Package ‘nodeSub’

February 1, 2022

Type Package

Title Simulate DNA Alignments Using Node Substitutions

Version 1.2.3

Author Thijs Janzen

Maintainer Thijs Janzen <thijsjanzen@gmail.com>

Description Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

URL https://github.com/thijsjanzen/nodeSub

BugReports https://github.com/thijsjanzen/nodeSub

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1

VignetteBuilder knitr

LinkingTo Rcpp

Depends Rcpp

Imports RPANDA, nLTT, apTreeshape, phangorn, tibble, DDD, Rmpfr, assertthat, pbapply, phylobase, geiger, ape, babette, beautier, beastier, mauricer, tracerer, rappdirs, testit, stringr

Suggests phytools, testthat, TreeSim, dplyr, knitr, rmarkdown, ggplot2, magrittr, tidyr

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-02-01 07:50:10 UTC
nodeSub-package

R topics documented:

nodeSub-package .. 2
calc_expected_hidden_nodes ... 3
calc_fraction ... 3
calc_required_node_time .. 4
calc_sum_stats .. 4
count_hidden ... 5
create_balanced_tree ... 6
create_equal_alignment .. 6
create_equal_alignment_explicit 7
create_unbalanced_tree ... 8
estimate_marginal_models .. 8
get_p_matrix ... 9
infer_phylogeny .. 10
reduce_tree ... 11
sim_linked ... 11
sim_normal ... 12
sim_normal_explicit ... 13
sim_unlinked .. 14
sim_unlinked_explicit ... 15
slow_matrix .. 16

Index 17

nodeSub-package

Description

Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

Version History:

Version 1.2.3 - Removed summary statistic tests for CRAN
Version 1.2.2 - Changed coderov links in README
Version 1.2.1 - Expanded dependency on RPANDA
Version 1.2 - Release on CRAN

Author(s)

Thijs Janzen Maintainer: Thijs Janzen <t.janzen@rug.nl>
References
Thijs Janzen, Folmer Bokma, Rampal S Etienne, Nucleotide Substitutions during Speciation may Explain Substitution Rate Variation, Systematic Biology, 2021; syab085

calc_expected_hidden_nodes

Calculate the number of expected hidden nodes in a phylogenetic tree

Description
Calculate the number of expected hidden nodes using equation 1 in Manceau et al. 2020

Usage
calc_expected_hidden_nodes(phy, lambda = NULL, mu = NULL)

Arguments
- **phy**: phylogenetic tree
- **lambda**: birth rate
- **mu**: death rate

Value
- expected number of hidden nodes

References

calc_fraction

Calculate the expected fraction of substitutions at the nodes, relative to the fraction at the branches

Description
calulates the relative contribution of substitutions at the nodes

Usage
calc_fraction(phy = NULL, node_time = 0, model = "unlinked")
calc_required_node_time

Calculate the required node time to obtain a desired fraction of substitutions at the node

Description

calculates the required node time to obtain a desired fraction of substitutions at the node

Usage

```r
calc_required_node_time(phy = NULL, s = 0.5, model = "unlinked")
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>phy</td>
<td>phylogenetic tree</td>
</tr>
<tr>
<td>s</td>
<td>desired fraction</td>
</tr>
<tr>
<td>model</td>
<td>node substitution model, either "linked" or "unlinked".</td>
</tr>
</tbody>
</table>

Value

expected fraction

calc_sum_stats

calculate summary statistics of a phylogenetic tree, compared with a reference tree

Description

calculate summary statistics of a phylogenetic tree, compared with a reference tree

Usage

```r
calc_sum_stats(trees, true_tree, verbose = FALSE)
```
count_hidden

Arguments

- **trees**: a phyloList object containing multiple trees
- **true_tree**: a phylo object containing the reference tree, preferably without extinct lineages. If extinct lineages are found, these are dropped.
- **verbose**: verbose output if true (e.g. progressbars)

Value

A list with two tibbles:
1. Containing the summary statistics of all trees.
2. Containing the difference with the true tree.

Description

Function to calculate the number of hidden speciation events, e.g. speciation events that have lead to an extinct species. Thus, these hidden speciation events can only be detected in complete trees (as opposed to reconstructed trees).

Usage

