered with the intercept first, followed by highest absolute value to
lowest.

glmnet_filter glmnet filter

Description

Filter using properties of elastic net regression using glmnet to calculate variable importance.

Usage
glmnet_filter(
y ’
X ’
nfilter = NULL,
method = c("mean”, "nonzero"),

type = c("index”, "names”, "full"),
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Arguments
y Response vector
Matrix of predictors
nfilter Number of predictors to return
method String indicating method of determining variable importance. "mean" (the de-
fault) uses the mean absolute coefficients across the range of lambdas; "nonzero"
counts the number of times variables are retained in the model across all values
of lambda.
type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns full output.
Other arguments passed to glmnet
Details

The glmnet elastic net mixing parameter alpha can be varied to include a larger number of pre-
dictors. Default alpha = 1 is pure LASSO, resulting in greatest sparsity, while alpha = 0 is pure
ridge regression, retaining all predictors in the regression model. Note, the family argument is
commonly needed, see glmnet.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” a named vector of variable importance is
returned.

See Also

glmnet

innercv_preds Inner CV predictions

Description

Obtain predictions on held-out test inner CV folds

Usage

innercv_preds(x)

## S3 method for class 'nestcv.glmnet'
innercv_preds(x)

## S3 method for class 'nestcv.train'
innercv_preds(x)
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Arguments

X anestcv.glmnet or nestcv. train fitted object

Value

Dataframe with columns testy and predy, and for binomial and multinomial models additional
columns containing probabilities or log likelihood values.

innercv_roc Build ROC curve from left-out folds from inner CV

Description

Build ROC (receiver operating characteristic) curve from left-out folds from inner CV. Object can
be plotted using plot() or passed to functions auc() etc.

Usage
innercv_roc(x, direction = "<", ...)
Arguments
X anestcv.glmnet or nestcv. train fitted object
direction Set ROC directionality pROC::roc
Other arguments passed to pROC::roc
Value

"roc"” object, see pROC::roc

Examples

## Example binary classification problem with P >> n
x <= matrix(rnorm(150 * 2e+@4), 150, 2e+04) # predictors
y <- factor(rbinom(15@, 1, ©.5)) # binary response

## Partition data into 2/3 training set, 1/3 test set
trainSet <- caret::createDataPartition(y, p = 0.66, list = FALSE)

## t-test filter using whole dataset
filt <- ttest_filter(y, x, nfilter = 100)
filx <- x[, filt]

## Train glmnet on training set only using filtered predictor matrix
library(glmnet)

fit <- cv.glmnet(filx[trainSet, ], y[trainSet], family = "binomial")
plot(fit)
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## Predict response on test partition

predy <- predict(fit, newx = filx[-trainSet, 1, s = "lambda.min", type = "class")
predy <- as.vector(predy)

predyp <- predict(fit, newx = filx[-trainSet, ], s = "lambda.min”, type = "response")
predyp <- as.vector(predyp)

output <- data.frame(testy = y[-trainSet], predy = predy, predyp = predyp)

## Results on test partition
## shows bias since univariate filtering was applied to whole dataset
predSummary (output)

## Nested CV

fit2 <- nestcv.glmnet(y, x, family = "binomial”, alphaSet =1,
filterFUN = ttest_filter,
filter_options = list(nfilter = 100),
n_outer_folds = 3)

summary (fit2)

## ROC plots

library(pROC)

testroc <- roc(output$testy, output$predyp, direction = "<")
inroc <- innercv_roc(fit2)

plot(fit2$roc)
lines(inroc, col = 'blue')
lines(testroc, col = 'red')

legend('bottomright', legend = c("Nested CV", "Left-out inner CV folds",
"Test partition, non-nested filtering"),
col = c("black”, "blue", "red"), 1ty =1, lwd = 2, bty = "n")

innercv_summary Summarise performance on inner CV test folds

Description

Calculates performance metrics on inner CV held-out test folds: confusion matrix, accuracy and
balanced accuracy for classification; ROC AUC for binary classification; RMSE, R*2 and mean
absolute error (MAE) for regression.

Usage

innercv_summary (x)

Arguments

X anestcv.glmnet or nestcv. train object

Value

Returns performance metrics from outer training folds, see predSummary.



layer_filter 17

See Also

predSummary

Examples

data(iris)
X <= iris[, 1:4]
y <- iris[, 5]

fit <- nestcv.glmnet(y, x,
family = "multinomial”,
alpha = 1,
n_outer_folds = 3)

summary (fit)

innercv_summary(fit)

layer_filter Multilayer filter

Description

Experimental filter designed for use with imbalanced datasets. Each round a simple t-test is used
to rank predictors and keep a certain number. After each round a set number of cases are culled
determined as the most outlying cases - those which if used as a cutoff for classification have the
smallest number of misclassified cases. The t-test is repeated on the culled dataset so that after
successive rounds the most influential outlying samples have been removed and different samples
drive the t-test filter.

Usage

layer_filter(
Y,
X,
nfilter = NULL,
imbalance = TRUE,
cull = 5,
force_vars = NULL,
verbose = FALSE,
type = c("index"”, "names"”, "full")

Arguments

\% Response vector

X Matrix of predictors
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nfilter

imbalance

cull
force_vars

verbose

type

Value

Im_filter

Vector of number of target predictors to keep at each round. The length of this
vector determines the number of rounds of culling.

Logical whether to assume the dataset is imbalanced, in which case samples are
only culled from the majority class.

number of samples to cull at each round
not implemented yet
whether to show sample IDs of culled individuals at each round

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names.

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters.

Im_filter

Linear model filter

Description

Linear models are fitted on each predictor, with inclusion of variable names listed in force_vars
in the model. Predictors are ranked by Akaike information criteria (AIC) value, or can be filtered
by the p-value on the estimate of the coefficient for that predictor in its model.

Usage

Im_filter(

Y,
X,
force_vars =

NULL,

nfilter = NULL,

p_cutoff = NULL,

rsg_cutoff = NULL,

type = c("index"”, "names"”, "full")

Arguments

force_vars

Numeric or integer response vector

Matrix of predictors. If x is a data.frame it will be turned into a matrix. But
note that factors will be reduced to numeric values, but a full design matrix is
not generated, so if factors have 3 or more levels, it is recommended to convert
x into a design (model) matrix first.

Vector of column names x which are incorporated into the linear model.
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nfilter

p_cutoff

rsqg_cutoff

type

Value

19

Number of predictors to return. If NULL all predictors with p-values < p_cutoff
are returned.

p-value cut-off. P-values are calculated by t-statistic on the estimated coefficient
for the predictor being tested.

2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on AIC from a linear model. If
2 or more predictors are collinear, the first ranked predictor by AIC is retained,
while the other collinear predictors are removed. See collinear().

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p values.

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters in order of linear model AIC. Any variables in force_vars which
are incorporated into all models are listed first. If type = "full” a matrix of AIC values, sigma, the
residual standard error (see summary.Im), t-statistic and p-values for the tested predictor is returned.

model.hsstan

hsstan model for cross-validation

Description

This function applies a cross-validation (CV) procedure for training Bayesian models with hierar-
chical shrinkage priors using the hsstan package. The function allows the option of embedded
filtering of predictors for feature selection within the CV loop. Within each training fold, an op-
tional filtering of predictors is performed, followed by fitting of an hsstsan model. Predictions on
the testing folds are brought back together and error estimation/ accuracy determined. The default is
10-fold CV. The function is implemented within the nestedcv package. The hsstan models do not
require tuning of meta-parameters and therefore only a single CV procedure is needed to evaluate
performance. This is implemented using the outer CV procedure in the nestedcv package.

Usage
model.hsstan(y, x, unpenalized = NULL, ...)
Arguments
y Response vector. For classification this should be a factor.
X Matrix of predictors
unpenalized Vector of column names x which are always retained into the model (i.e. not

penalized). Default NULL means the parameters for all predictors will be drawn
from a hierarchical prior distribution, i.e. will be penalized. Note: if filtering of
predictors is specified, then the vector of unpenalized predictors should also be
passed to the filter function using the filter_options$force_vars argument.
Filters currently implementing this option are the partial_ttest_filter for
binary outcomes and the Im_filter for continuous outcomes.

Optional arguments passed to hsstan
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Value

An object of class hsstan

Author(s)

Athina Spiliopoulou

Examples

# Cross-validation is used to apply univariate filtering of predictors.
# only one CV split is needed (outercv) as the Bayesian model does not
# require learning of meta-parameters.

# load iris dataset and simulate a continuous outcome

data(iris)
dt <- iris[, 1:4]
colnames(dt) <- c("marker1”, "marker2", "marker3", "marker4")

dt <- as.data.frame(apply(dt, 2, scale))
dt$outcome.cont <- -3 + 0.5 * dt$markerl + 2 * dt$marker2 + rnorm(nrow(dt), @, 2)

# unpenalised covariates: always retain in the prediction model
uvars <- "marker1”
# penalised covariates: coefficients are drawn from hierarchical shrinkage
# prior
pvars <- c("marker2", "marker3"”, "marker4") # penalised covariates
# run cross-validation with univariate filter and hsstan
# dummy sampling for fast execution of example
# recommend 4 chains, warmup 1000, iter 2000 in practice
oldopt <- options(mc.cores = 2)
res.cv.hsstan <- outercv(y = dt$outcome.cont, x = dt[, c(uvars, pvars)],
model = model.hsstan,
filterFUN = Im_filter,
filter_options = list(force_vars = uvars,
nfilter = 2,
p_cutoff = NULL,
rsqg_cutoff = 0.9),
n_outer_folds = 3, chains = 2,
unpenalized = uvars, warmup = 100, iter = 200)
# view prediction performance based on testing folds
res.cv.hsstang$summary
# view coefficients for the final model
res.cv.hsstan$final_fit
# view covariates selected by the univariate filter
res.cv.hsstan$final_vars

# load hsstan package to examine the Bayesian model

library(hsstan)

sampler.stats(res.cv.hsstan$final_fit)
print(projsel(res.cv.hsstan$final_fit), digits = 4) # adding marker2
options(oldopt)
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# Here adding ‘marker2‘ improves the model fit: substantial decrease of

# KL-divergence from the full model to the submodel. Adding ‘marker3‘ does

# not improve the model fit: no decrease of KL-divergence from the full model
# to the submodel.

nestcv.glmnet Nested cross-validation with glmnet

Description

This function enables nested cross-validation (CV) with glmnet including tuning of elastic net al-
pha parameter. The function also allows the option of embedded filtering of predictors for feature
selection nested within the outer loop of CV. Predictions on the outer test folds are brought back
together and error estimation/ accuracy determined. The default is 10x10 nested CV.

Usage

nestcv.glmnet(
Y,
X,
family = c("gaussian”, "binomial”, "poisson”, "multinomial”, "cox
filterFUN = NULL,
filter_options = NULL,
balance = NULL,
balance_options = NULL,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
n_inner_folds = 10,
outer_folds = NULL,
alphaSet = seq(@, 1, 0.1),
min_1se = 0,
keep = TRUE,
outer_train_predict = FALSE,
weights = NULL,
penalty.factor = rep(1, ncol(x)),
cv.cores = 1,
finalCV = TRUE,

n

, "mgaussian”),

na.option = "omit",
)
Arguments
y Response vector
X Matrix of predictors. Dataframes will be coerced to a matrix as is necessary for

glmnet.
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family Either a character string representing one of the built-in families, or else a glm()
family object. Passed to cv.glmnet and glmnet

filterFUN Filter function, e.g. ttest_filter or relieff filter. Any function can be provided
and is passed y and x. Must return a character vector with names of filtered
predictors.

filter_options Listof additional arguments passed to the filter function specified by filterFUN.

balance Specifies method for dealing with imbalanced class data. Current options are
"randomsample” or "smote"”. See randomsample() and smote()
balance_options
List of additional arguments passed to the balancing function

outer_method String of either "cv” or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCYV) for the outer folds

n_outer_folds Number of outer CV folds

n_inner_folds Number of inner CV folds

outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.

alphaSet Vector of alphas to be tuned

min_1se Value from 0 to 1 specifying choice of optimal lambda from O=lambda.min to