```r
count_hidden(tree)
```

Arguments

- **tree**: phylo object

Value

Number of hidden speciation events
create_balanced_tree

create a balanced tree out of branching times

Description

create a balanced tree out of branching times

Usage

create_balanced_tree(brts)

Arguments

brts vector of branching times

Value

phylo phylo object

create_equal_alignment

function create an alignment with identical information content

Description

function create an alignment with identical information content

Usage

create_equal_alignment(
 input_tree,
 sub_rate,
 alignment_result,
 sim_function = NULL,
 verbose = FALSE,
 node_time = NULL,
 input_alignment_type = "nodesub"
)
create_equal_alignment_explicit

function create an alignment with identical information content, using the explicit method to simulate substitutions

Arguments

input_tree phylogeny for which to generate alignment
sub_rate substitution rate used in the original phylogeny
alignment_result result of sim_normal, sim_linked or sim_unlinked
sim_function function that accepts a tree, sequence length, rootsequence and substitution rate (in that order). Default is sim_normal
verbose provide intermediate output
node_time node time
input_alignment_type was the input alignment simulated with a node substitution model or a normal substitution model? Used to calculate the twin mutation rate.

Value

list with four properties: 1) alignment: the alignment itself, 2) adjusted rate: the substitution rate used to obtain identical information content 3) total_accumulated_substitutions: the total number of substitutions accumulated. 4) total_node_substitutions: total number of substitutions accumulated on the nodes 5) total_branch_substitutions: total number of substitutions accumulated on the branches.

Description

function create an alignment with identical information content, using the explicit method to simulate substitutions

Usage

create_equal_alignment_explicit(
 input_tree,
 sub_rate,
 alignment_result,
 verbose = FALSE
)

Arguments

input_tree phylogeny for which to generate alignment
sub_rate substitution rate used in the original phylogeny
alignment_result result of sim_normal, sim_linked or sim_unlinked
verbose provide intermediate output
Value

- list with four properties: 1) alignment: the alignment itself, 2) adjusted rate: the substitution rate used to obtain identical information content 3) total_accumulated_substitutions: the total number of substitutions accumulated. 4) total_node_substitutions: total number of substitutions accumulated on the nodes 5) total_branch_substitutions: total number of substitutions accumulated on the branches.

create_unbalanced_tree

create an unbalanced tree out of branching times

Description

create an unbalanced tree out of branching times

Usage

create_unbalanced_tree(brts)

Arguments

- brts: vector of branching times

Value

phylo phylo object

estimate_marginal_models

estimate the marginal likelihood of the relaxed and strict clock model for a provided alignment

Description

estimate_marginal_models estimates the marginal likelihood of both the strict and the relaxed clock model, given the JC69 substitution model, using the NS package in BEAST, made available via the babette R package. The NS package performs nested sampling, and uses an MCMC approach to estimate the marginal likelihood. Sampling is performed until convergence of the MCMC chain.

Usage

estimate_marginal_models(
 fasta_filename,
 use_yule_prior = FALSE,
 rng_seed = 42,
 sub_rate = 1,
 verbose = FALSE
)
get_p_matrix

Arguments

- fasta_filename: file name of fasta file holding alignment for which the marginal likelihood is to be estimated
- use_yule_prior: by default, a birth-death prior is used as tree prior, but if use_yule_prior is set to TRUE, a pure-birth prior will be used.
- rng_seed: seed of pseudo-random number generator
- sub_rate: substitution rate
- verbose: boolean indicating if verbose intermediate output is to be generated

Value

data frame with marginal likelihoods and relative weights per clock model.

Description

calculates the p matrix

Usage

get_p_matrix(branch_length, eig = phangorn::edQt(), rate = 1)

Arguments

- branch_length: branch length
- eig: eigen object
- rate: rate

Value

- p matrix
infer_phylogeny

infer the time calibrated phylogeny associated with the provided alignment. This function uses the R package babette to infer the phylogeny using BEAST2.

Usage

```r
infer_phylogeny(
  alignment,  # Phydat object containing the focal alignment
  treatment_name,  # string to be appended to BEAST files
  tree_prior = beautier::create_bd_tree_prior(),  # tree prior used, default = birth-death prior
  clock_prior = beautier::create_strict_clock_model(),  # clock prior used, default = strict clock
  mcmc_seed = NULL,  # seed of the mcmc chain, default is the system time
  chain_length = 1e+07,  # length of the mcmc chain, default is 1e7.
  sample_interval = 5000,  # interval of sampling, default is 5000
  burnin = 0.1,  # burnin of posterior distribution
  working_dir = NULL,  # beast2 working dir
  sub_rate = 1  # substitution rate used to generate the original alignment (if available), default is 1
)
```

Arguments

- `alignment`: Phydat object containing the focal alignment
- `treatment_name`: string to be appended to BEAST files
- `tree_prior`: tree prior used, default = birth-death prior
- `clock_prior`: clock prior used, default = strict clock
- `mcmc_seed`: seed of the mcmc chain, default is the system time
- `chain_length`: length of the mcmc chain, default is 1e7.
- `sample_interval`: interval of sampling, default is 5000
- `burnin`: burnin of posterior distribution
- `working_dir`: beast2 working dir
- `sub_rate`: substitution rate used to generate the original alignment (if available), default is 1

Value

list with all trees, and the consensus tree
reduce_tree

Function to remove speciation events occurring after an extinction event. Extinct species are pruned randomly, such that only a single extinct species per branching event (if any extinct species) remains.

Usage