I1=lambda.l1se

keep Logical indicating whether inner CV predictions are retained for calculating left-
out inner CV fold accuracy etc. See argument keep in cv.glmnet.
outer_train_predict
Logical whether to save predictions on outer training folds to calculate perfor-
mance on outer training folds.

weights Weights applied to each sample. Note weights and balance cannot be used at
the same time. Weights are only applied in glmnet and not in filters.

penalty.factor Separate penalty factors can be applied to each coefficient. Can be 0 for some
variables, which implies no shrinkage, and that variable is always included in
the model. Default is 1 for all variables. See glmnet

cv.cores Number of cores for parallel processing of the outer loops. NOTE: this uses
parallel::mclapply on unix/mac and parallel: :parLapply on windows.

finalCV Logical whether to perform one last round of CV on the whole dataset to deter-
mine the final model parameters. If set to FALSE, the median of hyperparameters
from outer CV folds are used for the final model. Performance metrics are inde-
pendent of this last step.

na.option Character value specifying how NAs are dealt with. "omit” (the default) is equiv-
alent to na.action =na.omit. "omitcol” removes cases if there are NA in ’y’,
but columns (predictors) containing NA are removed from ’X’ to preserve cases.
Any other value means that NA are ignored (a message is given).

Optional arguments passed to cv.glmnet

Details

glmnet does not tolerate missing values, so na.option = "omit" is the default.



nestcv.glmnet
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An object with S3 class "nestcv.glmnet”

call
output

outer_result

outer_method
n_inner_folds
outer_folds
dimx

y

yfinal
final_param
final_fit
final_coef
roc

summary

Author(s)

Myles Lewis

Examples

the matched call
Predictions on the left-out outer folds

List object of results from each outer fold containing predictions on left-out
outer folds, best lambda, best alpha, fitted glmnet coefficients, list object of
inner fitted cv.glmnet and number of filtered predictors at each fold.

the outer_method argument

number of inner folds

List of indices of outer test folds

dimensions of x

original response vector

final response vector (post-balancing)

Final mean best lambda and alpha from each fold
Final fitted glmnet model

Final model coefficients and mean expression

ROC AUC for binary classification where available.

Overall performance summary. Accuracy and balanced accuracy for classifica-
tion. ROC AUC for binary classification. RMSE for regression.

## Example binary classification problem with P >> n
x <= matrix(rnorm(150 * 2e+04), 150, 2e+04) # predictors
y <- factor(rbinom(15@, 1, ©.5)) # binary response

## Partition data into 2/3 training set, 1/3 test set
trainSet <- caret::createDataPartition(y, p = 0.66, list = FALSE)

## t-test filter using whole dataset
filt <- ttest_filter(y, x, nfilter = 100)

filx <- x[, filt]

## Train glmnet on training set only using filtered predictor matrix
library(glmnet)

fit <- cv.glmnet(filx[trainSet, ], y[trainSet], family = "binomial")
plot(fit)

## Predict response on test partition
predy <- predict(fit, newx = filx[-trainSet, 1, s = "lambda.min", type = "class")
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predy <- as.vector(predy)

predyp <- predict(fit, newx = filx[-trainSet, ], s = "lambda.min”, type = "response")
predyp <- as.vector(predyp)

output <- data.frame(testy = y[-trainSet], predy = predy, predyp = predyp)

## Results on test partition
## shows bias since univariate filtering was applied to whole dataset
predSummary (output)

## Nested CV
fit2 <- nestcv.glmnet(y, x, family = "binomial”, alphaSet = 1,
filterFUN = ttest_filter,
filter_options = list(nfilter = 100))
summary (fit2)
plot_lambdas(fit2, showLegend = "bottomright")

## ROC plots

library(pROC)

testroc <- roc(output$testy, output$predyp, direction = "<")
inroc <- innercv_roc(fit2)

plot(fit2$roc)
lines(inroc, col = 'blue')
lines(testroc, col = 'red')

legend('bottomright', legend = c("Nested CV", "Left-out inner CV folds",
"Test partition, non-nested filtering"),
col = c("black”, "blue", "red"), 1ty =1, lwd = 2, bty = "n")

nestcv.SuperLearner Outer cross-validation of SuperLearner model

Description

Provides a single loop of outer cross-validation to evaluate performance of ensemble models from
SuperLearner package.

Usage

nestcv.SuperLearner(
Y,
X,
filterFUN = NULL,
filter_options = NULL,
weights = NULL,
balance = NULL,
balance_options = NULL,
outer_method = c("cv”, "LOOCV"),
n_outer_folds = 10,
outer_folds = NULL,
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cv.cores = 1,

na.option = "pass”,
)
Arguments
y Response vector
Dataframe or matrix of predictors. Matrix will be coerced to dataframe as this
is the default for SuperLearner.
filterFUN Filter function, e.g. ttest_filter or relieff filter. Any function can be provided

and is passed y and x. Must return a character vector with names of filtered
predictors. Not available if outercyv is called with a formula.

filter_options Listof additional arguments passed to the filter function specified by filterFUN.

weights Weights applied to each sample for models which can use weights. Note weights
and balance cannot be used at the same time. Weights are not applied in filters.

balance Specifies method for dealing with imbalanced class data. Current options are
"randomsample” or "smote". Not available if outercv is called with a formula.
See randomsample() and smote()

balance_options
List of additional arguments passed to the balancing function

outer_method  String of either "cv"” or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCYV) for the outer folds

n_outer_folds Number of outer CV folds

outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.
cv.cores Number of cores for parallel processing of the outer loops. NOTE: this uses

parallel::mclapply on unix/mac and parallel: :parLapply on windows.

na.option Character value specifying how NAs are dealt with. "omit” is equivalent to
na.action=na.omit. "omitcol” removes cases if there are NA in ’y’, but
columns (predictors) containing NA are removed from X’ to preserve cases. Any
other value means that NA are ignored (a message is given).

Additional arguments passed to SuperLearner: : SuperLearner()

Details

This performs an outer CV on SuperLearner package ensemble models to measure performance,
allowing balancing of imbalanced datasets as well as filtering of predictors. SuperLearner prefers
dataframes as inputs for the predictors. If x is a matrix it will be coerced to a dataframe and variable
names adjusted by make.names ().

Value

An object with S3 class "nestcv.SuperLearner”

call the matched call
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output

outer_result

dimx

y

yfinal
outer_folds
final_fit
final_vars
summary_vars
roc

summary

Note

nestcv.train

Predictions on the left-out outer folds

List object of results from each outer fold containing predictions on left-out
outer folds, model result and number of filtered predictors at each fold.

vector of number of observations and number of predictors
original response vector

final response vector (post-balancing)

List of indices of outer test folds

Final fitted model on whole data

Column names of filtered predictors entering final model
Summary statistics of filtered predictors

ROC AUC for binary classification where available.

Overall performance summary. Accuracy and balanced accuracy for classifica-
tion. ROC AUC for binary classification. RMSE for regression.

Care should be taken with some SuperLearner models e.g. SL.gbm as some models have multicore
enabled by default, which can lead to huge numbers of processes being spawned.

See Also

SuperlLearner: :SuperLearner ()

nestcv.train

Nested cross-validation for caret

Description

This function applies nested cross-validation (CV) to training of models using the caret package.
The function also allows the option of embedded filtering of predictors for feature selection nested
within the outer loop of CV. Predictions on the outer test folds are brought back together and error
estimation/ accuracy determined. The default is 10x10 nested CV.

Usage

nestcv.train(

Y,
X7

filterFUN = NULL,

filter_options =
NULL,
NULL,
balance_options =
outer_method = c("cv",

weights =
balance =

NULL,

NULL,
"LOOCV"),
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n_outer_folds = 10,

outer_folds = NULL,

cv.cores = 1,

metric = ifelse(is.factor(y), "loglLoss", "RMSE"),
trControl = NULL,

tuneGrid = NULL,

savePredictions = "final”,

outer_train_predict = FALSE,

finalCV = TRUE,

na.option = "pass”,
)
Arguments

y Response vector. For classification this should be a factor.

X Matrix or dataframe of predictors

filterFUN Filter function, e.g. ttest_filter or relieff filter. Any function can be provided
and is passed y and x. Must return a character vector with names of filtered
predictors.

filter_options Listof additional arguments passed to the filter function specified by filterFUN.
weights Weights applied to each sample for models which can use weights. Note weights
and balance cannot be used at the same time. Weights are not applied in filters.

balance Specifies method for dealing with imbalanced class data. Current options are
"randomsample” or "smote"”. See randomsample() and smote()

balance_options
List of additional arguments passed to the balancing function

outer_method  String of either "cv"” or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCYV) for the outer folds

n_outer_folds Number of outer CV folds

outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.
cv.cores Number of cores for parallel processing of the outer loops. NOTE: this uses

parallel::mclapply on unix/mac and parallel: :parLapply on windows.

metric A string that specifies what summary metric will be used to select the optimal
model. By default, "logloss" is used for classification and "RMSE" is used
for regression. Note this differs from the default setting in caret which uses
"Accuracy" for classification. See details.

trControl A list of values generated by the caret function trainControl. This defines how
inner CV training through caret is performed. Default for the inner loop is 10-
fold CV. See http://topepo.github.io/caret/using-your-own-model-in-train.html.

tuneGrid Data frame of tuning values, see caret::train.

savePredictions
Indicates whether hold-out predictions for each inner CV fold should be saved
for ROC curves, accuracy etc see caret::trainControl. Default is "final” to
capture predictions for inner CV ROC.
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outer_train_predict
Logical whether to save predictions on outer training folds to calculate perfor-
mance on outer training folds.

finalCV Logical whether to perform one last round of CV on the whole dataset to de-
termine the final model parameters. If set to FALSE, the median of the best
hyperparameters from outer CV folds for continuous/ ordinal hyperparameters,
or highest voted for categorical hyperparameters, are used to fit the final model.
Performance metrics are independent of this last step.

na.option Character value specifying how NAs are dealt with. "omit” is equivalent to
na.action=na.omit. "omitcol” removes cases if there are NA in ’y’, but
columns (predictors) containing NA are removed from ’x’ to preserve cases. Any
other value means that NA are ignored (a message is given).

Arguments passed to caret::train including method

Details
Parallelisation is performed on the outer folds using parallel: :mclapply on unix/mac and parallel: :parLapply
on windows.

We strongly recommend that you try calls to nestcv. train with cv. cores=1 first. With caret this
may flag up that specific packages are not installed or that there are problems with input variables y
and x which may have to be corrected for the call to run in multicore mode.

If the outer folds are run using parallelisation, then parallelisation in caret must be off, otherwise an
error will be generated. Alternatively if you wish to use parallelisation in caret, then parallelisation
in nestcv. train can be fully disabled by leaving cv.cores = 1.

For classification, metric defaults to using "logloss’ with the trControl arguments classProbs = TRUE, summaryFunctio
rather than ’ Accuracy’ which is the default classification metric in caret. See trainControl. LogLoss
is arguably more consistent than Accuracy for tuning parameters in datasets with small sample size.

Models can be fitted with a single set of fixed parameters, in which case trControl defaults to
trainControl(method = "none”) which disables inner CV as it is unnecessary. See https://topepo.github.io/caret/model-
training-and-tuning.html#fitting-models-without-parameter-tuning

Value

An object with S3 class "nestcv.train"

call the matched call
output Predictions on the left-out outer folds

outer_result  List object of results from each outer fold containing predictions on left-out
outer folds, caret result and number of filtered predictors at each fold.

outer_folds List of indices of outer test folds

dimx dimensions of x

y original response vector

yfinal final response vector (post-balancing)

final_fit Final fitted caret model using best tune parameters

final_vars Column names of filtered predictors entering final model
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summary_vars Summary statistics of filtered predictors

roc ROC AUC for binary classification where available.

trControl caret::trainControl object used for inner CV

bestTunes best tuned parameters from each outer fold

finalTune final parameters used for final model

summary Overall performance summary. Accuracy and balanced accuracy for classifica-

tion. ROC AUC for binary classification. RMSE for regression.