```r
reduce_tree(tree)
```

Arguments

- `tree` phylo object

Value

pruned tree

sim_linked

simulate a sequence assuming conditional substitutions on the node.

Description

simulate a sequence assuming conditional substitutions on the node.

Usage

```r
sim_linked(
    phy,
    Q = rep(1, 6),
    rate = 0.1,
    node_mut_rate_double = 1e-09,
    l = 1000,
    bf = rep(0.25, 4),
    rootseq = NULL,
    node_time = 0.01
)
```
Arguments

phy tree for which to simulate sequences
Q substitution matrix along the branches, default = JC
rate mutation rate, default = 1
node_mut_rate_double mutation rate on the node, default = 1e-9
l number of base pairs to simulate
bf base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
rootseq sequence at the root, simulated by default
node_time time spent at the node

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes

Description

Simulate sequences for a given evolutionary tree, using a standard model of sequence evolution along the branches. Code for this function was heavily inspired by the function simSeq from the phangorn package.

Usage

sim_normal(x, l = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)

Arguments

x a phylogenetic tree tree, i.e. an object of class phylo
l length of the sequence to simulate.
Q the rate matrix.
bf base frequencies.
rootseq a vector of length l containing the root sequence, other root sequence is randomly generated.
rate mutation rate
sim_normal_explicit

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes

Author(s)

Klaus Schliep <klaus.schliep@gmail.com>

Description

simulate a sequence assuming substitutions are only accumulated along the branches, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Usage

```r
sim_normal_explicit(x, l = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)
```

Arguments

- `x`: a phylogenetic tree tree, i.e. an object of class phylo or and object of class pml.
- `l`: length of the sequence to simulate.
- `Q`: the rate matrix.
- `bf`: base frequencies.
- `rootseq`: a vector of length l containing the root sequence, other root sequence is randomly generated.
- `rate`: mutation rate or scaler for the edge length, a numerical value greater than zero.

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes
sim_unlinked
Simulate a sequence assuming node substitutions are not shared amongst offspring, given two substitution matrices: one for substitutions occurring on the nodes, and one for substitutions occurring along the branches.

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, given two substitution matrices: one for substitutions occurring on the nodes, and one for substitutions occurring along the branches.

Usage

```r
sim_unlinked(
  phy,  
  Q1 = rep(1, 6),  
  Q2 = rep(1, 6),  
  rate1 = 0.1,  
  rate2 = 0.1,  
  l = 1000,  
  bf = rep(0.25, 4),  
  rootseq = NULL,  
  node_time = 0.001
)
```

Arguments

- **phy**: tree for which to simulate sequences
- **Q1**: substitution matrix along the branches, default = JC
- **Q2**: substitution matrix on the nodes, default = JC
- **rate1**: mutation rate along the branch, default = 0.1
- **rate2**: mutation rate on the node, default = 0.1
- **l**: number of base pairs to simulate
- **bf**: base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
- **rootseq**: sequence at the root, simulated by default
- **node_time**: amount of time spent at the nodes

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes
sim_unlinked_explicit Simulate a sequence assuming node substitutions are not shared amongst offspring, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Usage

```r
sim_unlinked_explicit(
  phy,
  Q1 = rep(1, 6),
  Q2 = rep(1, 6),
  rate1 = 0.1,
  rate2 = 0.1,
  l = 1000,
  bf = rep(0.25, 4),
  rootseq = NULL,
  node_time = 0.001
)
```

Arguments

- `phy` phylogenetic tree for which to simulate sequences
- `Q1` substitution matrix along the branches, default = JC
- `Q2` substitution matrix on the nodes, default = JC
- `rate1` mutation rate along the branch, default = 0.1
- `rate2` mutation rate on the node, default = 0.1
- `l` number of base pairs to simulate
- `bf` base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
- `rootseq` sequence at the root, simulated by default
- `node_time` amount of time spent at the nodes

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes
slow_matrix

description

this function calculates the p matrix within R this is slower than the C++ implementation in get_p_matrix but provides a way to debug and verify

usage

slow_matrix(eig, branch_length, rate)

arguments

eig eigen object
branch_length branch length
rate substitution rate

value

p matrix
Index

calc_expected_hidden_nodes, 3
calc_fraction, 3
calc_required_node_time, 4
calc_sum_stats, 4
count_hidden, 5
create_balanced_tree, 6
create_equal_alignment, 6
create_equal_alignment_explicit, 7
create_unbalanced_tree, 8
estimate_marginal_models, 8
get_p_matrix, 9
infer_phylogeny, 10
nodeSub (nodeSub-package), 2
nodeSub-package, 2
reduce_tree, 11
sim_linked, 11
sim_normal, 12
sim_normal_explicit, 13
sim_unlinked, 14
sim_unlinked_explicit, 15
slow_matrix, 16