Author(s)

Myles Lewis

Examples

## sigmoid function
sigmoid <- function(x) {1 7/ (1 + exp(-x))}

## load iris dataset and simulate a binary outcome

data(iris)
x <= iris[, 1:4]
colnames(x) <- c("marker1”, "marker2", "marker3", "marker4")

x <- as.data.frame(apply(x, 2, scale))
y2 <- sigmoid(@.5 * x$marker1l + 2 x x$marker2) > runif(nrow(x))
y2 <- factor(y2, labels = c("class1”, "class2"))

## Example using random forest with caret

cvrf <- nestcv.train(y2, x, method = "rf",
n_outer_folds = 3,
cv.cores = 2)

summary (cvrf)

## Example of glmnet tuned using caret

## set up small tuning grid for quick execution

## length.out of 20-100 is usually recommended for lambda

## and more alpha values ranging from 0-1

tg <- expand.grid(lambda = exp(seq(log(2e-3), log(1e@), length.out = 5)),
alpha = 1)

ncv <- nestcv.train(y = y2, x = Xx,
method = "glmnet”,
n_outer_folds = 3,
tuneGrid = tg, cv.cores = 2)
summary (ncv)

## plot tuning for outer fold #1
plot(ncv$outer_result[[1]]1$fit, xTrans = log)

## plot final ROC curve
plot(ncv$roc)



30 outercv

## plot ROC for left-out inner folds
inroc <- innercv_roc(ncv)
plot(inroc)

outercv Outer cross-validation of selected models

Description

This is a convenience function designed to use a single loop of cross-validation to quickly evaluate
performance of specific models (random forest, naive Bayes, Im, glm) with fixed hyperparameters
and no tuning. If tuning of parameters on data is required, full nested CV with inner CV is needed
to tune model hyperparameters (see nestcv.train).

Usage

outercv(y, ...)

## Default S3 method:

outercv(
Y,
X,
model,
filterFUN = NULL,
filter_options = NULL,
weights = NULL,
balance = NULL,
balance_options = NULL,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
outer_folds = NULL,
cv.cores = 1,
predict_type = "prob”,
outer_train_predict = FALSE,
na.option = "pass”,
returnList = FALSE,

## S3 method for class 'formula'
outercv(
formula,
data,
model,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
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outer_folds =
cv.cores = 1,

predict_type

L

na.action =

Arguments

y

X
model
filterFUN

filter_options

weights

balance

balance_options

outer_method

n_outer_folds

outer_folds

cv.cores

predict_type
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NULL,

= Ilprobll’
outer_train_predict =

FALSE,

na.fail

Response vector

Optional arguments passed to the function specified by model.
Matrix or dataframe of predictors

Model function to be fitted.

Filter function, e.g. ttest_filter or relieff_filter. Any function can be provided
and is passed y and x. Must return a character vector with names of filtered
predictors. Not available if outercy is called with a formula.

List of additional arguments passed to the filter function specified by filterFUN.

Weights applied to each sample for models which can use weights. Note weights
and balance cannot be used at the same time. Weights are not applied in filters.

Specifies method for dealing with imbalanced class data. Current options are
"randomsample” or "smote". Not available if outercyv is called with a formula.
See randomsample() and smote()

List of additional arguments passed to the balancing function

String of either "cv"” or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCYV) for the outer folds

Number of outer CV folds

Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.

Number of cores for parallel processing of the outer loops. NOTE: this uses
parallel::mclapply on unix/mac and parallel: :parLapply on windows.

Only used with binary classification. Calculation of ROC AUC requires pre-
dicted class probabilities from fitted models. Most model functions use syn-
tax of the form predict(..., type ="prob"). However, some models re-
quire a different type to be specified, which can be passed to predict() via
predict_type.

outer_train_predict

na.option

Logical whether to save predictions on outer training folds to calculate perfor-
mance on outer training folds.

Character value specifying how NAs are dealt with. "omit” is equivalent to
na.action=na.omit. "omitcol” removes cases if there are NA in ’y’, but
columns (predictors) containing NA are removed from ’X’ to preserve cases. Any
other value means that NA are ignored (a message is given).
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outercv
returnList Logical whether to return list of results after main outer CV loop without con-
catenating results. Useful for debugging.
formula A formula describing the model to be fitted
data A matrix or data frame containing variables in the model.
na.action Formula S3 method only: a function to specify the action to be taken if NAs are

found. The default action is for the procedure to fail. An alternative is na.omit,
which leads to rejection of cases with missing values on any required variable.
(NOTE: If given, this argument must be named.)

Details

Some predictive model functions do not have an x & y interface. If the function specified by model
requires a formula, x & y will be merged into a dataframe with model() called with a formula
equivalenttoy ~ ..

The S3 formula method for outercyv is not really recommended with large data sets - it is envisaged
to be primarily used to compare performance of more basic models e.g. 1m() specified by formulae
for example incorporating interactions. NOTE: filtering is not available if outercv is called with a
formula - use the x-y interface instead.

An alternative method of tuning a single model with fixed parameters is to use nestcv.train with
tuneGrid set as a single row of a data.frame. The parameters which are needed for a specific model
can be identified using caret: :modelLookup().

Case weights can be passed to model function which accept these, however outercv assumes that
these are passed to the model via an argument named weights.

Note that in the case of model = 1m, although additional arguments e.g. subset, weights, offset
are passed into the model function via "..." the scoping is known to go awry. Avoid using these
arguments with model = 1m.

NA handling differs between the default S3 method and the formula S3 method. The na.option
argument takes a character string, while the more typical na.action argument takes a function.

Value

An object with S3 class "outercv"

call the matched call
output Predictions on the left-out outer folds

outer_result  List object of results from each outer fold containing predictions on left-out
outer folds, model result and number of filtered predictors at each fold.

dimx vector of number of observations and number of predictors
outer_folds List of indices of outer test folds

final_fit Final fitted model on whole data

final_vars Column names of filtered predictors entering final model

summary_vars Summary statistics of filtered predictors
roc ROC AUC for binary classification where available.

summary Overall performance summary. Accuracy and balanced accuracy for classifica-
tion. ROC AUC for binary classification. RMSE for regression.



plot.cva.glmnet

Examples

## Classification example

## sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

# load iris dataset and simulate a binary outcome

data(iris)

dt <- iris[, 1:4]

colnames(dt) <- c(”marker1”, "marker2", "marker3", "marker4")
dt <- as.data.frame(apply(dt, 2, scale))

x <- dt

y2 <- sigmoid(@.5 * dt$marker1 + 2 x dt$marker2) > runif(nrow(dt))
y2 <- factor(y2)

## Random forest
library(randomForest)

cvfit <- outercv(y2, x, randomForest)
summary (cvfit)

plot(cvfit$roc)

## Mixture discriminant analysis (MDA)

if (requireNamespace("mda”, quietly = TRUE)) {
library(mda)
cvfit <- outercv(y2, x, mda, predict_type = "posterior")
summary (cvfit)

}

## Example with continuous outcome
y <- -3 + 0.5 % dt$marker1 + 2 * dt$marker2 + rnorm(nrow(dt), @, 2)
dt$outcome <- y

## simple linear model - formula interface
cvfit <- outercv(outcome ~ ., data = dt, model = 1lm)
summary (cvfit)

## random forest for regression
cvfit <- outercv(y, x, randomForest)
summary (cvfit)

## example with 1Im_filter() to reduce input predictors
cvfit <- outercv(y, x, randomForest, filterFUN = 1lm_filter,

filter_options = list(nfilter = 2))
summary (cvfit)
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plot.cva.glmnet Plot lambda across range of alphas
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Description

plot.cva.glmnet

Different types of plot showing cross-validated tuning of alpha and lambda from elastic net regres-
sion via glmnet. If xaxis is set to "lambda”, log lambda is on the x axis while the tuning metric (log
loss, deviance, accuracy, AUC etc) is on the y axis. Multiple alpha values are shown by different
colours. If xaxis is set to "alpha”, alpha is on the x axis with the tuning metric on y, with error
bars showing metric SD. if xaxis is set to "nvar” the number of non-zero coefficients is shown on
x and how this relates to model deviance/ accuracy on y.

Usage
## S3 method for class 'cva.glmnet'
plot(
X’
xaxis = c("lambda”, "alpha", "nvar"),
errorBar = (xaxis == "alpha"),

errorWidth = 0.015,

min.pch = NULL,

scheme = NULL,

palette = "zissou",
showLegend = "bottomright”,

Arguments

X

xaxis

errorBar

errorWidth

min.pch

scheme
palette

showLegend

Value

No return value

Author(s)

Myles Lewis

Object of class ’cva.glmnet’

String specifying what is plotted on the x axis, either log lambda, alpha or the
number of non-zero coefficients.

Logical whether to control error bars for the standard deviation of model de-
viance when xaxis = 'lambda’. Because of overlapping lines, only the de-
viance of the top and bottom points at a given lambda are shown.

Width of error bars.

Plotting ’character’ for the minimum point of each curve. Not shown if set to
NULL. See points

Colour scheme. Overrides the palette argument.
Palette name (one of hcl.pals()) which is passed to hcl.colors
Either a keyword to position the legend or NULL to hide the legend.

Other arguments passed to plot. Use type = 'p' to plot a scatter plot instead of
a line plot.
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See Also

nestcv.glmnet
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plot_alphas Plot cross-validated glmnet alpha

Description

Plot of cross-validated glmnet alpha parameter against deviance.

Usage
plot_alphas(x, col = NULL, ...)
Arguments
X Fitted "nestcv.glmnet" object
col Optional vector of line colours for each fold
other arguments passed to plot
Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

plot_caret Plot caret tuning

Description

Plots the main tuning parameter in models built using caret::train

Usage

plot_caret(x, error.col = "darkgrey", ...)



36

Arguments

X

error.col

Value

No return value

plot_lambdas

Object of class ’train’ generated by caret function train
Colour of error bars

Other arguments passed to plot()

plot_lambdas

Plot cross-validated glmnet lambdas across outer folds

Description

Plot of cross-validated glmnet lambda parameter against deviance for each outer CV fold.

Usage

plot_lambdas(

X7

scheme = NULL,
palette = "Dark 3",

showLegend = if (x$outer_method == "cv") "topright” else NULL,
)
Arguments
X Fitted "nestcv.glmnet" object
scheme colour scheme
palette palette name (one of hcl.pals()) which is passed to hcl.colors
showLegend Either a keyword to position the legend or NULL to hide the legend.
other arguments passed to plot. Use type = 'p' to plot a scatter plot instead of
a line plot.
Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet
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plot_varImp Variable importance plot

Description

Plot of variable importance of coefficients of a final fitted "nestedcv.glmnet’ model using ggplot2.
Mean expression can be overlaid as the size of points as this can be informative in models of
biological attributes.

Usage

plot_varImp(x, abs = TRUE, size = TRUE)

Arguments
X a ‘nestcv.glmnet’ class object
abs Logical whether to show absolute value of glmnet coefficients
size Logical whether to show mean expression by size of points
Value

Returns a ggplot2 plot

predict.hsstan Predict from hsstan model fitted within cross-validation

Description

Draws from the posterior predictive distribution of the outcome.

Usage
## S3 method for class 'hsstan'
predict(object, newdata = NULL, type = NULL, ...)
Arguments
object An object of class hsstan.
newdata Optional data frame containing the variables to use to predict. If NULL (default),

the model matrix is used. If specified, its continuous variables should be stan-
dardized, since the model coefficients are learnt on standardized data.

type Option for binary outcomes only. Default NULL will return a class with the high-
est probability for each sample. If set to probs, it will return the probabilities
for outcome = 0 and for outcome = 1 for each sample.

Optional arguments passed to hsstan: :posterior_predict
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Value

For a binary outcome and type = NULL, a character vector with the name of the class that has the
highest probability for each sample. For a binary outcome and type = prob, a 2-dimensional matrix
with the probability of class 0 and of class 1 for each sample. For a continuous outcome a numeric
vector with the predicted value for each sample.

Author(s)

Athina Spiliopoulou

predict.nestcv.glmnet Predict method for nestcv.glmnet fits

Description

Obtains predictions from the final fitted model from a nestcv.glmnet object.

Usage

## S3 method for class 'nestcv.glmnet'

predict(object, newdata, s = object$final_param["lambda"], ...)
Arguments

object Fitted nestcv.glmnet object

newdata New data to predict outcome on

s Value of lambda for glmnet prediction

Other arguments passed to predict.glmnet.

Value

Object returned depends on the . .. argument passed to predict method for glmnet objects.

See Also

glmnet::glmnet
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predSummary Summarise prediction performance metrics

Description

Quick function to calculate performance metrics: confusion matrix, accuracy and balanced accuracy
for classification; ROC AUC for binary classification; RMSE and R”2 for regression.

Usage
predSummary (output)
Arguments
output data.frame with columns testy containing observed response from test folds;
predy predicted response; predyp (optional) predicted probabilities for classifi-
cation to calculate ROC AUC
Value

An object of class *predSummary’. For classification a list is returned containing the confusion
matrix table and a vector containing accuracy and balanced accuracy for classification, ROC AUC
for binary classification. For regression a vector containing RMSE and R”2 is returned.

randomsample Oversampling and undersampling

Description
Random oversampling of the minority group(s) or undersampling of the majority group to compen-
sate for class imbalance in datasets.

Usage

randomsample(y, x, minor = NULL, major = 1, yminor = NULL)

Arguments

y Vector of response outcome as a factor

X Matrix of predictors

minor Amount of oversampling of the minority class. If set to NULL then all classes
will be oversampled up to the number of samples in the majority class. To turn
off oversampling set minor = 1.

major Amount of undersampling of the majority class

yminor Optional character value specifying the level in y which is to be oversampled. If

NULL, this is set automatically to the class with the smallest sample size.
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Details

minor < 1 and major > 1 are ignored.

Value

List containing extended matrix x of synthesised data and extended response vector y

Examples

## Imbalanced dataset

set.seed(1, "L'Ecuyer-CMRG")

x <= matrix(rnorm(150 * 2e+04), 150, 2e+04) #' predictors

y <- factor(rbinom(150, 1, 0.2)) #' imbalanced binary response
table(y)

## first 30 parameters are weak predictors
x[, 1:30] <- rnorm(150 * 30, @, 1) + as.numeric(y)*@.5

## Balance x & y outside of CV loop by random oversampling minority group
out <- randomsample(y, x)

y2 <- out$y
x2 <- out$x
table(y2)

## Nested CV glmnet with unnested balancing by random oversampling on
## whole dataset
fit1 <- nestcv.glmnet(y2, x2, family = "binomial”, alphaSet = 1,
cv.cores=2,
filterFUN = ttest_filter)
fit1$summary

## Balance x & y outside of CV loop by random oversampling minority group
out <- randomsample(y, x, minor=1, major=0.4)

y2 <- out$y
X2 <- out$x
table(y2)

## Nested CV glmnet with unnested balancing by random undersampling on
## whole dataset
fitlb <- nestcv.glmnet(y2, x2, family = "binomial”, alphaSet = 1,
cv.cores=2,
filterFUN = ttest_filter)
fit1b$summary

## Balance x & y outside of CV loop by SMOTE
out <- smote(y, x)

y2 <- out$y
X2 <- out$x
table(y2)

## Nested CV glmnet with unnested balancing by SMOTE on whole dataset
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fit2 <- nestcv.glmnet(y2, x2, family = "binomial”, alphaSet = 1,
cv.cores=2,
filterFUN = ttest_filter)

fit2$summary

## Nested CV glmnet with nested balancing by random oversampling
fit3 <- nestcv.glmnet(y, x, family = "binomial”, alphaSet = 1,
cv.cores=2,
balance = "randomsample”,
filterFUN = ttest_filter)
fit3$summary

## Plot ROC curves

plot(fiti$roc, col='green')

lines(fit1b$roc, col='red")

lines(fit2%$roc, col='blue')

lines(fit3$roc)

legend('bottomright', legend = c("Unnested random oversampling”,
"Unnested SMOTE",
"Unnested random undersampling”,
"Nested balancing”),

col = c("green", "blue”, "red", "black"), lty=1, lwd=2)

relieff_filter ReliefF filter

Description

Uses ReliefF algorithm from the CORElearn package to rank predictors in order of importance.

Usage

relieff_filter(
y,
X7
nfilter = NULL,
estimator = "ReliefFequalK”,
type = c("index”, "names”, "full"),

)
Arguments
y Response vector
X Matrix of predictors

nfilter Number of predictors to return. If NULL all predictors are returned.
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estimator

type

Value

1f_filter

Type of algorithm used, see CORElearn::attrEval

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a named vector of variable importance.

Other arguments passed to CORElearn::attrEval

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” a named vector of variable importance is

returned.

See Also

CORElearn::attrEval

rf_filter

Random forest filter

Description

Fits a random forest model and ranks variables by variable importance.

Usage

rf_filter(

Y
X,

nfilter
type = c("index"”, "names"”, "full"),

ntree

= NULL,

1000,

mtry = ncol(x) * 0.2,

Arguments

y

nfilter
type

ntree

mtry

Response vector
Matrix of predictors
Number of predictors to return. If NULL all predictors are returned.

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a named vector of variable importance.

Number of trees to grow. See randomForest.

Number of predictors randomly sampled as candidates at each split. See ran-
domForest.

Optional arguments passed to randomForest.
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Details

This filter uses the randomForest function from the randomForest package. Variable importance
is calculated using the importance function, specifying type 1 = mean decrease in accuracy. See
importance.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” a named vector of variable importance is
returned.

smote SMOTE

Description
Synthetic Minority Oversampling Technique (SMOTE) algorithm for imbalanced classification
data.

Usage

smote(y, x, k = 5, over = NULL, yminor = NULL)

Arguments
y Vector of response outcome as a factor
X Matrix of predictors
k Range of KNN to consider for generation of new data
over Amount of oversampling of the minority class. If set to NULL then all classes
will be oversampled up to the number of samples in the majority class.
yminor Optional character value specifying the level in y which is to be oversampled. If
NULL, this is set automatically to the class with the smallest sample size.
Value

List containing extended matrix x of synthesised data and extended response vector y

References

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357.



44 supervisedPCA

summary_vars Summarise variables

Description

Summarise variables

Usage

summary_vars(x)

Arguments

X Matrix or dataframe with variables in columns

Value

A matrix with variables in rows and mean, median and SD for each variable or number of levels if
the variable is a factor. If NA are detected, an extra column n.NA is added with the numbers of NA
for each variable.

supervisedPCA Supervised PCA plot

Description

Performs supervised principle component analysis (PCA) after filtering dataset to help determine
whether filtering has been useful for separating samples according to the outcome variable.

Usage
supervisedPCA(y, x, filterFUN = NULL, filter_options = NULL, plot = TRUE, ...)
Arguments
y Response vector
X Matrix of predictors
filterFUN Filter function, e.g. ttest_filter or relieff_filter. Any function can be provided
and is passed y and x. Must return a character vector with names of filtered
predictors.

filter_options Listof additional arguments passed to the filter function specified by filterFUN.
plot Logical whether to plot a ggplot2 object or return the PC scores
Optional arguments passed to princomp()

Value

If plot=TRUE returns a ggplot2 plot, otherwise returns the principle component scores.
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train_preds Outer training fold predictions

Description
Obtain predictions on outer training folds which can be used for performance metrics and ROC
curves.

Usage

train_preds(x)

Arguments

X anestcv.glmnet, nestcv. train or outercyv fitted object

Details
Note: the argument outer_train_predict must be set to TRUE in the original call to either nestcv.glmnet,
nestcv.train or outercv.

Value

Dataframe with columns ytrain and predy containing observed and predicted values from training
folds. For binomial and multinomial models additional columns are added with class probabilities
or log likelihood values.

train_roc Build ROC curve from outer CV training folds

Description

Build ROC (receiver operating characteristic) curve from outer training folds. Object can be plotted
using plot () or passed to functions auc() etc.

Usage
train_roc(x, direction = "<", ...)

Arguments
X anestcv.glmnet, nestcv. train or outercv object
direction Set ROC directionality pROC::roc

Other arguments passed to pROC::roc
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Details
Note: the argument outer_train_predict must be set to TRUE in the original call to either nestcv. glmnet,
nestcv.train or outercv.

Value

"roc"” object, see pROC::roc

train_summary Summarise performance on outer training folds

Description

Calculates performance metrics on outer training folds: confusion matrix, accuracy and balanced
accuracy for classification; ROC AUC for binary classification; RMSE, R*2 and mean absolute
error (MAE) for regression.

Usage

train_summary(x)

Arguments

X anestcv.glmnet, nestcv. train or outercv object

Details
Note: the argument outer_train_predict must be set to TRUE in the original call to either nestcv.glmnet,
nestcv.train or outercv.

Value

Returns performance metrics from outer training folds, see predSummary

See Also

predSummary

Examples

data(iris)
X <- iris[, 1:4]
y <- iris[, 5]

library(randomForest)
fit <- outercv(y, x, model = randomForest,
outer_train_predict = TRUE,
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n_outer_folds = 3,
cv.cores = 1)
summary (fit)
train_summary(fit)

fit2 <- nestcv.glmnet(y, X,
family = "multinomial”,
alpha = 1,
outer_train_predict = TRUE,
n_outer_folds = 3)

summary (fit2)

innercv_summary(fit2)

train_summary(fit2)

fit3 <- nestcv.train(y, x,
model="svm",
outer_train_predict = TRUE,
n_outer_folds = 3,
cv.cores = 2)

summary (fit3)

innercv_summary(fit3)

train_summary(fit3)

ttest_filter t-test filter

Description

Simple univariate filter using t-test using the Rfast package for speed. Can be applied to all or a
subset of predictors.

Usage

ttest_filter(

Y,

X,

force_vars = NULL,

nfilter = NULL,

p_cutoff = 0.05,

rsg_cutoff = NULL,

type = c("index"”, "names"”, "full")

Arguments

y Response vector

X Matrix of predictors
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force_vars

nfilter

p_cutoff
rsq_cutoff

type

Value

weight

Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be passed to filterFUN.

Number of predictors to return. If NULL all predictors with p-values < p_cutoff
are returned.

p value cut-off

2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on t-test. If 2 or more predic-
tors are collinear, the first ranked predictor by t-test is retained, while the other
collinear predictors are removed. See collinear().

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p values.

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters in order of t-test p-value. If type is "full” full output from
Rfast::ttests is returned.

Examples

## sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

## load iris dataset and simulate a binary outcome

data(iris)

dt <- iris[, 1:4]

colnames(dt) <- c("marker1”, "marker2", "marker3", "marker4")

dt <- as.data.frame(apply(dt, 2, scale))

y2 <- sigmoid(@.5 x dt$marker1 + 2 x dt$marker2) > runif(nrow(dt))
y2 <- factor(y2, labels = c("C1", "C2"))

ttest_filter(y2, dt) # returns index of filtered predictors
ttest_filter(y2, dt, type = "name”) # shows names of predictors
ttest_filter(y2, dt, type = "full”) # full results table

weight

Calculate weights for class imbalance

Description

Calculate weights for class imbalance

Usage

weight(y)
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Arguments

y Response vector

Value

Vector of weights

wilcoxon_filter Wilcoxon test filter

Description

Simple univariate filter using Wilcoxon (Mann-Whitney) test using the matrixTests package.

Usage

wilcoxon_filter(
Y,
X,
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
rsg_cutoff = NULL,
type = c("index"”, "names"”, "full"),
exact = FALSE,

)
Arguments

y Response vector

X Matrix of predictors

force_vars Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be passed to filterFUN.

nfilter Number of predictors to return. If NULL all predictors with p values < p_cutoff
are returned.

p_cutoff p value cut-off

rsq_cutoff 2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on Wilcoxon test. If 2 or more
predictors are collinear, the first ranked predictor by Wilcoxon test is retained,
while the other collinear predictors are removed. See collinear().

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p-values.

exact Logical whether exact or approximate p-value is calculated. Default is FALSE

for speed.

Further arguments passed to matrixTests::row_wilcoxon_twosample
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Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type =
"names") of filtered parameters. If typeis "full” full output from matrixTests::row_wilcoxon_twosample
is returned.
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